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ON A MIXED BOUNDARY VALUE PROBLEM FOR THE REDUCED
WAVE EQUATION ON A SPHERE*

H. L., JOHNSONf

Abstract. The paper considers the mixed boundary value problem Vg-w +A 2w =0, 0_-<p < 1,
0_-<q_-<m w(1, q)=Hl(O), 0_-<q<a; (Ow/Op)(1,o)=H2(q), a<o<-_’tr, for an axial symmetric
potential w w(p, o) in a unit sphere. The problem is transformed into a linear integral equation of the
second kind with a weakly singular kernel. An orthogonality condition is imposed on the given
boundary functions H1 and H2 in order that the solution have a desired degree of regularity. The paper
extends some previous work of the author and is related to some earlier work of W. D. Collins on dual
series equations.

1. Introduction. This paper extends the integral equation formulation of i-5]
to the mixed boundary value problem

(1.1) V2w -t-A 2w l [OW{--[Vp 20w’_p ] -t sinl
I

(p, 0)6 G+ {(p, qg)10 =<p < 1, 0-<q < r},

(a.2) w(, ) Ha(),

(1.3) Ow(1, 0) H2(q), q $2 {ola < q -< r}.
Op

The continuity properties of the prescribed functions H1 and H2 are described in
6.

In a series of papers, [2], [3], and [4], W. D. Collins has shown how certain
diffraction and electrostatic problems with mixed boundary conditions on a
spherical boundary can be reduced to the solution of a system of dual series, and
how these series can be transformed into an integral equation of the second kind.
For axial symmetric problems, the series studied by Collins, in his notation, take
the form

(1.4)
n=0

(1.4)’
n=0

where f(q) and g(q) are prescribed functions.
In his examples, H, H, (), n >=0, are described entire functions of the

wave number , with the property that H, O(1/n).
It would be natural to seek a solution w of the boundary value problem I in

the series form

w(o, ) 2 B,,j, (,o)e,, (cos q),
n=0
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where in (hp), n => 0, are spherical Bessel functions, and to rewrite the boundary
conditions (1.2), (1.3) in the form (1.4) and (1.4)’. We do this and find that

(2n + 1)in (A)H.

Since these H, have poles at the zeros of f,, the kernel of the integral equation
generated by Collins’ method would, as a function of A, necessarily have singu-
larities at all of these poles.

The method presented in this paper develops a pair of Fredholm integral
equations of the second kind for which the kernel is an entire function of A. This
formulation is based on two principal ideas. The first idea is that a solution of (1.1)
can be written in the form of an integral that depends on an unprescribed
harmonic function of two variables. The second idea can be viewed as an
extension of Mehler’s formula for Legendre polynomials, and is expressed as
Theorem 1 in the paper. Once these facts have been applied to the boundary value
problem I, the course of the ensuing analysis is, for the most part, determined.

To set the stage for the analysis, we note that the change of variables,
x p cos p, y p sin p, W W(x, y) w (to, q), transforms (1.1) into

02W OW 10W
(1.5) q-+-c-AEw= 0.

0x2 0y 2 y0y

It is known [7] that every solution W of (1.5) can be written as

2 fr cos (X4y-s2)u(x, s) ds
(1.6) W= W(x, Y)= Jo 4yZ-s2

for some two-dimensional harmonic function u u(x, s), s >0. The function u
can be continued harmonically into x 2 + s 2 < 1 as an even function of s. By setting
s y cos 0 and using u(x, -s) u(x, s), (1.6) can be rewritten as

(1.7)

and

(1.8)

where

(1.9)

w(p, p)
1 Io cos (AO sin o sin O)u(p cos q, 0 sin o cos O) dO,

1
A sin q sin 0 sin (Ap sin q sin 0)

u( cos o, sin o cos O) dO

+-- cos (I0 sin q sin O)
1
Re z dO,

f(z) u(x, s)+ iv(x, s)

is analytic in Izl< 1 and

(1.10) z p cos q + ip sin q cos 0.
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2. A basic theorem and corollary. Before taking limits of w(p, q) and
(Ow/Op)(p, qg) as p --> 1-, it is convenient to put each term on the right-hand side of
(1.7) and (1.8) in the form

(2.1) Re g(z) dO

where g is analytic, Re (g(z?)) Re (g(z)) in Izl < 1, and z is related to 0 by (1.10).
Let S={010<q<a}U{qla<q<r}; let Ht(S) be the class of H61der-

continuous functions of order/3; and let L2(S) be the class of Lebesgue-integrable
functions on S. The limp_,1- of the integral (2.1) is described by the following
theorem.

THEOREM 1. If
(i) g g(z) is analytic in Izl < 1,
(ii) g(e’) H (S) t L2(S),
(iii) Re (g())= Re (g(z)), then

(2.2)

where

lim Re g(p cos q + ip sin q cos 0) d A (g)(q),

(2.3) A(g)(q) =F(g)(q)+G(g)(q)
2

I0 /K(, s)

(1 y,g(eiS) e is/2

)(2.5) G(g)() Im
K(, s)

ds

(2.6) K(, s) Clsin (/2)- sin2 (s/2)[.
To prove Theorem 1, we may insert

1 g()d

into g(z)dO, interchange orders of integration, carry out the inner integration,
and use the dominating convergence theorem to pass the limit under the integral
sign.

COROLLARY 1. Iff(e is) u(s)+ iv(s) f(e-iS), s S, are the boundary values
of an analytic function in Iz[ < 1 with f(es) Ha (S) fq L2(S), then

(2.7) A (f)(qg) F(f)(q) O(f)(q),

Proof. If f fk e iko, then
(2.8) F(f)(q) G(f)(q)

is a consequence of Mehler’s formula [8, p. 57]. In the more general case, the
partial sums of the Fourier series of f exist and can be written as sn(q)
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Ek=0 akeik, where the ak are real. Let tr. (1/(n + 1)) Ek=0 Sk((O)" An immediate
consequence of (2.8) is

(2.9) F(r,)(q) G(o’,,)(o).

It is known that [[f-cr,[ls)-->0 as n-->oo, and that lim,_,oocr,(q)=f(e’)
uniformly on closed subintervals of S, where f is continuous [9, p. 45]. Let q 6 S,
M= M(q) max (csc (q/2), see (q/2), 1/(K(0, a))). There exists a set E = S
containing the points 0, a, and rr such that S E is closed and 1/(K(o, s)) =< 2M
for s E. Equation (2.9) and the triangle inequality imply that

(2.10) IF(.f)(cp)-G(f)(q)l<=R,, =[F(f-o-,)(q)l+lG(f-o-,,)(q)l.

Moreover, from the definitions of M and E, and the form of the operators F and
G, it follows that

R. =<4MJ (IRe(f -on)]+lXm(f -o,)]) ds
E

+ 2 f (IRe(f r,,)l + Im(f o’,)1) ds
Js
_

K(0, s)

The L2 convergence on S and the uniform convergence on S-E of rn to f imply
that limn_o R, 0. Q.E.D.

The significance of Corollary 1 is that it allows one to use the operatorA in its
F form, as given by (2.4), when working with the first boundary condition (1.2)
and to use A in its G form, as given by (2.5), when working with the second
boundary condition (1.3).

3. Transformations of the first boundary condition. To transform (1.7) into
the form (2.1), we start with the well-known identity

(3.1) cos (x sin O)=Jo(x)+2 ., J2,(x) cos (2n0),
n=l

where J2, (x) are Bessel functions of the first kind. It is known that the right-hand
side of (3.1) converges uniformly for yxl <--1.

Again, let f u + iv be analytic in Iz[< 1, and set z p cos q + ip sin q cos 0.
Let

(3.2) Z(z, p)
z p cos q

cos 0.
ip sin q

The binomial identity

cos (2n0) Re (cos 0 + sin 0)2"

cos"-(0)(-1)(1-cos 0)

permits (1.7) to be written as w(O, q)= Re (1/-) Io g(z) dO) with

g(z)= Jo(1O sin q)+2 J,(10 sin q)
2n

=1 \y-----0 2j
(- 1)Jzn-2j(z, p)

(3.3)
(1-Z12(z, p))’)]f(z).
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Since the series (3.3) converges uniformly for 1/2 =< p =< 1, Theorem 1 can be applied
term by term, and the identity

(3.4)
(Z1 + iZ2)2n + (Z1- iZ2)2n= (2n)2 j=o 2j

(-1)JZn-Ez2

can be used to obtain

w(1, o)=A Jo(A sin q)+ E J2(A sin qg)((Zlq-iZ2)2n +(Zl-iZ2)2) f(e ’S) (o)
n=l

with

(3.6) Z
ise cos o
sin

(3.7) Z=41_Z12=
x/2(cos s cos o) ei/2

sin q

Setting Z -I-iZ2, it follows that -1= Z -iZ2. The identities

(3.8) e (x/2’-’-1= E Jn(x)tn,

(3.9)
imply that

(3.10)

(-)"L(x)=_(x)=L(-x)

cosh (t- -1) Jo(x) + Je (x)(t2 + t-2).
n=l

These facts permit (3.5) to be written as

(3.11) w(1, q) A[cosh (,)t sin )) ]2.. q(t- f(e’Sl (qg)

furthermore,

(3.12) t- -1 2iZ2

where

(3.13)

Since

4i/K1(o, s) eis

sin q

Ka(q, s)= sin2 (q/2)-sin2 (s/2).

2n

cosh (iz)= cos (z)= ] (- 1)"
z

,,=o (2n)!’

equation (3.11) becomes

w(1, q) A[cos (2AK(q, s) eiS/2)f(eiS)](q)
(3.14)

Z
A[(2A)2" (_ 1),K2, (q, s) ,,s, ,s,

e fte )J,(o) HI((p),
,=o (2n)!

q9 C Sl.
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Equation (3.14) can be partially inverted by setting q r/, multiplying it by
(sin rl/2)(1/K(q, r/)) and integrating on r/from 0 to q. The integrals generated by
performing these operations on (3.14) take the form

Io*sinr/ 1 (lfo" inSf(eiS/e )2 K(, )
Re (K(, s))"-1/2 e dsd

/1 sin n (K(n, s))-/dn=Re e
2 K(,n)

(IoRe f(s) ei"(K(, s))" B(n + 1/2, 1/2) ds

where

(3.5)

and

f(s) us(s)+ ivx(s)-’f(e is) eis

B(n+1/2,1/2) F(1/2)r(n + 1/2)
rF(n + 1)

2 (2n- 1)!
4" (n 1)!n!

The integrated form of (3.14) thus becomes

(f0 (cx3=)
2n (g(q, s))2"eins))Re fa(s) .Yo (- I’"A ds

(n!)2
(3.16)

Re 1’(S)Jo(z(, s)) ds h1(),

where

(3.17)

0 S1,

z(q, s) 2AK(q, s) e/2,

(3.i"8) h(cp) fo sin r/ H(r/) dr/.
2 K(cp,

Upon differentiating (3.16) and using some well-known properties of Bessel
functions, one can show that

(3.19) u(o)=h(q)+A2sinq Re f(s)e
z(q,s)

ds

4. Transformation of the second boundary condition. The second term of
(1.8) is equal to (1.7) with u Re (f) replaced by Re (z(dffdz)). The limit of this
term is

(4.1) A[cosh ( sin P(t-t-1))eiSf’(ei)](q).\A 2

It is now appropriate to take the operator A in its G form. In this case, the
expression

(4.2)
A sin (tp)(t_ -) 2A X/Kl(S, tp) e islE 2AK(qg, s) e i/2 z(q, s),

2
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and

is id
f e iSeiSf’(e )=

ds
)"

To modify the first term in (1.8), we start with the identity

(4.3) sin (x sin 0)= 2 Y J2,,-l(x) sin ((2n 1)0).
n=l

It follows that

sin 0 sin (hp sin o sin 0) Jl(hp sin q)- 2 Jn(hp sin q) cos (2n0).
n=l

Proceeding now as in 3, we write the term in (1.8) as

(lion)(4.4) Re g(z) dO

where

(4.5)
g2(z) -A sin q JI(AP sin qg)-2 E J2n(Ap sin q)

2]n=l

where Z(z, p) is defined by (3.2). Theorem 1 applied to (4.4) yields

(4.6) A (-A sin q) JI(A sin o)- J,(A sin o)(t’ + t-’) (e ’) (o),

where .t Z1 + iZ2 is defined as in 3.
The above series of Bessel functions may be written more completely by

using the identity

(4.7) J(x)- J,,(x)(t’ + -’) (t- -1) 1)
n=l

sinh (t- t-

To verify this identity, observe that (3.8) leads to

sinh t-t- J+(x)t+

(4.8)

2 J+(x)t+J(x)t+ J-(-(x)t-(-.
n=l n=l

Equation (4.7) is obtained by regrouping the terms in this series and using the
identity Jp/l Jp-1 2J’p.

In our application of (4.7), x =A sin q and A((sin q)/2)(t-t-1) z(q,s).
Hence the limit of the first term in the second boundary condition becomes

(4.9) A[z(q, s) sinh (z (q, s))f(eiS)](q).
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The second boundary condition is the sum of the expressions (4.1) and (4.9); this
condition can now be written as

(4.10) G[z(qg, s)sinh (z(qg, s))f(eiS)](qg)+a[cosh (z(qg, s))(-isf)](q) =H2(qg).

Equation (4.10) may be partially inverted if we set qg=r/, multiply by
((sin rt)/2)(1/K(q, 0)) integrate on rt from q to r, and use the power series form
of sinh (z(r/, s)) and cosh (z(rt, s)) to obtain

(4.11)

sinrth2(q) 2--o)ztr/)dr/ Im fl(s)z(q, s)Ii(z(qo, s)) ds

-Re [I, -dsl(S)Io(z(o,s)) -Im
2

s)) ds],
where/1(s) is defined by (3.15) and the terms Ik (X) are modified Bessel functions.
The second term on the right-hand side of (4.11) is integrated by parts and
Re (fl(r))= 0 is used to obtain

(4.12)

5. The integral equation for vl. Equations (3.19) and (4.12) give the func-
tion u in terms of (s) u (s) + iv (s). Hence, we still need to develop an integral
equation for v on S1USe. To do this, we assume that u(q)=u(1, q) and
v(o) v(1, q) are representable in the Fourier series u((#)=Yno an cos (nq),
v(o) Yn__ an sin (no).

It follows that

(5.1) ua(q) Z an cos ((n +1/2)p),
n=O

(5.2) /.)l(q0) an sin ((n +1/2)qg)
n=O

with

Thus

a
2

Ul(t) COS ((n + 1/2)t) dt.

v(qg) Ul(t) cos ((n +1/2)t) dt+ u(t) cos ((n +1/2)t) d
n=0

(5.3)
sin ((n +1/2)(0)1"

A formal integration by parts of the integrals contained in (5.3) yields

(5.4) v(o) -2[ul](a)k(qg, a)-2 u’l(t)k(qg, t) dt,
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where

(5.5)

and

1 ]sin (p/2)- sin (t/2)
k(q, t)= -- In

tsin (q/2) +sin (t/2)

=2 sin ((n +1/2))sin ((n +1/2)t)
r =o (2n + 1)

(5.6) [Ul](O) Ul(O + 0) Ul(O 0).

Since we have formally applied Theorem 1 and Corollary 1 to the function with
boundary values v’(q)-iu’(), it is necessary, under our proof, that u(r) and
v (o), and hence Ul(O) and Vl(O), not have a logarithmic singularity at r a. Thus
we require that

(5.7) [u1](o)=0.

The implications of this condition are discussed in 8.
To obtain an integral equation from (5.4), we need expressions for u. By

formally differentiating (3.19) and (4.12), one obtains

(5.8)

,, [h
2 sin ()fl((#) e i*

() )+hi (q Re, 2

+ a cos (o)f(s) e iaJ1 (Z (qg, S))
z(,,s)

,s&(Z (,, s )) cls]/4 sin2 (O)fa(S) e
(z(, s))2

h(qg)
vl(qg)

+ Re h 2 sin (rC)fl(q) e i’t’

2 2

(5.9)

q9 Sa,

+im (2 sin (qg) If e is

4
fl(S) (Io(z(q, s))+I2(z(qg, s))) ds

(Io 2,sI2(z(q, s)) )+ Re A 4 sin (q) sin (S)fl(S) e
(z(qg, S))2

ds

Inserting (5.8) and (5.9) into (5.4) with [ua](c)= 0, one obtains

where

/)l(qg)=F2()+ k(q,s)vl(S)ds+Re fl(S) K2,j(o,s) ds,

qg . S l,..J S2,

(5.11)

(5.12)

F2() k(o, s)2h’’(s) ds k(q, s)2h’2(s) ds,

K2,1((49, s) -/ 2 sin (s)eiSk(o, s),
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(5.13)
K2,2(qg, s)

-A 2 ei k(rp, t) cos (t)

(J2(z(t, s)) + Jo(z(t, s))) dt,

,siniA2e k(q,t) 2(t)(I2(z(t,s))+Io(z(t,s)))dt,

O<S <Ot,

te <S <-It,

(5 14)
2(A2 eis)2 (gO, t) sin2 (t)JTa(7z-(t-’ s)) dt,

tz(t,s))2

K2,3(qg, s)

[--2(A 2 eiS)2 Io k(qg, t)sin (s)sin (t)I,2---(-!t’-s)) dt,
(Z(t,S))2

0<S <x,

c <s <Tr.

Hereafter we shall refer to equations (3.19), (4.12), and (5.10) as the derived
integral equation.

6. Continuity properties of solutions of the derived integral equations. At
this point we have formally derived a system of two linear integral equations of the
second kind. To write the second boundary condition as (4.10), we have assumed
that v’(q)-iu’(o)Ht(S)f-lL2(S) for some/3 >0. Our next goal is to show that v’
and u’ will be in this class if HI and HE are suitably smooth. Toward this end, we
note the following smoothness properties of hi, h2, and F2.

LEMMA 1 /fHi G C2(1), then h" E H1/2(gl).
If H2 6 Cl(2), then h’2 6 H1/2(2).

This lemma is proved by integrating by parts the integrals (3.18) and (4.11),
differentiating the results, and estimating the difference of the final integrals to
prove that they are in the stated H/51der class..

COROLLARY 2. Under the hypotheses ofLemma 1, F2 C() H1/2(S) and
F’ e H1/2(S).

The property F’ H1/2(S) is a consequence of Lemma 1 and the well-known
fact that Cauchy singular integrals map H (S) into H (S) [6, p. 46].

The expected smoothness properties of U and V are described in the
following theorem.

THEOREM 2. If H1 C2(g) and Ha C(a), then every solution (u, v) of
the derived integral equations which is an element ofLe(S) La(S) has the property
that each of the functions u v 1, u’1, and v ale elements of H1/2(S) f"l L2(S).

The proof of Theorem 2 consists of a sequence of bootstrap arguments. First
notice that Ul is continuous except possibly at q a. The terms making up v are
all integrals of the form k(rp, s)f(s) ds withf L2(S). The absolute continuity of
the Lebesgue integral and the continuity property of the logarithm function imply
that these integrals are continuous on S. Next, it is easy to prove that an integral of
the form F(x)= a log Ix-sir(s) ds with f(s) piecewise continuous on [a, b] is in
Ha ((a, b)) for any < 1. It follows from Corollary 2 and the above remarks that
both u and v are elements of H1/2(S). The formal differentiation that was carried.
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OUt tO derive (5.8) from (3.19) and (5.9) from (4.12) is now justified. Furthermore,
it follows from Lemma 1, the fact that [1 u + iv H/e(s), and the ditterentia-
bility properties of Jk(X) and Ik(x) that u’ H1/e(S)f’ILe(S). Again since fl
H/e(S), it follows that Vl exists as a Cauchy singular integral. The property that
Cauchy singular integrals mapHe intoHt, together with Corollary 2, implies that
v’H/e(S). The logarithmic character of Cauchy singular integrals at the
endpoints of the interval of integration implies that v’ Le(S). Q.E.D.

7. The case of A= 0. For A 0, the derived integral equations become

(7.1) v()=F(o)+ k(,s)v(s) ds, o Sa U $2;

(7.2)

1(0), (S1

Ul ((0)--

Ip DI(S
h2(0)+

2
06Se,

where k(o, s) is the symmetric positive kernel defined by (5.5). The domain of
k(q, s) as used in the integral equation (7.1) is dependent on a. To emphasize this
fact, we write

(7.3) k, k qg s k q s a <-- q <--_ Tr, a <-- s <-- Tr.

The solution of (7.1) depends on the characteristic values, c.v., of the kernel
k. Let/z, denote the lowest c.v. of k. Our. next goal is to show that

(7.4) /xo, > 1, a > O.

To prove (7.4), we first introduce the extended kernel

k(s,t), <-_s<=Tr, <:t<-_r,
(7.5) k :/(s, t)= 0, 0--_<s <a, 0--<_t--<_Tr,

O, O<=s<=zr, O<=t<a,

and study some of its properties, k is a symmetric nonnegative kernel. It is known
[1, p. 285] that the lowest c.v. of a nonnegative kernel has at most one indepen-
dent characteristic function, c.f., and that the c.f. correspondingto the lowest c.v.
can be taken to be nonnegative. Let/2 denote the lowest c.v. of k and (t)
its corresponding normalized nonnegative c.f.. , satisfies

(7.6) (t) =/2 k(t,s)P(’s) ds, O<=t<=Tr.

From the definition of k, it follows that

(7.7) (t) 0, 0_-< < a.

When a 0, the c.v.’s and the c.f.’s of k are known, and in the above notation,

(7.8) t2o 1, o(t)= 4(2/7r) sin (t/2).
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The Rayleigh quotient formulation of the lowest c.v. for the kernel o states that

(7.9) 1/1 sup (/o, )>(ko,,,
(,)---

This last inequality is strict, for if (koCh, 04) 1, then would be a c.f. of/0 (see
[1, p. 108]) and, since is normalized and nonnegative, it would necessarily
follow that 0(t). This result is contradicted by (7.7) and (7.8).

Next, observe that

(7.10) 1 (/,,, )= k(s, t)(t)(s) dtds (koO, ).

The last equality is a consequence of (7.7). Taken together, equations (7.9) and
(7.10) state that 1/t2 < 1.

Another consequence of (7.6) is that

(7.11) ,(t) =/2 k(t,s)(s)ds, a <t<Tr.

Equation (7.11) asserts that t2 is a c.v. of k and that + is the corresponding c.f.
Since ,(t)=>0, it is known [1, p. 288] that must be associated with the
smallest c.v. of k,,, i.e.,/2 =/x. Q.E.D.

Since the lowest c.v. of ks is greater than one, its resolvent kernel is

(7.12) R(t, s)= Y k, (t, s),
’=1

where k(t, s) are the iterate kernels of k, and therefore the solution of (7.1) is

(7.13) /) (q) F2(q) -- R(o,s)F2(s)ds, qS2.

8. The condition ltl](a) = 0o We have found that u must be continuous at
a if the integrals and limits that we have been working with are to exist. The
continuity at a is not required if a 7r, the Dirichlet problem, nor if a 0, the
Neumann problem. For all other values of a, the condition [Ul](C)= 0 is effec-
tively an orthogonality condition on the input functions H1 and Ha and some of
their derivatives. To see this, we consider again the case of A 0.

For A 0, the function u is given by equations (7.2), and continuity of u at
q a asserts that

ul(a -0)= h(c) ul(c +0)= h2(ce) + f|= Vl(t) dt
2

which by (7.13) can be rewritten as

(8.2) h2(a)-h(a) - F2(t)+ Re(t, r)Fe(r) d
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If we insert the definition (5.11) for F. and use a Fredholm identity between a
kernel and its resolvent, equation (8.2) becomes

(8.3) h2(a)-h’a(a) h’’(s)R(s) ds + h’(s)R(s) ds:

where

(8.4) R, (s) R (s, t) dt.

Under the hypotheses H1 C2(gl) and H2 Ca(2), the integrals (3.18) and
(4.11) which define ha and h2 respectively, may be integrated by parts. The results
are

(8.5)

(8.6)

hz(a)_h,(a) I sin (s)H2(s) ds
2K(s, a)

Hi(0) cos (a/2) f sin (a)H’a (s) ds,o 2K(a, s)

h’(s) -sin Hi(0) +- cos H(0)

arc (sin(t/2)-Io (cos(s) sin \s-n-!
cos2 (s/2)sin (t/2)]d(H_’l(t) .+

K(s, t) /dt\cos (t/2)]
dt,

() Issin (s)H’2(t) dt
(8.7) h’2(s) -H2(Tr) sin +

2K(t, s)

The substitution of (8.5), (8.6) and (8.7) into (8.3) leads to a restriction on Ha and
H.

In the general case of A _->0, we start with (3.19) written in the form

Io fo(8.8) Ua(q) ha(tp)- Ma(q, S)Vl(S) ds + Ll(qg, s)ua(s) ds, q Sa,

where La(0, s) and Ma(q, s) are real and

Jl(Z(go, s))
(8.9) La(cp, s)+ iMI(tp, s) A 2 eiS sin q

z(,c, s)

Equation (8.8) is a Volterra integral equation for ua(q), q 6 Sa. The resolvent
kernel for this integral equation exists in the usual Neumann series form for all
values of A and c. Designating the resolvent by Rl(q, s), we have

(8.10) ua(q) gl(q) + Nl(qg, s)/)l(S) ds, q9 Sl,

where

(8.11) ga(q) h(q) + Rl(qg, t)h’l(t) dt,
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(8.12) N(q, s)= M(q, s)+ e(o, t)M(t, s) d

Equation (4.12) can be treated in a similar way. It can be written as

(8.13) u(o) h(q)- M.(o, s)v(s) ds + L(o, s)u(s) ds, q S,

where L2(go, s) and m2(q, S) are real and

L2(q, s)+ iMz(r#, s) -A 2 eiS sin(s)Ii(z(go, s))
z(v,s)

+(z(q, s)Ii(z(o, s))-Io(z(q, s))).

We designate the resolvent kernel of the Volterra equation (8.13) by Rz(q, s) and
use it to write the solution of (8.13) as

(8.14) Ul(q) g2(q)+ N2(q, S)Vl(S) ds, q $2,

where

(8.15)

(8.16)

g2(q) hz(q)+ RE(q, t)hE(t) dt,

N(o, s) M(o, s)+ R(o, t)M(t s) d

A single Fredholm integral equation can now be obtained for the function/)1
by setting

3

L3(qg, s) + iM3(qg, s) K2,i(q, s),
]=1

where the right-hand side is defined through equations (5.12), (5.13), and (5.14),
and La(qg, s) and M3(qg, S) are real kernels. Using this notation, equation (5.10)
becomes

(8.17) /.)1(() F2(qg) + k(q, S)DI(S ds + L3(tp, S)Ul(S)-M3(qg, S)DI(S ds.

Substituting (8.10) and (8.14) into (8.17), one obtains

(8.18) tgl(qg) f3(qg) q g3(q,s)v(s) as,

where

(8.19)

(8.20)

( SI US2,

F3(qg) F2(go) + L3(go, t)gl(t) dt+ L3(; t)g(t) dt,

K3(rp, s)= -M3(rp, s)+N3(q, s),
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IsL3(qg, t)Nl(t, s) dt, O<s

(8.21) N3(o, s)

15

k(q, s)+ L3(qg, t)N2(t, s) dt, a <s <

Let R3(t#, $) denote the resolvent kernel of K3(0, s). On the basis of our
analysis in 7, R3 exists for A sufficiently small. When this resolvent exists and the
homogeneous form of (8.18) has only the trivial solution, the solution of (8.18) is

(8.22) /)1(0) F3(qg) + R3(tp, t)F3(t) dt.

As a result of equations (8.10) and (8.14), the continuity condition on u at a
becomes

(8.23) g(cz) + N(tz, S)Vl(S) ds g2(a) + N2(a, s)/)l(S) ds,

where Vl is given by (8.22).
The condition (8.23), although complicated, is explicit once the resolvent

kernel R3 has been found. As in the case )t 0, the condition fUll(a)= 0, when
written in the form (8.23), can be viewed as an orthogonality condition on the
input function H1 and H2.
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ON THE COMPONENTS OF EXTREMAL SOLUTIONS OF
SECOND ORDER SYSTEMS*

SHAIR AHMAD" AND ALAN C. LAZER:I:

Abstract. Sign properties of components of extremal solutions of the linear system

x"+A(t)x =0,

where A (t) is a continuous n x n matrix, are investigated. For most of the considerations, A (t) is
assumed to be symmetric. The proofs are based on variational arguments.

1. Introduction. In this paper we study the second order linear system

(1) y"+A (t)y =0,

where A(t)=(aq(t)) is a continuous n n matrix function. In most of our
considerations, A (t) will also be assumed to be symmetric. We shall be mainly
concerned with the sign properties of components of extrernal solutions of (1). For
pertinent bibliography, one might consult [1], [2] and [5]; particularly, Chapter
VII of [5]. A solution y(t) of (1) is an extremal solution if y(t) 0, y(a) y(b) 0
for some a and b with a < b, and such that there exists no nontrivial solution x(t)
of (1) such that x(a) x(c) 0 with a < c < b. To motivate one of the main results
of this paper, consider the case where A is a constant symmetric matrix. Let
A /2 An denote the eigenvalues of A. Every constant symmetric real
matrix A is similar to a diagonal matrix via an orthogonal change of variables. Let
T be an orthogonal matrix such that T-AT=diag (A,A2,’’’ ,A). Then the
substitution y(t)= Tx(t) reduces (1) to the uncoupled system

Xff -1" ,kXk 0, k 1, 2, , n.

If x(a) 0, thenxt)=ck sin X/kk(t--a) if Ak >O, Xk(t)=ck(t--a) if Ak =0, and
Xk(t)=Ck sinhV-Ak(t-a) if ’k <0. Consequently if ,1>0, then the smallest
number b > a such that there exists a nontrivial solution y(t) of (1) with y(a)=
y(b)=0 is b =a+rr/xl; and if v is a nonzero constant vector such that
Av 3, iv, then y(t) sin x/(t- a)v is a nontrivial solution of the boundary value
problem y"+Ay =0, y(a) y(b)=0 such that no component ofy(t) changes sign
on (a, b) (although some component may be identically zero).

This leads to the questions of when does the same type of behavior hold for
nonconstant A (t), and when can extremal solutions be characterized by the sign
properties of their components?

We shall show that if A (t) is symmetric and the off-diagonal elements are
nonnegative, then the same type of behavior again holds. We also obtain more
general results along this line. We shall also be concerned with the question of
uniqueness of extremal solutions (up to multiplication by constants) for given a
and b.

* Received by the editors May 12, 1975, and in revised form September 22, 1975.

" Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74074.
Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221.
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2. Lemmas and theorems. We first prove an elementary useful lemma.
LEMMA 1. Let A(t)= (aq(t)) be an n x n continuous matrix on [a, b] with

aij(t)>-O. Let y=col (yl,"" ", Yn) be a solution of (1) with y(a)=y(b)=0 and
yi(t)_->0 for all ((a, b) and all i, 1,2,... n. If for some k, k 1,... n,
either (i) y,(a)=0, (ii) y,(b)=0 or (iii) yk(C)=O for some c, a <c <b, then
yk(t)---O on (a, b).

Although an analytic proof of the above lemma is not difficult to see, it
follows rather quickly from the following geometric observations, suggested to us
by one of the referees of this paper. Since y[,’(t)<-0 implies that the graph of Yk
cannot rise above any tangent line, cases (i) and (ii) bound Yk above by the t axis,
and hence Yk -= 0. The third case follows similarly upon observing that y ,(c) must
be 0, as otherwise would imply negative values for y,(t).

We recall that an n n matrix A (aii) is called irreducible if it is impossible
to have { 1, 2, , n } ! t_J J, I f-I J , I J, and aii 0 for all L j J.

THEOREM 1. LetA (t) satisfy the same conditions as in Lemma 1, and suppose
thatA (to) is irreducible for some to (a, b). Ify(t) is a nontrivial solution of (1) with
y(a)= y(b) 0 and yi(t)>=O on (a, b), 1,..., n, then foreach k, k 1,. ., n,
we have (i) y,(a) > 0, (ii) y’(b) < 0 and (iii) yk(t) > 0 on (a, b). Moreover, ifw is any
solution of (1) such that w(a)= w(b)= O, then w(t)= ay(t) for some constant a.

Proof. Assume that for some k, k 1, , n, either (i), (ii) or (iii) fails. Then it
follows from Lemma 1 that yk (t) 0. Let I={i {1, 2,.-., n}ly(t)=--O}, and let
J { 1, 2,. ., n} L By Lemma 1, for each j J we have y(a) > O, y(b) < 0, and
y(t) >0 on (a,b). We note for each iL s(a,b), we have

"(s)+ Z aik(S)yg(S) Y’. aig(s)yg(s) Y ai(s)yi(s).O:yi
k=l k=l ]J

However, in the last sum, since yi(s)> 0 and aq(s)->0, we must have aq(s)= O.
Thus we have aq(s)= 0 on (a, b) for /, 6J, contradicting the assumption that
A (to) is irreducible. This establishes the proof of the first part of the theorem.

To prove the second part, let w(t) col (Wl, , wn) be a solution of (1) such
that w(a)= w(b) 0. We may assume, without loss of generality, that w(t0) > 0
for some k, k 1,. , n, and for some to (a, b). Since for each k, y ,(a) > 0 and
y,(b) < 0, we can choose a > 0 such that y ’k(a aW,(a > 0 and y’(b) aw’(b) <
O, k=l,...,n. Let zg(t)=yg(t)-awg(t). We note that zg(a)=zg(b)=O by
assumption. Since we have chosen a such that z ,(a) > 0 and z,(b) < 0 for each k,
there exists 6 > 0 such that zk(t) >0on (a, a + 6), (b-6, b), k 1,. , n. Clearly,
by choosing a >0 sufficiently small (smaller if necessary) we have zg(t)=
yk(t)--OlWk(t) > 0 on [a +6, b-6], k 1,. ., n. Let A {a > O[yk(t)--
aWk(t) >0 on (a, b), k 1,. , n}. We have shown that A . A is bounded,
since a cA implies a <u(to)/w(to). Let a*= 1.u.b.A. We assume that w is
independent of y. Let z*(t)= y(t)-a*w(t). It follows from the definition of a
that z(t)>-O on (a,b),k= 1,...,n. Thus by the first part of the theorem,
z*(t) 0 implies Z*k’(a) > O, Z*k’(b) < 0, and z(t) > 0 on (a, b), k 1,. ., n. By
the argument just given (y replaced by z*), for/3 >0 sufficiently small, z(t)--
Wk(t) >0 on (a, b), k 1,..., n. However, z*(t)-w(t)= y(t)-(a* +)w(t),
contradicting the definition of a*. Therefore, some component of z* vanishes in
(a, b) and hence z*(t)=-O or w (a*)-ly. This completes the proof.
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We recall that two distinct points a and b are said to be conjugates relative to
(1) if there exists a nontrivial solution y(t) of (1) such that y(a)=y(b)=O.
Equation (1) is said to be disconjugate on an interval I if no nontrivial solution of
(1) has more than one zero in L It is well-known that if A (t) in (1) is symmetric,
then conjugate points are isolated. Let [a, b] denote the set of absolutely
continuous Rn-valued functions h(t) on [a, b] such that Ih’l LZ[a, b] and h(a)=
h(b) 0. Let J[h] define the functional

b

J[h] Ja ((h’, h’)-(A (t)h, h)) dt

over the set [a, b] of admissible functions. It follows (see [2, p. 123]) that if
[a, b] contains no point conjugate to a, then for all h [a, b], h(t)O, J[h]> 0
(assuming that A (t) is symmetric). Our next lemma is a slight modification of this
result.

LEMMA 2. IrA(t) in (1) is symmetric, then J[h]>-_O for all h [a, 6] if and
only if [a, b] contains no point conjugate to a in its interior.

Proof. For a proof of the sufficiency of this lemma, one is referred to [5, prob.
4.2, p. 332]. To see the necessity, we recall (see, e.g., [3]) that if J[h]=>0 for all
h [a, b], then for any z [a, b], J[z] 0 implies that z is a solution of (1).
Thus if c is a point in the interior of [a, b] which is conjugate to a, then there is a
nontrivial solution u(t),u(t)O, of (1) with u(a)=u(c)=O. Let z(t) be the
function defined by z(t)=u(t) if a<-_t<-c and z(t)=0 if c<-_t<-b. Then z
[a, b] and J[z] 0. Hence z(t) is a nontrivial solution of (1) defined on [a, b],
which is impossible since z(t)=-0 on [c, b].

THEOREM 2. LetA (t) (aik(t)) in (1) be an n x n symmetric matrix such that
aik(t) >--0 whenever # k. I]’ b > a is the first conjugate point to a (relative to (1)),
then there exists a nontrivial solution u(t)=col (Ul,"" ", un) of (1) with u(a)=
u(b) 0, and Uk(t)>=O on [a,b], k= 1,. ,n.

Remark. One of the referees of this paper has pointed out to us that the
statement of Theorem 2 would not be any weaker if one assumed a,(t)>-0,
1,..., n. For by making a substitution y(t)= ektu(t) and a classical change of
variable from to s, it follows that (1) is equivalent to an equation of the form

dZu 21 e4kt(S)u
ds 2 +[k +A(t(s))] (s)=0.

Proofof Theorem 2. By definition of conjugate point, there exists a nontrivial
solution y(t)=col (Yl,""", Yn) of (1) with y(a)=y(b)=0. From y"+A(t)y=O
we obtain

-(y, y")-(y, Ay) O,

and integrating the latter from a to b we have
b fb ’, ’)0 (y, y’) + ((y y -(y, Ay)) dt

aa

(2) i,,’ ’)((y’, y -(y, ay)) dt J[y],



COMPONENTS OF EXTREMAL SOLUTIONS 19

since y(a)=y(b)=0 by hypothesis. Let u(t)=col(Ul,... ,un), where Uk(t)=
ly(/)l, k 1, 2,..., n. Clearly, u(t)O and u(t)M[a, b]. We have

(3)

IabJ[u] ((u’ u -(u, Au)) dt

(tl’U aik(t)ui(t)ttk(t) dt
i=1 k=l

(u’, u Y’. aiiui -Z Z aikUiUk dt.
i=k ik

Now (u’, u’)= (y’, y’), and

Z aiiu2i a, lY, = aiiY.
i=1 i=1 i=1

Furthermore, since aik >- 0 for # k, we have

i#k i#k

>= aikYiYk.

Hence from (3) and (2) we have

J[u] <= (Y’, y’)- Z aiiy-E aikYiYk dt
i=1 ik

b

((y’, y’)-(y, Ay)) dt

J[y]= O.

But since b is the first conjugate point to a, by Lemma 2, we also have J[u] >-_ 0;
thus J[u] 0. Hence by a standard result in the calculus of variations (see, eg.,
[3]), uC2[a,b] with u"+A(t)u=O and u(a)=u(b)=O, because u affords a
minimum to J for the class M[a, b] of admissible functions. This completes the
proof.

Remark 1. It follows that the components of the solution u(t) of Theorem 2
cannot have simple zeros on (a, b).

Making use of a certain transformation, we now obtain a more general
theorem.

THEOREM 2’. Assume that A (t) (aq(t)) in (1) is symmetric, and let b be the
first conjugatepoint to a. Suppose that {1, 2,. , n} P ONwithP fq N and

(i) aq(t) >-_ O on [a, b] if ] and either i, ] P or i, ] N,
(ii) aq(t) <-_ 0 on [a, b ] if ] and either P, ] N or N, ] P.

Then there exists a nontrivial solution y(t)=col (yl,’", y,,) of (1) such that
y(a)-- y(b) 0, yk(t) =>0 on [a, b]for k P, and yk(t) =<0 on [a, b]for k N.
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Proof. Define T to be the matrix T diag (tl, t2, , tn), where ti 1 if P
and ti--1 ilioN. Obviously, T-a= T and T is symmetric. By setting y- Tx, (1)
can be transformed into the system

(1’) x"+B(t)x =0,

where B(t)= TA(t)T. It is easy to verify that B(t) satisfies the hypothesis of
Theorem 2, i.e., it is symmetric and its elements bij are nonnegative on [a, b] for
i#.i. Hence, by Theorem 2, there exists a nontrivial solution x(t)=
col (Xl," ", x,) of (1’) satisfying x(a) x(b) 0, and Xk(t)>--_ 0 on [a, b]. But then
y Tx is a solution of (1) satisfying the conclusion of Theorem 2’.

Remark 2. We note that Theorem 2 follows from Theorem 2’ whenN .
Remark 3. It can be verified that Theorem 1, as well as our next two

theorems, have similar generalizations.
Example. If n 3 and N# P, then one of the sets N and P contains one

element and the other two elements. Suppose that P={1} and N={2, 3}. This
means that al2(t)=aEl(t)<-_O, ala(t)-aal(t)<-_O and a23(t)=aaE(t)>-O for t
[a,b]. In this case, y(t)= col (yl, Y2, Y3) with yl(t)_->0, y2(t)-< 0, and ya(t)_-<0 on
[a, b].

THEOREM 3. Assume that A(t)=(aij(t)) in (1) is symmetric, and positive
definite in (a, b) except at isolated points. If a(t) > 0 on (a, b ), i, ] 1,. , n, and
if there exists a nontrivial solution v(t) =col (Va," ", v,) of (1) with v(a v(b 0
and Vk(t)>--O, k 1,’’’, n, then b is the first conjugate point to a relative to (1).

Proof. Assume that b is not conjugate to a. Let s* g.l.b. {s there exist points
conjugate to a on [a, b] relative to y"+sA (t)y 0}. Clearly, if s < 0, then

bIa ((y’, y’)-- s(Ay, y)) dt 0

for yC[a,b],y0. Therefore, s* exists and s*->0. Since b is not the first
conjugate point of a, by Lemma 2 there exists )7 [a, b] such that

b

J[)7] / ((7’,)7’)-(A37, 37)) dt O.
a

Obviously, if s < 1 and s is sufficiently close to 1, then
bIa ((y’ ’)- s(A;, ;)) dt < O.

Therefore, by Lemma 2, s belongs to the above set. This shows that s* < 1.
Consider the differential equation

(4) y"+s*A(t)y =0.

It follows that [a, b) contains no points conjugate to a relative to (4). For
otherwise, by Lemma 2, there would exist 6 [a, b satisfying the inequality

bI ((’, ’)-s*(A, dt < O.))
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But then one could choose a number s sufficiently close to s*, s < s*, satisfying
bIa ((e’, e’)-s(AY., )) dt < O.

This would imply, by Lemma 2, that there exists a point conjugate to a in (a, b)
relative to y"+ sAy O, contradicting the definition of s*.

Next, we wish to show that b is conjugate to a relative to (4), and hence the
first point conjugate to a relative to (4). Let Y(t, s) denote the n n matrix
satisfying

Y"+sA(t)Y=O,

and initial conditions Y(a, s)= O, Y’(a, s)= L where I is the identity matrix. We
note that the first conjugate point of a relative to

y"+sA(t)y =0

is the first zero of det Y(t, s) on (a, oo). By continuity with respect to parameters,
Y(t, s) is continuous in both variables. Now, let M be a number such that M> 0
and A (t)<M. I on [a, b]. Choose a positive number r such that tr < b-a and
r < 7r//M_(s* + 1). The first point conjugate to a relative to y"+ (s* + 1)MIy 0 is
a +(Tr//M(s*+ 1)). If s* _-<s _-<s*+ 1, then sA (t)<-_ (s*+ 1)MI; and hence by the
Sturmian comparison theorem for systems (see [4]), the first point conjugate to a
relative to y"+sAy 0 is greater than the first point conjugate to a relative to
y"+ (s* + 1)MIy 0. Since a + (Tr//M(s* + 1)) > a + tr, it follows that for s* -< s -<_
s*+ 1, y"+sAy =0 is disconjugate on [a, a +r]. If we assume that b is not
conjugate to a relative to (4), then for all in [a +tr, b], det Y (t, s*)S0. By
continuity, there exists 6, 0<6 < 1, such that det Y (t, s)0 for [a +r, b] and
s* <=s <-_s* + 6. Therefore, det Y(t,s)O for t[a,b] and s*<-s<-s*+6, since
we have shown that for such s, y"+ sAy 0 is disconjugate on [a, a + 6]. This
shows that for s* <-_s <-_s* +6, y"+sAy =0 is disconjugate on [a, b], which is a
contradiction to the definition of s*. Thus we have shown that b is the first
conjugate point of a relative to (4). Thus, by Theorem 2, there exists a nontrivial
solution u(t) =col (ul," ", un) of (4) such that u(a) u(b) =0, and Uk(t)>--O, k
1," , n. We also have, by hypothesis,

v"+A(t)v =0

with v(a)=v(b)=O, and vk(t)>--O,k=l, .,n;v(t)O. Noting that A(t) is
symmetric, we have

Therefore

(u, v")-(v, u")= s*(v, Au)-(u, Av)
=(s*-I)(u, Av).

((u, v’)-(v, u’))’ (s*- 1)(u, .A (t)v).

Integrating both sides of the above equation from a to b, and noting that u and v
both vanish at a and b, one obtains

bIa (u,A(t)v) dt=O,
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which is a contradiction, since u and v are nontrivial with nonnegative compo-
nents and A (t) has positive entries. This completes the proof.

THEOREM 4. If (1) is disconjugate on (a, ), aij(t) >--_ O, A (t) is symmetric and
A (to) is irreducible forsome to> a, then there is a solution y(t) =col (yl," ", y,) of
(1) with y(a) 0 and yk(t)>O on (a, c), k 1,..., n.

Proof. For each integer m > 0, consider the equations

y"+ (A (t) + (1/m2)I)y 0(5)

and

(6) z"+((1/m2)I)z =0.

Let z(t) be the solution of (6) defined as z(t) =sin (1/m)(t-a). c, where c is a
constant vector in R n. Since z(a) z(a + mr) O, z must have a first conjugate
point in (a, a + tutti. From (6) we have

{z’, z’}- 1---(z, z} dt O.

Therefore,

<z’ ’>-z A.(t) + z, z dt < O.

Now, it is well known that (5) is disconjugate on an interval [c, d], if and only if
d

J[u]=I ((u" u’}-((a(t)+ l-I)u’ u))
for all u [c, d], u0. Thus (7) implies that the first conjugate point to a
relative to (5) must lie in the interval (a, a +mTr). Let b(m) denote the first
conjugate point to a relative to (5); b(m) exists by the Sturmian comparison
theorem. By Theorem 2, there exists a solution y,,(t)=col (Yml, ", Ymn) Of (5)
with ym(a)=ym(b)=O, Ymk(t)>=O, k 1,...,n, and ym(t):0. Using the Stur-
mian comparison theorem, it follows, as in the proof of Theorem 3, that m < m2
implies b(ml)<b(m2) and b(m)c as m, since

(1) y"+A(t)=O

is disconjugate on (a, c) (b(m) denotes the first conjugate point of a relative to
(5)). Without loss of generality, we can assume that Ily;.(a)ll 1, and hence can
further assume that y’,,(a) c, where c is a constant vector with ilc[I 1. Let u(t) be
a solution of (1) with u(a) =0 and u’(a)=c. Then ym(t)u(t) on (a, c). Now,
Ymk(t)>=O on (a, b(m)) and b(m)-c as m implies that Uk(t)>--O on (a, ),
k 1,. , n. By Lemma 1, if Up(S) 0 for some s > a and some p, p 1,. , n,
then Up(t)--O for all > a. Thus the proof of the theorem follows from an
argument similar to that given to the proof of Theorem 1.
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AXIAL RADIATION RECEPTION. PART II*

LIM CHEE-SENG?

Abstract. This paper again concerns the axial reception of radiation from a suddenly triggered,
constantly maintained point source within an n-dimensional, nondispersive, axially symmetric medium.
Part (Chee-Seng (1973)) deals solely with the situation where n is odd and >__ 3. The present part II
completes the picture by focusing on the case for even n (>__2), and extends a hyperbolicity-cum-
ellipticity to include nonstrictness. In most aspects, the odd and even n-problems are, expectantly,
quite distinct regarding their respective analyses, results and subsequent interpretations, as with multi-
dimensional Cauchy problems in general. Additionally, nonstrictness leads to some rather surprising
developments. It first crops up in both applications to magnetogasdynamic flow aligned receptions
along, as well as crossing, the magnetic field. The mainstream is largely responsible.

1. Introduction. Suppose the position vector x (x, x2, , x,) R,, the
unbounded n-dimensional Cartesian space. The preceding paper (part I, Chee-Seng
(1973)) deals with the following unsteady radiation problem"

V2 P
c3 t3

V2(1.1) 0 tVt’ c3x, c3-’ c--]-’ U(t)b(x),

such that

(1.2) q5 0 during (time) < 0,

solved solely in the case of odd n (>= 3) and for axial reception along the (x-) axis
ofsymmetry through the radiating point source b(x)H(t) which is abruptly activated
at instant 0, H(t) being the Heaviside unit function, while 6(x) denotes the
Dirac delta function in R,. Also, V2 (2/(x- + (2/(Xn2 the (n- 1)-
dimensional Laplacian. The (polynomial) Q-operator is of order m, an even
integer, whilst the P-operator is of (integral) order m- l" _<_l=< rn. Both
operators correspond to a real, homogeneous, nondispersive, transmitting
medium. The highest order attained by the V2 term in Q need not be 1/2m but,
generally, __< 1/2m; similarly for P. So there exist even integers p and q, called Laplacian
indices of the respective P- and Q-operators, satisfying =< p =< m and 0 =< q < m,
whereby

P
c3 V) =m-p)(1.3) deg(in polYv2 -’ Xl’

meaning that the degree of the polynomial P, when referred to V2, is m p),

(1.4) deg poly Q V) 1/2(m q).
(in V2) ct’ cx’
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Generally, then,

(1.5) P c3’ c3x Va2

(1.6) Q

(1 m-l-2

Z Z
/t=0

(1/2)(m-q)/=OE VU Bum-2/av=0 (X1)
where A, and B, are real constants, the Al/2)(m_p)’S are not all zeros for v 0,
1,..., p- l, the Bl/Z)(m_q)’S are not all zeros for v 0, 1,..., q. Observe a
homogeneity consistent with no-dispersion"

(1.7) P(fl2, fl, f12Z2) flm-Ip(/],, , (2), Q(fl,, fl, flzz2) flmQ(2, , z2)

for all parameters fl, 2, , .
The solution to (1.1) and (1.2) may be formally expressed, following Lighthill

(1960, Appendix B), as a Fourier integral, viz., (part I)

f f
o+i, p(_ico, ixl,x2_ct2)e-it

(1_.8) 4) (2rt"+l exp (ia. x) da Z; i 2)-+ie

valid for both odd and even n, with a (01, 2,"’, (n) ranging over R,,
da dl do2"" don, t. x lX1 + 2x2 + -+-ZnX (a scalar product). The
o9-integral path (- + ie, + ie) must be compatible with the (partial) zero
condition (1.2).

The purpose of the present paper is to tackle axial reception in the comple-
mentary case where n is even and >__ 2, the basic assumption throughout. (Note that
when n 2, V 2/x2). For odd and even n, respective solutions to the classical
Cauchy problem embodying any of the standard time-dependent equations are
known to differ substantially in their derivations, forms and interpretations (see,
e.g., Courant and Hilbert (1962)). This is also true with regard to axial reception of
the Cauchy-type problem governed by (1.1) and (1.2). So the present case study,
essential for completeness, is also vital from a comparison standpoint, besides its
various applicabilities.

2. Hyperbolicity cure eilipticity. From now on, we suppose that the reception
is axially aligned and avoids the source point, i.e., x (x l, 0, 0,..., 0) with
x # 0, so that x - a. x. Then it can be shown, by a law of the spherical mean
(John (1955)), that

x)g(al, 2)d

1/2f,- (1 2)(1/2)(n- 3) d (sgn oOf(xl)g(, 2)0"- d,

where f, 2rt(1/2)"/F(1/2n), and sgn ( > 0), ( < 0). For odd n (part I),
the factor sgn must be replaced by 1. This difference, though apparently minor
to begin with, is to lead to a substantial deviation of the present analysis. The



26 LIM CHEE-SENG

(2.1)

representation (1.8) is now expressible in the reduced form"

if,- 2)(1/2)(nb 2(2rc),+ + (1 -3) d (sgn ) exp (i{xx)a"-1 da
-1

+i p(_ i i, 22 2) e-
dm.

Unless otherwise specified, it is normally understood that Ix xl # .
For a compatible, stable configuration, let us postulate, following Chee-Seng

(op. cit.), that, under axial alignment, the Q-operator is hyperbolic, but evolves
ultimately into a time-independent form which is elliptic (cf. Gfirding (1951),
Courant and Hilbert (1962), Bers et al. (1964)), viz. for any real s e[-1, 1]:

(2.2) deg poly Q(-2, {, {2) m, or equivalently Q(1,0, 0) -: 0;
(in 2)

furthermore all (subsequent) m 2-roots, 2.= 2j() (j 1,
istic relation

m) to the character-

(2.3)

are real and, moreover, if -: 0, are nonvanishing as well as distinct. Hence, the
characteristic polynomial is factorizable on _< =< 1"

(2.4) Q(-2, , ) Q(, 0, 0) 1-[ 2 2(),

where 2j() # 2k()(j :/: k)whenever 0 < Il =< 1, throughout which

(2.5) Q(0, , 2) Q(1,0, 0) H j() # 0.

Both the hyperbolicity and ellipticity are strict with regard to -1 __< < 0,
0 < __< 1. Under these circumstances, Chee-Seng (op. cit.) observed that, with
reference to (2.1), the o9-integrand factor accompanying e -i’’ is a meromorphic
function which satisfies a uniform convergence requirement of Jordan’s lemma in
the entire complex o9-plane, and possesses m + real, simple poles at o9 0,
2j() (j 1, ..., m). The condition (1.2) is then fulfilled if one chooses to be
real and positive. Residue theory then yields

(2.6) (. dco 2iH(t) residue (.) + residue (.)
+ it: L 0

for the innermost og-integral in (2.1). Hereafter, we assume that > 0, so that
the Heaviside factor H(t) 1. We now depart from the arguments of the preceding
paper. Consider

(2.7) (.) do9
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involving the same co-integrand, but evaluated along the pole-studded Re co-axis.
As these poles are all simple, (2.7) is meaningful in the sense of a Cauchy principal
value, by infinitesimally indenting the real path about every pole. This indented
path may now be closed by an infinite, clockwise-directed semicircle, necessarily
described into the lower half-plane Im co < 0, by virtue of Jordan’s lemma.
Contour integration then produces a result for (2.7) equaling half the value on
the right side of (2.6) (with > 0). Thus by a substitution of the integration variable
for (2.7) and an appeal to the homogeneity rules of (1.7), we obtain

r(2.8) | (.) dco 2(i00-(sgn ) j_ exp(- io2t) d2.-+i 2Q(-, , 2)

Whereupon, (2.1) can be manipulated into the following:

"n-1 )"-’-K(X)ifn21+l,(2.9) @ I(X1, t) ()2 X1

[ol+ 1-n n K(X)
(2.10) @ 2(X1, t)= -1 if n + 1,

(2)"-1 x,

in terms of a K-element, dependent on just X x/t and given by

+ (1 )(/-a+-d()

C C P(-2X, ,1- 2)exp(-i2)d2._ exp(i)d_ 2Q(-2X ,1-2)

But, by Fourier transformation and inversion:

Whence,

2rcf() exp (ia) da f(2) exp (-ia2) d2.

(2.11) K(X)
(m l)(1/2)n-l

+ ff) (1- 2)(1/2)(n-3)P(-X’ ’ 2)
X1 2)

The corresponding expression for odd n (part I) differs drastically in its form, the
subsequent approach accorded to it, and the eventual solution it leads to.

The case of nonstrict hyperbolicity and ellipticity is a highly complicated one
and deferred to 7 and 8.

Some of the concepts we use, in dealing with the n-dimensional system,
are, roughly speaking, adapted and modified from those of Weitzner (1961),
Burridge (1967) and Payton (1971) for two-dimensional anisotropic waves emitted
by the instantaneous point impulse 6(t)f(x), the corresponding solution being the
Green’s function. This is, within the present context, the quantity ck/t. Should
the process ultimately attain a steady state, the Green’s function vanishes identically
throughout this steady state, thereby becoming trivial. In fact, as far as the Green’s
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function is concerned, the notion of a steady state seems entirely detached. No
elliptic-type condition is necessary. In contrast, owing to an indefinitely radiating
source, our problem requires an ellipticity for the establishment of K(X), and to
ensure a bounded transition into a valid steady state. The governing differential
equations considered in the three papers cited are strictly hyperbolic.

3. The K-element. To tackle the representation (2.11) for K(X), we first
apply the transformation

(3.1) 1(1_2)1/2 (Imp=0).

This maps the two real, right-directed -paths (-1, 0) and (0, 1) onto two real,
left-directed, semi-infinite -paths, viz. (0, -) and (, 0), respectively. Further-
more, via (1.7)"

(3.2) P(-X, , 2) =_ m-lp(_ X, l, 2),

(3.3) Q(-Cx, , 2) .,,Q(_X, 1, 2).

Consequently, (2.11)converts to

(3.4) K(X)
(- 1)(1/2)n- ,,_2P(-X, 1, 2)

d
2r Q(-X, 1, 2)

which can be determined by means of contour integration. To accomplish this,
however, a preliminary study ofthe integrand is vital. In this section, we concentrate
essentially on the case IXl > 0 (i.e., < ).

Now, by (1.6), the polynomial factor (involved in (3.4))

Q(-X, 1, 2)

q q+2

m-q Bl/2)(m_q)( _X)q-v ._1_ m-q-2 Z Bl/2)(m-q)- I(-X)q+
v=0 v=0

m-2

+ + 2 Z BVl(-X)m-2-v+ Z BVo(-X)m-v"
v=O v=O

The term independent of is a polynomial in X, viz.,

(3.6) , Bo( X) Q(-x, l, O) Q(1,6, O) ]-I x 2j(1),
v=0 j=l

taking into account (2.4). Now, the characteristic relation (2.3) defines a family
of m phase curves 2 21(),’", 2m() within the infinite rectangular strip

=< =< of the 2 plane. According to Chee-Seng (op. cit.), corresponding
to the Laplacian index q of the Q-operator, exactly q phase curves pass through
the origin to form a restricted subfamily 2 21(), ..., 2q(), say, with 2j(0) 0
(j 1,..., q) but 2j(0) - 0 (j q + 1,..., m). If q 0, no phase curve goes
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through the origin. Combining (2.4) with (3.1) and (3.3), we have, for q > 0,
q

q-mQ(-X, 1, 2)
___

(1 z)t’/z)tq-’)Q(1, o, o) [-I x
(3.7) =x

I-[ x-
j=+

inside < < I. Let O, in which case II , and the limit of (3.7) then
indicates, with reference to (3.5), that the coefficient of m- in Q(-X, l, ) is

q

(3.8) Q(1,0, 0) 1-[ [X 2)(0)] l 2j(0)
j=l j=q+l

if q > O; but if q O, the particular coefficient simply equals

(3.9) Q(1,0, 0) 1-i 2j(0) --_ Q(0, 0, l) # 0.
j=l

Evidently, (3.1) maps those real -zeros of Q(-X, , 2) that do not coincide
with 0 onto corresponding -zeros of Q(-X, 1, 2) (see (3.3)). In particular,
along the Re -axis alone, the latter vanishes at the -images of those real -roots
to the set of m equations X 2j() (j 1, ..., m) within 0 < 11 =< 1. Geometri-
cally, these -roots are the abscissas of those intersections off the 2-axis, but
inside the strip -1 =< # __< 1, between the straight line 2 X and the entire
phase curve family 2 Zj(#) (j 1, m).

In a space of odd n-dimensions, it has been demonstrated (part I) that the
axial reception is mostly singular whenever the observer’s velocity X takes any
of the following discrete values"

2’(0), ..., 2’(0), the q radiated singularities of type (r.s.l’s), which exist
only ifq > 0;

2t(1), ..., 2,(1), the m radiated singularities of type 2 (r.s.2’s);
all those 2)()’s satisfying, within 0 < # < 1, 2)()= 2j(#)/ (j 1,..., m),

the radiated singularities of type 3 (r.s.3’s).
In the present structure, the r.s.l’s and r.s.2’s coincide with the X-zeros

(all real) of the respective polynomial expressions (3.8) and (3.6). To interpret
the r.s.3’s, we first derive from (3.1), (3.3) and (2.4),

m( + )-’Q(-x, , )- -’ aO(-x, , )/a
(3.10)

:Q(, o, o) Y Ix- x()3 I-I x- x()/.
j= k= l:k:t:j

The right side holds if 0 < < 1, corresponding to 0 < < for the left side.
We then conclude that the r.s.3’s are, in fact, the real X-roots to the two simul-
taneous equations

(3.11) Q(-X,I,2)=O and 8Q(-X,l,#Z)/c9=O in0<#< oo.

This is because the left equation is satisfied along 0 < " < if, and only if,
X 2j()/ within 0 < <1 and for some j{1,..., m}, in which event,
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jm__ of (3.10) reduces to just

(3.12) [2()/- 2()3 I-I [2j()- 2()]/,
k= l:k

so that 2()= 2j()/ X is, by (3.10), the necessary and sufficient condition
for (3.11) to be completely satisfied. The various radiated singularities can also be
related to (i) the phase-curve family, (ii) the group velocities of energy transmission
for the associated multidimensional waves, (part I). They correspond to the
intersections of wavefronts with the x 1-axis.

To evaluate K(X), we suppose that the variable X avoids every r.s.1, r.s.2,
and r.s.3. Under such a restriction, the axial radiation reception for odd n (part I)
is, mathematically and physically, nonsingular. In view of (3.5) and (3.8) or (3.9),
the (-polynomial Q(-x, 1, 2) does attain its highest possible degree of m q,
so that

(3.13) degpoly [Q(-X, 1, (2)] deg poly [(,-2p(_x, l, (2)] _>_ 2 + p n q.
(in () (in ()

Whence, assuming

(3.14) p => n + q,

the infinite integral of (3.4) satisfies a convergence requirement. The integrand,
extended into the complex (-plane, is meromorphic, its only singularities being
poles located at the m q (-roots to

(3.15) Q(- x, 1, (2) O.

These collect in pairs, each symmetric about the origin ( 0. Complex roots
may be simple or multiple. Existing real roots turn out to be nonvanishing and
simple, in which case, the integral of (3.4) can be envisaged in the sense of a Cauchy
principal value. (Note that if X coincides with an r.s.2, then according to (3.5)
and (3.6), equation (3.15) possesses at ( 0 a repeated root having an even order
of at least two. In the physical n 2 situation, this root constitutes a pole of the
same order, assuming P(-X, 1, 0) 0. On the other hand, if X coincides with
an r.s.3, then in view of (3.11), one generally encounters two opposing, repeated
real poles, each with an order => 2. Due to the blockage of its path by repeated
poles in both these cases, the particular integral cannot normally be validly
interpreted, but actually diverges. The reception is therefore singular.)

Let the given path (-, ) for (3.4) be infinitesimally indented about
existing real poles, and closed by an infinite semicircle described anticlockwise
into the upper half-plane Im ( > 0. The diverted contour integration along this
semicircle vanishes under a uniform convergence law, on account of (3.13) and
(3.14). Thus, in accordance with Cauchy theory, the desired principal value is

(3.16) K(X)= (-1)tl/2)n- (Im2,, 0
1/2i Res [((X)] +

Im ,,> o
iRes [((X)] t,
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where 2Imv=O and Im;v>o run over, respectively, all real -roots and all complex
-roots within Im > 0 to equation (3.15), while

lim (( (v(x))mv(.- 2 P(- X, l,
(3.17) Res [(v(X)]

(m 1)! -tx) Q(-X 11 2)J’
the pertinent residue at the root ( ((X) of arbitrary order m. Alternatively,
a closed contour may be completed by an infinite semicircle described clockwise
into Im ( < 0 instead. Nonetheless this ultimately produces the same end result.

Since real (-roots to (3.15) are all of order one and form nonvanishing
symmetric pairs of the type ((X), ((X), the net contribution linked with each
such pair is

Res [((X)] + Res [- #v(X)] 0;

the vanishment here follows from the fact that, in this case, (3.17) gives

(3.18) Res [’(X)] {("-2p(-x, 1, 2)/cQ(-X, 1, 2)/c3}=(x),

the curly-bracketed quantity being an odd function of . Regarding (3.16), then,

Im=0 0. Evidently, the representation (3.16) remains virtually unaltered, by
virtue of residue theory, whenever (3.15) possesses no real root; in this event,
however, one dispenses with the principal value approach.

Purely imaginary (-roots to (3.15) appear in symmetric conjugate pairs of
the type i](X)l, -iI(X)], both being of the same order; between them, only the
upper root i[,(X)[ contributes. Since the coefficients of the #-polynomial
Q(-x, 1, 2) are real, its complex zeros lying off the Im -axis form symmetric
quadruple groups of the type

(X), (X), (X), (X),

all of the same order. Here, the bar denotes a complex conjugate. Only two
(contributing) elements in each such group are encountered inside Im (> 0,
these being (v(X) and -(v(X), provided Im ((X) > 0. Accordingly, by applying
a differentiation rule in conjugate complex variables to (3.17), it can be proved
that

Res [(X)] + Res [-((X)] -2 Im {Res [(v(X)]}.
Whereupon, (3.16) and (3.17) eventually lead to

(3.19)

K(X) 2(- ,’i}{1/2)n xG (m 1)’0 <argv<(1/2)

lim
argv= (1/2) -) [v(X)l

Q(- x, , )J’
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where the leading sum ranges over every complex root v (of order my) to (3.15)
well inside the first quadrant" 0 < arg < 1/2t, while the succeeding sum ranges
over every purely imaginary root i11 (of order m) along the positive Im -axis
arg 2t. For computational convenience, any term, corresponding to rn >= 2,
of the leading sum is expressible as an rn x rnv determinant (cf. Hille (1963)), viz.,

Im

qo 0 0 Po

ql qo 0 pl

q2 q qo

qm,,- qm,,-2 qm,,-3

P2

wherein, for k 0, 1, ..., m 1,

(3.21) Pk

(3.22) qk
(m + k)

Q(- X, 1, 2)
,,(x)

A similar formula applies to each (m 2) term in the succeeding sum. For m 1,
the desired form is directly computable. The radiation function (axial solution)
for nonsingular reception is determined from (2.9) or (2.10), together with (3.19).
Bearing in mind the assumption (3.14), the relevant radiation function is ba if
+ q + =< n + q =< p;it is (t)2 for either n + q =< + q + =< p, or n + q =< p =<
/+q+l.

Let us account for a way whereby K(X) acquires its various contributions.
First, consider the equation

(3.23) Q(-x,,I 2)=0

within the complex -plane, and for nonsingular reception. Only those of its -roots
along the real slit -1 =< =< are determinable from the equations X 2j()
(j 1,.-., m). Now, (3.1) maps those real C-roots over < I1 < upon the
purely imaginary -roots to (3.15) that are confined to the two adjacent vertical
segments 0 < IIm 1 < 1. Whenever ISl decreases (or increases) slightly across
12j(1)l, i.e., an Ir.s.21, an intersection between the line 2 X and phase curve
2 2j() is broken (or made) in the region 0 < < 1, within which, (3.23) therefore
loses (or gains) a corresponding -root; there are now two possibilities" (i) if
2 2() possesses a real continuation slightly beyond and into > 1,
the particular -root invariably reappears within (or departs from) > 1, in which
case, K(X) secures (or forfeits) a contribution, associated with a specific purely
imaginary root v(X)" 0 < Im (X) < 1, for (or from) the second component
series Zargv=(1/2) of (3.19); (ii) otherwise, the -root transferred in exchange is
either purely imaginary or generally complex, in which case, K(X) again secures
(or forfeits) an appropriate contribution.
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In a parallel situation, the K-element for odd n (part I) forfeits (or secures)
a corresponding contribution instead; actually this K-element is a finite super-
position of terms, each jointly contributed by two opposing real -roots (i.e.,
eigenvalues) to (3.23) along < < -roots beyond this interval do not count.
Conversely,for the present even n-problem, it is always the latter set of(exterior) roots,
never the former set, that matters (with regard to the eigenvalue-spectrum). This
illustrates one of the more conspicuous discrepancies, in this instance, a mathe-
matical one, between odd and even n-systems. In the following 4 and 5, other
significant differences, including physical ones, are also encountered.

4. Physical phenomena. Since, in view of (2.2),

deg poly Q(-x, l, () deg poly P(-X, 1, (2) __> __> l,
(in X) (in X)

(3.4) discloses that K(X) 0 when IXI m (i.e., when Ixxl ). Such a vanish-
ment, in fact, extends inwards from the two ends X __+ m. To prove this, we
first appeal to an observation in part I, viz., for each of the two partially infinite
exteriors

(4.1) -c <X< min 2j(1), max 2j(1)<X< c,
j=l,...,m j=l,...,m

the straight line 2 CX always intersects once, nontangentially and inside the
strip 0 < < 1, every member of a specific subfamily of (m q) phase curves.
By our earlier reasoning, each such intersection associates with a real positive root

I((x)[ to (3.15), in which event, { -[(S)l is also a root. Thus all (m q,
the maximal number of) -roots are real, nonvanishing and, evidently, simple.
Note that no radiated singularity occurs within either X-interval of (4.1). In
particular, (3.15) issues no complex (or imaginary) -root to participate in (3.19).
Consequently,. K(X)_ 0 throughout both X-intervals of (4.1), as well as at
their outer limits X -c, c. These are therefore external ranges of absolute
silence with null reception. Their two inner limits are occupied by the r.s.2’s
minj= 1,..’,m ’j(1) and maxj= 1,....m 2j(1), which are incidentally, the respective fastest
radiated singularities to the left and right of the source point (cf. part I). The time-
dependent, axial radiation flux is totally confined to the finite interval.

(4.2) min 2j(1)< X< max 2j(1)
,"" ,m ,.’. ,m

expanding outwards from the source, a consistency with the radiation principle.
The corresponding phenomenon of silence is also demonstrated for odd n (part I)
by a relatively devious technique, however, due to the fact that the K-element
is not directly trivial, but actually comprises a maximal set of contributions whose
net effect cancels out through fulfillment of auxiliary conditions that play no part
in our present problem.

If, for any subinterval of (4.2), there are also exactly m q real, simple -roots
to (3.15), it again followed that K(X) 0 within such a subinterval. This interior
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of silence is, effectively, a linear intercept, with the symmetry axis, of a Petrowsky’s
lacuna (Petrowsky (1945), Gtrding (1951 and 1970)), commonly associated with
the Green’s (impulse) function. Our "all real roots" criterion is comparable with
a neat sufficiency condition of Burridge (1967) for the formation of a lacuna in
two-dimensions (see also Weitzner (1961), Bazer and Yen (1969), Payton (1971)).
In the case of odd n, such a criterion is not enough (part I) to establish a lacunary
intercept; various additional requirements are necessary, depending on the
situation.

In the odd n configuration, the K-element usually vanishes identically (or it
may assume a time-independent composition if the Laplacian index q 0)
whenever X # ij()/ on 0 < =< for every j 1,..., m, and X
(j 1, ..., q) if q > 0. Under these circumstances, X avoids all radiated singu-
larities, and (3.15) admits no real root. However, the result (3.19) neither vanishes
nor becomes time-independent. In this instance, the corresponding odd and even
n phenomena disagree completely.

In a physically compatible, constantly sustained radiative system, one
normally expects a steady (i.e., time-independent) state to develop eventually,
if not at finite time, at least after an infinite period, measured from the activation
instant. Does our present system conform to this accepted pattern of behavior?
It does along the symmetry axis and during time if K(0) exists. Now, the
strictly elliptic hypothesis (2.5) implies, via (3.3), that Q(0, 1, (2) 0 along the
entire Re ( path. Suppose each existing r.s.1 never vanishes, or equivalently, with
reference to the Q-operator of (1.1), (1.6):

(4.3) B’1/2)o,, coefficient of (63/Ox1)q(v)(1 :/:: 0-q)

by virtue of (3.5) and (3.8). Note that this automatically holds for q 0 on account
of (3.9). In view of(3.8) or (3.9), and (3.13), then, the inequality (3.14), once imposed,
continues to satisfy a convergence requirement when X 0, which again overlaps
no radiated singularity. At this limit, therefore, the K-element has a valid, non-
singular integral representation, viz., from (3.4),

(4.4) K(O)
(-- 1)(l/2)n- n_2P(O, 1, 2)

d(.
2r Q 1 2)

It accumulates finite, X-independent residues precipitated by exactly (m- q)
zeros (counting multiplicities) of Q(0, 1, (2) inside Im ( > 0, in a manner resembling
(3.19). Should the latter be practicably explicit in terms of X, then by letting
X 0, one also arrives at K(0). The associated radiation functions tkl and tk2,
defined by (2.9) and (2.10), likewise achieve time-independence. A steady state is
thus (axially) attained at instant . For odd n satisfying p + > n + q
(cf. (3.14)), K(0) 0 (part I).

If one is merely concerned with exploring the steady state of, say, pulsatory
radiation, it seems expedient to ignore initial conditions and substitute them with
a radiation condition incorporated in the manner of Lighthill (1960, 1965, 1967);
see also Chee-Seng (1971). Such an application would be redundant for the present
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unsteady analysis. Instead, the agreement with the radiation principle, as well as the
steady state development, is an indirect outcome of the zero initial condition (1.2)
enforced upon (1.1). A related discussion on this matter can be found in a current
paper (Chee-Seng (1974)).

5. Magnetogasdynamic flow aligned reception Weitzner’s (1961) paper
essentially dealt with the two-dimensional magnetogasdynamic Green’s function
for a stationary fluid. Burridge (1967) applied his own construction to confirm
the lacunas. The three-dimensional problem has been successfully attempted
much earlier by Friedlander (1959). Owing to the complicated.anisotropy, results
are unavoidably presented in rather general forms, principally in terms of
geometrical characteristics. Unfortunately, explicit reduced versions along the
axes of symmetry have been apparently overlooked.

The magnetogasdynamics ofa perfect fluid are basically governed by first order
equations of continuity, state, momentum and induction, the last of which being
compatible with a no-divergence constraint on the solenoidal magnetic field
(see, e.g., Kulikovskiy and Lyubimov (1965)). Consider an unbounded uniform flow
with velocity V past a weak body force f (per unit mass). The equations of motion
can then be linearized and combined into a second order form, governing the
velocity perturbation v:

(5.1) [O2/Ot2 (a. V)2]v + [a(a. V) (a2 + c2)V](V v) + V(a. V)(a. v) Df/Dt,

where a is the Alfvgn velocity parallel to the equilibrium magnetic field, a ]al,
c is the sound speed in the compressible medium, V is the gradient operator,
while D/Dt =_ 8/St + V. V denotes differentiation following the motion. Note that
c :/: 0; also, ignoring ordinary (i.e., nonmagnetic) gas flow, a #- 0.

Let us propose that the body force exerts constantly, starting from the instant
0, is point-localized at the origin of a two-dimensional r (x, y) coordinate

frame, and acts transversely across the equilibrium field with which the positive
x-direction is aligned. In particular then,

(5.2) f H(t)f(r)(O, 1),

while a (a, 0). Naturally, any perturbation depends exclusively on r and t,
and commences only at instant 0. It can then be shown from (5.1) that
/)2 /)2(l’, t), viz., the component of v perpendicular to a, satisfies

(5.3) G -, tgx2,@ v2 -,x2 H(t)a(r),

in which the operators

D 2 t2 D4 D2 t2
(a2 + 2 2 a2C2V2(5.5) G -, tgx2, cqy2 Dt4

c )V - + dx2,
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are homogeneous in D/Dt, t3/t3x and t3/t3y. But for the convective part V. V of D/Dt,
the radiative system here would have been simultaneously symmetric about both
x and y axes.

In the following 6, a cross-flow configuration is considered. Meanwhile,
throughout the rest of this section, we assume that the flow and the permeating
field are originally in alignment (includes possible opposition), viz., V (V, 0).
Let x x, y x2 So D/Dt O/Ot + VO/Oxa. A uniaxial symmetry (about the
x-axis) is thus imparted to the motion governed by (5.3); this now takes the
form (1.1) with

(5.6) P, V F N’
which, incidentally, is independent of V, while

( D2 2
.7) Q h ,v 6 vOx Dt2’ Ox
the F- and G-operators being given by (5.4) and (5.5) wherein V2 2/Ox + V.
Evidently, these operator forms are consistent with (1.5) and (1.6); here, m 4,

l, while the respective Laplacian indices p 4 and q 2.
Now, from (5.5) and (5.7)" Q(1, 0, 0) G(1, 0, 0) 1, so that (2.2) is satisfied.

Also, the characteristic polynomial
4

.) Q-, , ) 6{( re), , }
_
)

j=l

for 1, whereon, by introducing

(5.9) Z+() {k(a2 + c2 + (a2 + c2)2 4a2c2112)}/2,

(5.10)

(5.11) Z-()

(5.12)

we have

{1/2(a2 + c2 x//(a2 + c2)2 4a2c2112)}/2, -1 < 0,

0, =0,

{1/2(aa + c x//(ae + c)2 4a2c2112)} 1/2

(5.13) 2() V + Z-(), 2() V- Z-(),

(5.14) ,3() V - Z+(), ,4() V (+().

Throughout 1, Z+() and )_() are real and continuous, and Z+() va 0,
whilst Z-() vanishes only at 0. Furthermore, for -1 < < 1, )+()
_+ Z_ () Note that, generally, z+(_+ 1)= max(a, c), Z_(1)= min(a, c)= -)_(-1).
If a=c, then Z+(___I)=a=z_(1)=-Z_(-1). Thus the functions
(j 1, 2, 3, 4), as defined by (5.13) and (5.14), satisfy a strictly hyperbolic condition
of being real and distinct for every e 1, 0) and (0, 1) as well as at both endpoints
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+ l, provided a 4: c. Ifa c, the hyperbolicity is nonstrict at + 1, 1.
The strictly elliptic condition depicted by (2.5) is satisfied if and only if within the
vertical strips 0 < [[ __< 1, the nonvertical line , V (IV[ < oe) never intersects
any one of the four phase curves for a stationary fluid, viz., 2 Z+(), -Z+(),
Z-(), -)-(). However, we shall allow for possible intersections, corresponding
to nonstrict ellipticity.

There are two r.s. l’s at

and four r.s.2’s at

2’1(0) V + lim ;_()/ V + ac(a2 + c2) 1/2,
0

(5.16)

2(0) V lim Z-()/ V ac(a2 + c2) 1/2;
--’0

21(1) V + min (a, c),

33(1) V + max (a, c),

From (5.5) and (5.7), the function

22(1) V min (a, c),

24(1) V max (a, c).

(5.17)
Q(-X, 1, 2)= G{(X V)2, 1,

[a2c 2 (a2 -+- c2)(X V)232

+ ,[(x v) a][(x v) c].

Note that the term independent of agrees with (3.6) via (5.16), while the coefficient
of 2 agrees with (3.8) via (5.9), (5.14) and (5.15). Also from (5.4) and (5.6),

(5.18) P(-X, 1, 2)
___
F(V- X, l) - (V- X)[(V- X)2 c2.

Suppose X avoids all six r.s. l’s and r.s.2’s. Then the -polynomial expression
(5.17) maintains its maximal degree of m q 2, and always vanishes off " 0
at (I(X), -(I(X)"

(5.19) l(X)
_

{E(X V)2 a2] I(X V)2 c2]/[(a2 -1-- c2)(X V)2 a2c2]} 1/2.

Both these zeros being obviously distinct, the second equation in (3.11) is never
satisfied. Consequently, there are no r.s.3’s. Since p n q 0, the condition
(3.14) holds. Although we are relaxing the strictness hypothesis on hyperbolicity
(by allowing for the possibility a c), as well as on ellipticity, nonetheless the
general result (3.19) for K(X) remains applicable. Whereupon, for a magnetically
aligned flow and reception: V- (V, 0) and r (x, 0): 0 during > 0, the
solution to (5.3) is, via (2.9) or (2.10),

(5.20) v2 (gX)- 1K(X),

with X x/t.
Both I(X), I(X) are real if and only if either

(5.21) IX V[ > max (a, c),

This is guaranteed by a general rule stipulated in the last paragraph of 8.



38 LIM CHEE-SENG

or

(5.22) ac(a2 + c2) x/2 < IX VI < min (a, c).

Within the corresponding intervals, absolute quiet therefore prevails"

(5.23) K(X) =_ O,

by virtue of arguments in 3. The radiation principle is clearly verified with
reference to the two outermost intervals described by (5.21). These are precisely
of the types of (4.1). They contract as the two fastest radiated singularities 2s(1)
and 24(1), coincident with their inner limits, retreat right and left, respectively,.
from a flow-transported center at r (Vt, 0). The other two intervals of silence
defined by (5.22) are interior to both 2s(1) and 2,(1). Each is, therefore, the linear
intercept of a Petrowsky’s lacuna with the equilibrium line of force through the
source point. For a stationary (V 0) fluid, this feature supports both Weitzner’s
(1961) and Burridge’s (1967) conclusions (see also Bazer and Yen (1969)). The
three-dimensional stationary fluid does not apparently propagate such a lacunary
intercept (part I).

For the remaining possibilities, viz.,

(5.24) IX VI < ac(a

(5.25) min (a, c) < IX VI < max (a, c),

the simple -zero (X) iIx(X)I, a purely imaginary value. In accordance with
(3.19), it is the sole contributing element, in this case, to the sum ,g-/2);
the accompanying zero -(X) plays no part. Hence, via (5.17)-(5.19), one
eventually arrives at

(5.26)
1/2(x- V)l(X- v)- c2l/K(X)

[I(X V)2 a211(a2 + cz)(X V)2 aZc2l]t/z

throughout the innermost interval expressed by (5.24). Along the two comple-
mentary intervals corresponding to (5.25), the result is practically the same except
for an extra sign factor of sgn (IX VI c). This close relationship seems to be
missing for the three-dimensional stationary fluid (part I).

6. Aligned reception in cross flow. Suppose the flow originally traverses the
magnetic field orthogonally instead, i.e., V (0, V). Now choose x =-x2,
y xx. Then, again, O/Ot O/c3t + VO/3xx, while (5.3), (5.4) and (5.5) fall within
the class comprising (1.1), (1.5), (1.6), but now with

(6.1) P ’ -xx’ V

(6.2) Q ’ -x’ V
Thus, a (transverse) symmetry about the x-axis is maintained. Again m 4,
l= 1; but now, the Laplacian indices p 2 and q 0. Also, Q(1,0,0)=
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(see (2.2)). Defining

(6.3) f+() {2J_(a 2 + c2 + x//(a2 + c2)2 4a2c2(1 2))} 1/2

(6.4) 21() V q- "_(), ’2() V --[-- "+(),

(6.5) 23()-- V-- D_(), 24() V f+(),

we have, from (6.2) and (5.5),
4

(6.6) Q(-2, , :2)_= G{(2 V)2, 2, 2} l-I 2 2j().
j=l

Within __< =< 1, all four 2j()’s are real and continuous; they are also distinct
for real satisfying 0 < I1 < 1, equivalent to a strict hyperbolicity. Since q 0,
no r.s.1 exists. Regarding the r.s.2’s, two overlap" 2(1)= V 23(1), whilst the
remaining two, viz., 22(1 V q- x//a2 q- C2 and 24(1) V w/i + C2, are
distinct. Evidently, the hyperbolicity is nonstrict at 1. This is also true at= -1, with 21(-1)= -V=23(-1), but 22(-1)-24(-1). At =0, the
hyperbolicity is nonstrict if, and only if, a va c. Otherwise, when a c, 21(0)
22(0 --a and 23(0)= ,4(0)-- -a, a violation of strictness. As in 5, we do
accommodate nonstrict ellipticity, corresponding to vanishments of
(j 1, 2, 3, 4) within -1 =< __< 1. Note a compounded nonstrictness in both
hyperbolicity and ellipticity whenever V 0"21(_+ 1) 23(_+ 1) 0.

From (6.1) and (5.4), we have the P-polynomial

(6.7) P(-X, 1, 2) F(V- X, (2) (V- X)E(V- X)2 c2(22
which, unlike the form (5.18), is dependent on (. Furthermore, from (6.2) and (5.5),
the Q-polynomial

(6.8) Q(-x, 1, ,2) G{(X v)z, ,2, 1} a2c2"4 Qz(X)2 + Qo(X),

where

(6.9) Qo(X) =_ Q(-x, 1, O) (X V)2[(X V)2 ((/2 q_ C2)]

(cf. (3.6)), and

(6.10) Q2(X) (a2 + c2)(X V)2 a2c2.

The (-expression (6.8) is permanently of degree m q 4. Its four zeros occur
at +(X), -+(X), _(X), -_(X)"

(6.1 l) (+_(X) 2-1/2(ac)-l{Qz(X +_ v/QZ2(X) 4aZcZQo(X)}

We now assume that X avoids all four r.s.2’s, so that Qo(X) :P O. Then all
four zeros determined by (6.11) are nonvanishing. Moreover, they are all distinct
since, from (6.9) and (6.10),

Q2(X) 4aZe2Qo(X) (a2 c2)2(X V)4

if- a2c212(a2 q- c2)(X V)2 -}- a2c2] > 0.
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In particular, then, there are no r.s.3’s. The rule (3.14) is satisfied because
p n q 0. Once again, in spite of nonstrictness, one can still construct the
K-element from (3.19). In terms of this K-element, the stream-aligned solution
to (5.3) for cross-flow is, via (2.9) or (2.10),

(6.12) v2 (ty)-1K(X)

at point r (0, y) 0 and instant > 0; here X y/t.
When

(6.13) IX- V[ > xfla2 + c2

(the magnetosonic speed), we have Qo(X)> 0 and Q2(X)> 0. Both pairs of
-zeros + +(X), + _(X) are consequently real. Hence, again, as may be antici-
pated from a radiation principle, there is absolute quiet" K(X) 0 within two
outermost intervals, this time associated with (6.13) (cf. (4.1)).

In the alternative situation,

(6.14) 0 < IX V < N/ -- c2,

one gets Qo(X) < 0. So, { + (X), { + (x) remain real and, therefore, noncontributing
towards K(X). However, _(X)--= iI_(X)[, the only -zero that counts towards
formula (3.19), its complement {_(X) being a nonparticipant. Thus, employing
(6.7) and (6.8), we subsequently arrive at

(X- V)E(X- V)2 / c21_(X)l]
(6.15) K(X)

_
(X)I [Q(X) -4-Q-o-(]-f’

valid in the inner interval (6.14) about, and avoiding, its flow-transported center.
This is the repeated r.s.2 21(1) V 23(1). Evidently, our reception path never
intercepts a Petrowsky’s lacuna. The remaining r.s.2’s, i.e., 22(1 and 24(1 ), form
the outer limits of interval (6.14). One can show from (6.9)-(6.11) and (6.15) that
as X --, 2j(1)(j 2 or 4) from the inside, K(X) c as IX 2j(1)l-1/2. It then
undergoes an infinite jump to zero once X crosses 2j(1).

7. Nonstrict conditions. Under strictly hyperbolic and elliptic conditions, the
co-integral in (2.1) is representable within the -integration ranges -1 < < 0
and 0 < =< by (2.6), wherein

(7.1) residue (.) (ia)-/P(0, , 2)
o--o

(7.2) lP( 2j(), , 2) exp [--ia2j()t]
residue,=,xj()

(") (ie)- j-[--L i 2)/02]x =,tA)

which can be easily shown via (1.7).
Suppose the strictness on ellipticity is relaxed, say, at any o within either

-range"

(7.3) 2(o) 0 for some v e {1,2,..., m} (0 < Iol ),
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i.e., the phase curve 2 2v() meets the -axis at the point (o, 0); in this case,
(2.4) discloses

(7.4) Q(0, o, ,) 0.

Such a phenomenon is indeed encountered for magnetogasdynamic flow either
aligned with or crossing the magnetic field ( 5, 6). Expression (7.1) invariably
attains infinity at o; so does (7.2) when j v. Now consider the joint 0,
which, under the transformation (3.1) splits up into the two infinite limits of
integration for (3.4). Unless the Laplacian index q of the Q-operator is zero, there
is a permanent gap in the strictness at this joint, because here, q of the 2j()’s
vanish concurrently: 2j(0) 0 (j 1, .--, q), and so Q(0, 0, 1) 0. Again a failure
of (7.1), as well as (7.2) for j 1, ..., q, occurs, this time at 0. Although the
implication has been initially overlooked in 2, nevertheless, the difficulty posed is
successfully confronted in the Appendix.

Alternatively, the hyperbolicity is nonstrict at o[-1,0) or (0, 1]
provided the equation

(7.5) 0(-2, o, )-- 0

has a real (repeated) 2-root, say, 2 2v(o) of arbitrary order n _>_ 2 (but _<_m).
This happens whenever nv phase curves, one of them being 2 2v(), intersect
at a point with abscissa o- Corresponding to each member 2 2j() of the
intersecting set, including 2 2()

(7.6) [c3Q (-2, o, )/c2]=jo)= 0 (to 0, 1,..., n 1),

but 4:0 when x n. Yet again, (7.2) is singular at 0, and for every such j.
The applications in 5 and 6 also cover possible nonstrict hyperbolicity. An
example of a nonstrict hyperbolic equation of fourth order is briefly explored in
Courant and Hilbert (1962), with special reference to the equation of crystal
optics; the argument permits two simple roots to the dispersion (i.e., characteristic)
relation to approach one another as a vector parameter approaches a critical value,
thus producing a double root in the limiting coincidence.

The difficulty is compounded if both types of nonstrictness overlap at the
same -value, viz., 2 0 is a repeated root to (7.5). Such a situation definitely
exists at the joint 0 if the Laplacian index q >= 2, the vanishing root being of
order q and corresponds to 2 2(0) (j 1, ..., q). It also arises at _+ 1 during
(i) a transverse reception in a stationary conducting gas ( 6)" 21 + 1) 23( 1) 0;
(ii) a magnetically aligned reception and sonic-flow when the sound and Alfv6n
speeds are equal ( 5)" 22(1) 24(1) 0, 22(-1) 23(-1) 0.

The reason (7.1) and (7.2) fail at o is because each pertinent residue is
structured on the basis that the precipitating pole at o9 0 or 09- a2() is
uniformly simple on _<_ _<_ 1, a fact no longer true. Instead, multiplicities are
now achieved at discrete -parameters by one or more of these poles. Since these
continue to block the real og-path (-, ), the earlier Cauchy principal value
interpretation of (2.7), via a multi-indented contour, is no longer feasible for any
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such -parameter, at which (2.8) therefore becomes suspect under classical complex
theory. This in turn reflects controversially upon formula (2.11). To remedy the
defect, one needs to return to (2.1). Adhering to definition (2.9) or (2.10), the
K-element can be rewritten as

(7.7) K (- 1)x/2)"- l(2n)- +

where

(1 2)(1/2)(n-3)l-nL(X1, t; )d,

L(x, t; ) (4n)- x (sgn a)(ia) exp (iax) da

(7.8)
+ p(_ ico ia, a22

02) e

+, Q(- i, 22 2) m

which should, by comparison with (2.11), reduce to

(7.9) L(x,, t; ) P(-X, , 2)/Q(_ X, , 2)

(with X x/t) throughout < 0 and 0 < 1, for a strictly hyperbolic
cum elliptic system. However, regarding the applications in N 5 and 6, we asserted
that the general solution (3.19) holds in spite of nonstrictness. This solution stems
from the integral (3.4) which is related to (2.11) via the mapping (3.1). For our
assertion to qualify, the unifo validity of (7.9)must first be established under
nonstrictness.

That L(x, t; ) depends on X, rather than x and separately, can be
immediately shown by suitably transforming both integration variables in (7.8)
and exploiting (1.7). Thus

(7.10)

L(x, t; ) (470- X (sgn a) exp (iaX) da

P(-ma- 1, , 2) e-i
Q(-o-, , ) o

dco,

a function of X and . Here, denotes the horizontal path traced from o9

(- + ie)t to ( + ie)t. As previously, e > 0. Assuming, again, the primary
hyperbolic postulate (2.2), Jordan’s lemma is now fully satisfied only in the
o half-space below &a. Suppose an infinite, closed, semicircular contour ,’* is
completed from 5 within this half-space. The relevant o-integration along the
semicircular segment vanishes.

Consider the statement embodying (7.5), ignoring for the moment the
compounded case where 2(o) 0. The present implication is that o9 a2(o)
is a real pole of order n ofthe co-integrand in (7.10) when o(# 0). The situation
at 0 differs appreciably, and is handled separately (see Appendix). If < 0,
every such pole lies outside the contour * and, consistent with (1.2), therefore
contributes nothing. However, as we normally assume > 0, the particular pole
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falls inside &a, and thus contributes, appropriately,

-2hi
2hi residue (.)o lim
,=o (n 1)! ,-.o (-)"- {(co 2(o))"( )o}

(7.11) 2ri lim
/Iv--

(nv- 1)!2Q(-2, o, o2)
a corresponding correction to (7.2). Note the present analyticity of the curly
bracketed 2-function in the limit" 2 2v(o). Incorporating (7.11) into (7.10)
after a Leibnitz’s differentiation, we deduce that L(xx, t; o) acquires from
the contribution

tlv--

lim
--,:t,(o)

(7.12)

(2i)- oX |oo

Suppose, for each 2v(o),

(7.13)

(sgn a)(-ia)k exp [ia(ox 2v(o))] da.

CoX # 2(o),

which, as we shall see in 8, is necessary for boundedness of the K-element. Then,
within the context of generalized functions (Lighthill (1958)), the a-integral of
(7.12) is a Fourier transform with the finite value

(7.14) 2ik (oX 2v(o))-k-x lim 2i(O/O2)k(oX 2)-’.
,Z,(o)

Whereupon, by reversing Leibnitz’s process, the expansion (7.12) is summable to
yield the closed form

(7.15) [ P(-, o, ) ]CoX residueav(o) [2(oX -- Q(Z_,, o[ i 2o)
after noting the fact that 2 2v(o) is a pole of order n of the function [. ].
Actually, the form (7.15) does not explicitly involve the order nv. It always deter-
mines the contribution to L(x, t; o) from a typical root to (7.5), including any
simple root. In considering the latter case, one takes nv 1.

Suppose the ellipticity is nonstrict in accordance with (7.4), but that

(7.16) OQ(-2, o, )/2 # o at 2 O, (o # 0).

So 2 0 constitutes a simple root to (7.5), corresponding to the vanishment
of exactly one of the 2()’s at o. But owing to the linear factor co of its
denominator, the co-integrand in (7.10) now possesses, when o, a double
pole at co 0, which is also surrounded by the contour *. To rectify (7.1),
one merely substitutes nv 2 and 2v(o) 0 everywhere in (7.11). Likewise, in
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the compounded situation where several of the 2j()’s vanish concurrently when
o, one again substitutes 2v(O)= 0 throughout (7.11). However, nv-

must now be replaced by the multiplicity of the root at 2 0 to (7.5). Whatever
this multiplicity (_>_ 1), (7.13) must be accounted for; the following is conveniently
inferred’if X O, L(xl, t; o) always acquires an odd contribution representable
by (7.15), but with 2v(o) 0. This is also generally true if the ellipticity is strict
at o, and corresponds to having n 1.

Ranging over all poles of the specific o-integrand, one arrives at

(7.17) L(xl, t; o)= oX{residoue [.+= residue[.=v,o) ]}’
summed over all 2-zeros possessed by the denominator factor 2Q(-2, o, o2)
of the function [. displayed in (7.15). Now, within the complex 2-plane, 2[. 0
uniformly over 0 __< arg 2 < 2rt as 121 o, because, in view of (2.2),

deg poly [(oX 2)Q(-2, o, )] deg poly P(-2, o, o2)
(in 2) (in 2)

>/+1>2.

Hence

with the integration performed over an infinite closed contour, which obviously
circumscribes all those 2-poles participating in (7.17). However (7.15) reveals that,
under stipulations typified by (7.13) plus X - 0, [. possesses an extra simple pole
at 2 oX. Consequently, by virtue of residue theory,

(7.18)

L(x, t; o) -oX residue [.
2 oX

which confirms the desired uniform validity.
Apart from (7.13), we also assumed X 4: 0. (In 8, both these conditions are

further discussed in relation to the K-element). Otherwise, with reference to
(7.12), the a-integral corresponding to the pole 2 2(o), or 2 0, diverges.
With 2 0, this divergent tendency is averted by the linear factor X (preceding
the integral sign, see (7.12)), provided the ellipticity is strict. In this case, 2 0
is a simple pole of[. ]. Thus by merely computing oX residuez_ o [. from (7.15),
substituting into (7.17), and then letting X 0, we get in the limit,

(7.19) L(Xl, ;o) P(O, o, )/Q(O, o, ),

which expectantly agrees with the limit of (7.18).
The above proof relies upon o 4: 0, and cannot apply to o 0. However,

compatibility of formula (7.9) at the joint 0 is also available, as demonstrated
in the Appendix.
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8. Effects on K-evaluation. The transformation (3.1) converts (2.11) into (3.4),
whose evaluation is possible under certain conditions, one of which being that
X avoids every radiated singularity. This must now be revised, among other things,
within the context of nonstrictness. The representation (3.4) remains correct since
that of (2.11) is proven to be so.

With nonstrict hyperbolicity, another class of radiation singularities arises,
and must also be avoided during reception. Previously, on the basis of strict
hyperbolicity, (3.11) was satisfied under a certain necessary and sufficient con-
dition. This requires modification. Thus according to (3.10) and (3.12), (3.11) is
now fully satisfied at a given s (0, ) if and only if, at the corresponding e (0, 1),
there exists j e {1, 2, ..., m}" either (i) X 2j()/ 2)(), or (ii) X )j()/
2()/ for at least one integer ke {1,2,..., j- 1, j + 1,..., m}, or (iii) both
possibilities (i) and (ii) concur. The particular -root corresponds to a multiple
pole blocking the real path of integration for K(X), thereby inducing divergence.
Reception is consequently singular. (Note that both - and X-roots to (3.11)
essentially depend only on the B,-coefficients in (1.6).) Possibility (i) states that
X coincides with the r.s.3 ,;(); this is the case met in 3. Regarding (ii), the
hyperbolicity is nonstrict at the particular e (0, 1), for which 2j()/ may be
defined as a pseudo-type 3 radiated singularity, which is now coincident with X;
however in the event of a concurrence with possibility (i), this singularity is
identifiable as an r.s.3. Hence the X-roots to (3.11) locates not only the r.s.3’s,
but also a separate set of pseudo r.s.3’s.

Corresponding to nonstrict hyperbolicity when 1, at least two of the
r.s.2’s overlap over one or more values (see, e.g., 5 and 6). Otherwise, their
influence is not significantly new.

Now, if parameter satisfies (3.11) for a given X, then so does -’, but along
the left ’-interval (-o, 0). Both these parameters are, essentially, images under
the mapping (3.1) of two symmetric C-points within, respectively, (0, 1) and (- 1, 0).
Our above reasoning leads to the interesting inference that, whenever the hyper-
bolicity is nonstrict for the real parametric ranges: 0 < 11 < 1, it is invariably so
at symmetrical, discrete C-pairs of the type {,- }. (Note that any pseudo r.s.3
always associates with one such pair, just as each r.s.3 associates with a specific
C-pair too.) This symmetry principle also applies to nonstrict ellipticity since the
left side of (7.4) is, from (1.6), an even function of o. In fact, the principle covers
nonstrictness at both ends 1, -1 as well.

The condition (7.13) safeguards the finiteness of L(x, t; o). It also happens
to keep X away from the pseudo r.s.3 2(0)/o. On the other hand, suppose
2,(o) is a nonrepeated 2-root to (7.5), noncoincident with o2’,(o), and where
o e (- 1,0) or (0, 1). Then 2,(o)/o is not a radiated singularity of any (so far as
yet) known type. Hence a reception at

(8.) x .(o)/o

is not normally expected to be singular. Nonetheless, it blatantly violates the
boundedness of L(xl, t; ) at o. The question therefore arises of the latter;s
behavior about o. This is the center of a sufficiently narrow -neighborhood
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throughout which 2() is a simple root to (2.3), and so (cf. (7.15)) imparts to
L(xl, t; ) the near-singular term

xP(-;c,,(), , 2)
(8.2)

2,() [X 2,(0] [t?Q(- 2, , 2)/02]z=

near-singular because X 2,() ( o)[X 2(o)] under (8.1). The present
method provides an alternative, more direct and elementary approach to (an
approximation of) (7.18). Starting from (2.4), it is easily seen that the factor

(8.3) [OQ(-2, , 2)/O2]=z,t) Q(1, 0, 0) oX 2j(o),
J:Ju

(8.4) Ix- x(o)]-
noting that Q(-oX, o, ) 0. The residue-type contributions from the
remaining 2-roots to (2.3), as well as from 2 0, are bounded inside the particular
-neighborhood; consequently (cf. (7.17)),

p(-oX, o,
(8.5) C(x, t; )

( o)[OO(-x, , )/]=o"
But the right side here is the complete principal part to a Laurent’s expansion,
viz., the term dominating the right most expression of (7.18). So the consistency is
preserved right up to, but excluding the point 0. By comparing (8.5) against
(3.18) and accounting for (8.3), (8.4) and (3.10), it is readily deduced that the K-
element acquires from o (whose image under (3.1) constitutes a real simple
pole at ( (o, say), the temporary but nonsingular contribution proportional to

(8.6) Res [(o] -residue {(1 2)t/Et- a-L(xx t; )},
=o

and which is annulled by an opposing contribution obviously associated with -o
(see 3). Note that {. } in fact encloses the -integrand in (7.7), or (2.11).

As already indicated ( 7), if the Laplacian index q 0, nonstrictness occurs
at the joint 0 which becomes infinite under transformation (3.1). The only
bearing, with regard to (-integration for (3.4), is upon the behavior at infinity of
the (-integrand. The latter continues to behave desirably if (3.14) remains true,
and ifX avoids every r.s. at 2)(0) (j l, ..., q). Moreover, if each such 2)(0) 0,
a steady state criterion stays satisfied ( 4;see also Appendix).

It now remains to examine the effects of nonstrict ellipticity over N < 0
and 0 < N 1. Thus, suppose (7.3) holds. Then, owing to (7.4) and (3.3), Q(0, 1,
has a real zero at ( (o (1 )/2. (Note that the converse is also true).
The steady state analysis for X 0 is obviously effected. Unlike previously, only
the principal value ofthe integral (4.4) is now conceivable. One suciency condition
for its existence is that the zero (o be simple, i.e., via (3.10),

[0Q(0,1, (2)/0(]=o _= -2o-’(1 2o)X/ZQ(1,0, 0)2,(o) I-I 2;(o) : 0;
j:j:/:v



AXIAL RADIATION RECEPTION 47

actually valid whenever 0 < Iol 1; so (i) o 4: + 1, (ii) 2’(o): 0, and (iii)
2j(o) 0 with j 1,2, ..., v- 1, v + 1, ..., m. Now, (i) implies that the
ellipticity at + 1 is strict, or equivalently, no r.s.2 ever vanishes. If this is
contradicted, a relevant multiple pole tends to form at 0 and, hence, invalidate
the integration. However, it is quite possible that this tendency may be arrested,
e.g., when n > 2, or if P(0, 1, (2) vanishes simultaneously at ( 0. According to
(ii) and (iii) together, the parameter 0 does not associate with any vanishing r.s.3
or pseudo r.s.3. Thus, if no radiated singularity ever vanishes, the steady state
solution is always determinable under (3.14) from (4.4). With the appropriate
attainment of nonstrict ellipticity at various -values, their corresponding contri-
butions eliminate each other. In particular, if nonstrict ellipticity occurs at exactly
m q) distinct C-values within (0, 1), it follows that the ultimate steady state is
invariably one of absolute quiet, in contrast (cf. 4) to that in a strictly elliptic
system. Thus, for the magnetically aligned flow ( 5) which is either supersonic-
superAlfv6nic, or satisfies ac(a2 + c2) 1/2 < IvI < min (a, c), the axial reception
during should be absolutely nil. This must also be the case with a super-
magnetosonic cross-flow ( 6).

Note. In arriving at (7.18), we specified that X 4: 0. This was subsequently
recognized as being superfluous whenever the ellipticity is strict at o, say.
Otherwise, the expression (7.19) would collapse under (7.3), even with the present
conditions (i)-(iii) imposed. Nonetheless, this does not disqualify the admission
of X 0 for K-evaluation. The situation is clearly analogous to that posed by
(8.1)" in both parallels, the L-function has a singularity (precisely, a simple pole)
at o, but which contributes no singular term at all to the K-element.

Overall, the only disadvantage is, at most, an increased number ofconvergence
conditions required to absorb the additional effects of nonstrict hyperbolicity
and nonstrict ellipticity in the consideration of (3.4) and (4.4) respectively. The
general rule, covering nonstrictness, is as follows" provided, for the particular X,
that the rational function

(8.7) .- 2p(_ X, 1, (2)/0(- X, l, 2)

has neither a pole (invariably multiple) at ( 0 nor any (other) multiple real
-pole, and that the degree, with reference to (, of its denominator exceeds that of
its numerator by at least two, the solution (3.19) holds. Under the same set of
circumstances, but for X 0, a steady state exists during its K-element is
then derived from (3.19) by letting X 0, or, independently, through (4.4).

Note. The requirements on (8.7) are asserted in the most stringent sense.
For their satisfaction, it is sufficient that every existing r.s.1, r.s.2, r.s.3 or pseudo
r.s.3 never coincide with X (possibly zero), and that (3.14) apply.

Appendix. The objective of this Appendix is to seal a consistency of the
integrand in (2.11), or equivalently of (7.9), at the gap 0 separating both
integral ranges. Attention is confined as usual to > 0. The starting point is
(7.8) which, on transforming the s-integration variable to -1 and using (1.7),
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becomes

L(xx, t; {)= (4n)- Xx (sgn)exp(ioXl)dO

(a.1)
+

dco,
+

where e > 0. The situation at the gap must be explored by letting { --+ 0 under the
integral signs.

First, suppose the Laplacian index q 0 (as encountered, e.g., in the applica-
tion in 6). Then according to (3.9), (2(0, 0, 1) 4= 0. Now,

foe oe +i

(sgn ) exp (iotx) d o-1 exp (- ioot) do 4rcx-

which can be easily verified from an m-contour integration coupled with the
result (7.14) for the a-integral of (7.12); whence (A.1) implies

P(0, O, l)
(A.2) lim L(x, t; )

-,o Q(0, 0, 1)

So (7.9) holds in the limit as { --+ 0. Observe that it vanishes during this limit
unless the Laplacian index of the P-operator is exactly minimal at p 1.

The case wherein q 4= 0 is less straightforward. Now, the {-integrand in (2.11)
involves the factor

(A.3)

say, which must (cf. (7.7)) be compared against

(A.4) ’--C(x, t; ) -o-"S(x, t;

where, via (A. 1) and (A.3),

(A.5)

S(x,t; {) (4n)-Xx (sgna)exp(kzxa)da

co- R(oe- , {) exp (- ioot) do.

The quantity R(X, ), introduced in (A.3), is known from (1.5) and (1.6), and
found to be a rational function of X and {. In fact,

(A.6)
p-l

lim I-PP(-X, , 2)__ E Al/2)(m-p)(--X)p-’-v Y(X),
0 v=0

say, an X-polynomial whose degree =< p 1, while

(A.7)
q

lim -qQ(-X, , 2) E Bl/2)(m-q)( -x)q-’= Z(X),
0 v=O
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say, another X-polynomial, which also serves as the coefficient of ("-q in (3.5).
From (3.8), then,

(A.8) Z(X) Q(1,0, 0) 1-] IX 2)(0)3 1-I 22(0),
j=l j=q+l

whose degree is q, since Q(1, O, O) - 0 and 2j(O) - 0 (j q + l, ..., m). Assuming
nonsingular reception ( 3 and 4), so that X avoids every r.s.1,

(A.9) X 4: 2)(0) (j- 1, ..., q).

Thus, from (A.3), (A.6) and (A.7),

(A. 10) lim R(X, ) Y(X)/Z(X),
0

a bounded rational function, in which event, the expression (A.3) and, subsequently,
the -integrand of (2.11) as well, approach zero (or Y(X)/Z(X)) under the inequality
(3.14) as 0. This should likewise be suspected of the expression (A.4). For a
closer consistency, however, the two functions R(X, ) and S(xl, t; ) must
approach the same limiting value together. Note their permanent coincidence
away from the limit (cf. 7).

The limit of (A.5) is formally expressible, via (A.10), as

lim S(xl, t; ) (4r)-x (sgne)Y ie- exp(iex)de

(A.11)
exp (-itot)

+ Z(o- )
do.

The to-integrand is meromorphic, possessing, in view of (A.8), q + real poles at

(A.12) to 0, to a2)(0) (j 1,..., q).

Furthermore, it fully satisfies Jordan’s lemma in the region Im to < e, which
obviously contains all q + poles. To arrive at a steady state, it is stipulated in 4
that every r.s.1 never vanishes (cf. (4.3)). Suppose, additionally, that the r.s.l’s
are all distinct. (This is exactly the situation for a flow and magnetically aligned
magnetogasdynamic reception. The distinctness of both r.s.l’s is explicit from
(5.15), which also discloses their nonvanishment if the flow velocity V #
+__ ac(a2 + 2)- 1/2). Consequently, the q + poles defined by (A.12) are all simple.
Whereupon, residue theory yields for the to-integral,

(A.13) .,f+i2Zi{z--ood-ie -Jl-
j----1

exp[-i2)(0)t]}_((.
Following a modified reverse argument, as in dealing with (2.6) and (2.7), it is
not difficult to demonstrate that the right side of (A.13) is actually the Cauchy
principal value of

( exp (- i2t)
d2.2(sgn

z()
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Thus, (A.11) subsequently becomes

(A.14) lim S(xl, t; {) (2r0-1X exp(iaX)da
Y(2)

-.o 2Z(2)
exp (- ia2) d2

(A.15) Y(X)/Z(X) lim R(X, ),

on account of a Fourier transformation rule and (A.10). This completes the
consistency test.

It seems paradoxical that only the compounded nonstrictness (when q 0)
effects the analysis at 0. Unlike the case away from this joint, any nonstrictness
in pure hyperbolicity alone (i.e., corresponding to coincidences of 2q+(0),
2q+2(0), ..., 2,.(0)) plays no role. This is somewhat linked with the fact that the
various nontrivial modes are attributed to the gradients 2(0) (j 1,..., q) in
the restricted subfamily ofq phase curves rather than, as might perhaps be originally
anticipated, the m ordinates 2(0) (j 1,..., m) of the complete family. As a
consequence, the apparent nature of the local system is, virtually, strictly
hyperbolic-cum-elliptic under the assumptions made.
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SUBFUNCTIONS AND DISTRIBUTIONAL INEQUALITIES*

ROBERT CARMIGNANI AND KEITH SCHRADER’f

Abstract. The subfunctions for linear second order differential equations and the locally bounded
subfunctions for differential equations of the form y" f(x, y) are shown to be locally Lipschitzian
and are characterized by continuity and the satisfaction of the appropriate "distributional differential
inequality"; moreover, the strict subfunctions are classified by "strict differential distributional
inequality". Then the existence of solutions to differential inequalities in the distributional sense are
used to establish the existence of classical solutions to boundary value problems.

Introduction. For a second order differential equation

(1) y" f(x, y, y’)

with f: (a, b) x R R R continuous and such that for arbitrary X1, Yl, X2,

Y2 with a < xl < x2 < b there is a unique solution y of (1) satisfying y(x,) y
( 1, 2), a function u:(a, b) R is called a subfunction (or strict subfunction)
on (a, b) for (1)if for any interval Ix1, x2] c (a, b), we have that u(x) <= (or <) y(x)
for all x in (x l, x2) where y is the solution to (1) passing through the points
(x, u(x)) and (x2, u(x2)). It is known that a function u C2(a, b) is a subfunction
on (a, b) for (1) if and only if

(2) u"(x) >= f(x, u(x), u’(x)) for all x (a, b).

In fact, this is true under weaker conditions than the existence and uniqueness of
solutions to boundary value problems of (1) (for this and for the development of the
theory of subfunctions, see [1], [2], [5], [9], [11], [12], [13], [14] and [15]).

The main purpose ofthis paper is to show that for certain types ofsecond order
differential equations the corresponding locally bounded subfunctions (although
boundedness is not assumed in the linear case), in general, are locally Lipschitzian
and they are characterized by continuity and the satisfaction (interpreted in the
sense of distributions) of (2), where strict distributional inequality in (2) classifies
the strict subfunctions. This extends the differential inequality test for C2 sub-
functions since a C2 function u satisfies (2) if and only if it satisfies (2) in the dis-
tributional sense. However a C function can satisfy strict inequality in (2) in the
distributional sense but not in the ordinary sense.

In 2 and 3 for the case that (1) is linear and homogenous or nonhomogenous,
respectively, we obtain our distributional derivative test for subfunctions from the
variational characterization of subfunctions of second order linear homogeneous
differential equations given by Reid in [14]. Then in 4, we establish (without
assuming existence of solutions to boundary value problems) this test for sub-
functions (and strict subfunctions) in the nonlinear case when (1) is of the form
y" f(x, y). The proofs in this case and in the linear case rely on the following
well-known (see [17]) characterization of the convex functions (the subfunctions

* Received by the editors November 19, 1974, and in revised form July 24, 1975.

" Department of Mathematics, University of Missouri, Columbia, Missouri 65201.
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of y" 0): a function u is convex on (a, b) if and only if u is continuous on (a, b)
and the second distributional derivative of u is a positive distribution. We also use
this fact to show that for these types of differential equations a function is a sub-
function on (a, b) if it is locally a subfunction on (a, b) (sometimes called a sub-
function in the small on (a, b)).

In 2, 3 and 4, we also indicate the analogous results for superfunctions
(functions which are "concave" with respect to solutions of (1)).

In 5 we prove that if u and v are locally integrable, locally bounded functions
on (a, b) with u(x) <= v(x) a.e., and if v"(x) <= f(x, v(x)) and u"(x) >__ f(x, u(x)) hold
in the distributional sense, then on any interval [c, d] (a, b) there exists a solution
y to y" f(x, y) such that u(x) <= y(x) <= v(x) a.e. on [c, d].

1. Preliminaries. A test function in (a, b) is any infinitely differentiable
function with compact support in (a, b). The vector space of all test functions in
(a, b) is denoted by C((a, b)). The set of all distributions in (a, b) is denoted by
’((a, b)). We denote by ((a, b)) the space C((a, b)) equipped with a topology
which makes ’((a, b)) its dual space.

For u a locally Lebesgue integrable function on (a, b), we denote by T, the
distribution in (a, b) defined by T,(b) ,b U(X)C/)(X) dx for each b @((a, b)) and the
kth distributional derivative of u, denoted by @ku, is defined by

*u() (- )*T.(’)

(when k 1, we write u rather than lb/).
We say that Te ’((a, b)) is positive (or strictly positive) and write T_>_ 0

(or T > 0), if T(qS) >= 0 (or >0) for all nonnegative test functions b(q5 0) in
(a, b). For T1 and T2 in ’((a, b)), T1 => T2 (or Ta > T2) means that Ta T2 is
positive (or strictly positive).

L2(R) denotes the space of measurable functions with Lebesgue integrable
squares on R. The space of functions r/which are absolutely continuous on any
compact subinterval [c, d] of (a, b) and r/’ e L2[c, d] is denoted by Al(a, b). The
subspace of Al(a, b) of functions r/with compact support in (a, b) is denoted by
Ag(a, b). A function u is said to be locally Lipschitzian on (a, b) if for each compact
subinterval [c, d] of (a, b) there exists a constant M (depending on [c, d]) such that
lu(x) u(y)l -<_ Mix Yl for all x and y in [c, d]. The space of k-times continuously
differentiable functions on (a, b) is denoted by Ck(a, b), where for the continuous
functions on (a, b) (when k 0) we write C(a, b).

2. The homogenous linear equation y" _-- pl(x)y’ -i- P2(x)Y. Let r, p and q b
continuous functions on (a, b) with r > 0 on (a, b). Consider the self-adjoint
differential equation

(2.1) (r(x)y’ + q(x)y)’ (q(x)y’ + p(x)y) 0.

Here we shall be concerned with equations which possess the following property:
(P) If a < xl < x2 < b and y and y2 are arbitrary real numbers, then there

exists a unique solution y of (2.1) such that y(x) y ( 1, 2).
Let u be any function in A(a, b). Then u’ is a locally square integrable function

on (a, b). Let g and h be functions on (a, b) such that g- ru’+ qu a.e. and
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h qu’ + pu a.e. in (a, b), where p, q and r are continuous on (a, b).
Let be the distribution defined in (a, b) by

(2.2) (qS) g(b) Th(b) for q5 ((a, b)).

Let be the natural extension of N to Ag(a, b), i.e.,

() g(x)’(x) dx h(x)q(x) dx for e A(a, b).

THEOREM 2.1 (Reid). Let p, q and r be in C(a, b) and suppose that (2.1) has
property (P). Then u is a subfunction for (2.1) on (a, b) if and only if u AC(a, b),
and () 0for all nonnegative A(a, b).

Proof This theorem is merely a restatement of Theorem 3.1 of [14, p. 575]
where (3.3) of 14] is replaced by (3.3’) and where is tested for each nonnegative
(rather than nonpositive) q e Fo(c,d) (Fo(c,d) as defined in [14]) by defining q
to be zero outside of (c, d). This completes the proof.

Remark. Note that for each q e A(a, b), there exists an interval [c, d] c (a, b)
such that the restriction of q to [c, d] is an element of F0(c, d).

THEOREM 2.2. The distribution in (a, b) (as defined in (2.2)) is positive if and
only if is a positive functional on A(a, b) (i.e., () 0 for all nonnegative

A(a, b)).
Proof. Since is the restriction of to ((a, b)), we have that is positive

whenever is a positive functional.
On the other hand, suppose that 0. Let q be any nonnegative element of

A(a, b) and let {q" e > 0} be the family of regularizations of q (regularization is
defined in [8, p. 3]). Then each q is nonnegative since q 0, and for sufficiently
small, q e ((a, b)). When e 0, we have that q q uniformly. From this it follows
that (q) 0 since 0 and (q) lim0(q). The proof is complete.

From Theorems 2.1 and 2.2 we obtain the next theorem.
THEOREM 2.3. Let p, q and r be in C(a, b) and suppose that (2.1) has property (P).

Then u is a subfunction for (2.1) on (a, b) if and only if u A(a, b) and O.
Suppose that the differential equation

(2.3) y"= p(x)y’ + p2(x)y

satisfies property (P) where p and P2 are in C(a,b). Let ro exp(- p) and
Po roP2. Then (2.3) can be written in the form (roy’)’ PoY O.

Set r ro, q 0 and p Po in (2.1). Then for any u A(a, b), we have that
() -j rou’’ f PoU for e ((a, b)). Since rff 1 Z(a, b) whenever q e
A(a, b), (r q) defines a linear functional (1/ro) (where (1/ro)(q) (r q))
and

() (r;) rou’(r ’ + pr;) PoUr 1o

p u’ Pour

PlU’q p2uq for q e A(a, b).
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Hence the restriction of (1/ro) to ((a,b)) is the distribution 2u- Tp, u,

Tp,_,, where Tp,,, and Tp2 are the distributions defined by plu’ and p2u, respectively.
Now from Theorem 2.2, we know that 9 is positive if and only if is a positive
functional on A(a, b). Since ro is positive, we have that for each nonnegative
q A(a, b), r q is nonnegative and in AZo(a, b). Hence is a positive functional
on A(a, b) if and only if (1/ro) is also. Thus (1/ro) is a positive functional on
A(a, b) if and only if the distribution 2u- Tp,,,- Tp2 is positive in (a, b).
This leads to Theorem 2.4.

TI-IZORM 2.4. Let P and P2 be in C(a, b) and suppose that (2.3) satisfies con-
dition (P). Then u is a subfunction on (a, b) for (2.3)/f and only if u AC(a, b), and
2u >_ Tp,,, + Tp2,, i.e., u AC(a, b) and u" >_ p(x)u’ + p2(x)u on (a, b) (in the
sense ofdistributions).

Proof The result follows from the preceding remarks and Theorems 2.2 and
2.3.

DEFINITION 2.5. Suppose that (1) has property (P). Then a function v" (a, b) -- Ris called a superfunction (or strict superfunction) for (1) on (a, b) if for any interval
[xa, x2] c (a, b), the solution y passing through the points (xa, v(x)) and (x2, v(x2))
satisfies

y(x) <= (or <) v(x) on (x, x2).

THEOREM 2.6. Let p and P2 be in C(a, b) and suppose that (2.3) has property
(P). Then v is a superfunctionfor (2.3) on (a, b) ifand only if

V e Ale(a, b) and 2U < Tpl v, -k- Tp2v.

Proof Note that v is a superfunction for (2.3) if and only if v is a subfunction
for y" p(x)y’ + pz(x)y. The result now follows from Theorem 2.4.

THEOREM 2.7. Let p and P2 be in C(a, b) and suppose that (2.3) has property
(P). Then

(a) u is a strict subfunctionfor (2.3) on (a, b) if and only ifu A(a, b), and

Zu T,,,,, Twu > O

(b) v is a strict superfunctionfor (2.3) on (a, b) ifand only if v A(a, b) and

-v + T., + T. > O.

Proof From the observation in the proof of Theorem 2.6, it suffices to prove
part (a) only.

Suppose that u A(a, b), and suppose that the distributional inequality
in (a) holds. Then from Theorem 2.4, we have that u is a subfunction for (2.3) on
(a, b). Let S be the distribution r2U Tv, u, Tp2 and suppose that u were not
a strict subfunction on (a, b). Then u would be a solution to (2.3) on some sub-
interval (xa, x2) c (a, b) by the same proof as given later in Lemma 4.6 but using
property (P) in place of Lemma 4.1. But this would imply that S(b) 0 for all
nonnegative b in ((a,b)) with support in (xa, xz), which is impossible since
S>0.

On the other hand, if u is a strict subfunction on (a, b), then by Theorem 2.4
we have that u A(a, b) and S _>_ 0. Since any positive distribution is determined
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by a positive measure (see 17] for a proof), there exists a positive measure 2 such
that

for all 4 in ((a, b)).

Now suppose that S were not strictly positive; i.e., suppose that S(tk)= 0 for
some nonnegative tk 0 in @((a, b)). Then it must be that 2({x b(x) > 0}) 0.
Let (xa,x,d be any subinterval of {x qS(x)> 0}. Then the restriction of S to
@((x3, x4)) would be the zero distribution in @((x3, x4)). By Theorem 2.6, we would
then have that u is a superfunction on (x3, x4), which would contradict the fact
that u is a strict subfunction on (a, b). This completes the proof.

For any function u in AC(a, b), let S be the distribution in (a, b), 62U Tp, u,

Tp2., where Pl and P2 are in C(a, b). Take functions H1 and H2 such that H’ plu’
and H p2u on (a, b). Then integrations by parts show that for all q ((a, b)),

(2.4)

S(ck) u(x)ck"(x) dx p, (x)u’(x)ck(x) dx p2(x)u(x)ck(x) dx

(u(x)- H(x)- H2(x))dp"(x)dx 2(u- H, H2)(b).

Since H and H2 are in C(a, b), it follows from [17] (or from Theorem 2.4
in the case of y" 0) that u H H2 is a convex function on (a, b) if and only
ifu AlC(a, b) and 2(u H1 H2) ->_ 0. We are now prepared to state the follow-
ing theorem.

THEOREM 2.8. Let p and P2 be in C(a, b) and suppose that (2.3) has property
(P). Let H1 and H2 be such that H plu’ and H’ p2u where u is in AlC(a, b).
Then thefollowing are equivalent:

(a) u is a subfunction (or strict subfunction)for (2.3) on (a, b);
(b) u is a local subfunction (or local strict subfunction)for (2.3) on (a, b);
(c) u A(a, b), and 2(u H H2) => 0 (or > 0).
(d) u H1 H2 is a convex (or strictly convex)function on (a, b).
Moreover, ifu satisfies any ofthe conditions (a)-(d), then u is locally Lipschitzian

on (a, b).
Proof The result follows from Theorems 2.4 and 2.7, the remarks preceding

this theorem, and the facts that any convex function on (a, b) is locally Lipschitzian
on (a, b), and a locally convex function on (a, b) is convex on (a, b).

The statement of the analogous theorem for superfunctions (or strict super-
functions) is obtained from Theorem 2.8 by replacing "subfunction" by "super-
function", "convex" by "concave" throughout the statement and by reversing
the inequalities.

3. The nonhomogenous linear eqtiation y" = p(x)y’ + p2(x)y -- p3(x). Let
P, P2 and P3 be in C(a, b) and suppose that

(3.1) y" p(x)y’ + P2(x)y + pa(x)
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has property (P) on (a, b). Then the corresponding homogeneous equation (2.3)
has property (P). Then u is a subfunction (or strict subfunction) for (3.1) on (a, b)
if and only if for any solution y to (3.1) on (a, b), u y is a subfunction (or strict
subfunction) for (2.3) on (a, b).

THEOREM 3.1. Let Pl P2 and P3 be in C(a, b) and suppose that (3.1) has property
(P). Let HI, H2 and H3 be such that H pu’, Hz p2u and H; P3 on (a, b)
where u is a locally integrablefunction on (a, b). Then thefollowing are equivalent"

(a) u is a subfunction (or strict subfunction)for (3.1) on (a, b);
(b) u is a local subfunction (or local strict subfunction)for (3.1) on (a, b);
(c) u e AC(a, b), and !2(u H1 H2 Ha) >= 0 (or > 0).
(d) u H1 H2 H3 is a convex (or strictly convex)function on (a, b).
Moreover, ifu satisfies any ofthe conditions (a)-(d), then u is locally Lipschitzian

on (a, b).
Proof. From the remarks preceding the theorem, it suffices to show that

(a),,(c). But this follows from Theorem 2.8 since 2(u- H1- H2- H3)=
2(u Y- /-)1 2), where/’ pl(u’- y’) and / p.(u y). The proof
is now complete.

Again we do not bother to state the obvious analogous theorem for super-
functions (and strict superfunctions).

COROLLARY 3.2. Let px P2 and P3 be in C(a, b)and suppose that (3.1) has property
(P). Then y is a solution to (3.1) on (a, b) if and only if y AlC(a, b), and 2y
Tp,r, + Tpr+p3 where Tpr, and Tpr+p3 are the distributions in (a,b) determined
by Pl 3,y’ and P2Y + P respectively.

Proof Suppose that yeAl(a,b) and that !2y Tpr, nt- TpEr+p3 holds.
By Theorem 3.1, we know that y and -y are subfunctions and, hence that
_+(y Hx H2 Ha) is convex on (a, b). Thus the graph of y H HE Ha
is linear. Since HI C(a,b) and HE and Ha are in C2(a,b), then y e Cl(a,b).
But this means that H C2(a,b) since H’ -py’. Therefore y e C2(a,b) and
satisfies

(PY’-- P2Y P3)49 PLY’-- P2Y P3)4 0

for all b e ((a, b)). This implies that y is a solution to (3.1) on (a, b).
On the other hand, if y is a solution it is now clear that

2y- Tply Tp2y+p 0o

This completes the proof.
We shall now show that when p is locally absolutely continuous, the sub-

functions of y"= p(x)y’ + p2(x)y + p3(x) are characterized by continuity and
the satisfaction (interpreted in the distributional sense for continuous functions
u) of

u" >= p(x)u’ + p(x)u + p(x).

DEFINITION 3.3. For p a locally absolutely continuous function on (a,b)
and u C(a, b), the product of p and the distribution tu is the distribution
p1!u defined by

f?p u(4)) u(p’ dp + p el)’), q5 e !((a, b))
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then
LEMMA 3.4. If P and u are locally absolutely continuous functions on (a, b),

Tp, u, pu.

Proof.
T,,,(dp) p,u’cD u(pxb)’=

for all b e ((a, b)) since u and path are absolutely continuous on the support of
each b.

THEOREM 3.5. Suppose that P is locally absolutely continuous on (a, b) and
that P2 and P3 are in C(a, b). Then the following are equivalent provided (3.1) has
property (P):

(a) u is a subfunction (or strict subfunction)for (3.1) on (a, b);
(b) u is a local subfunction (or local strict subfunction)for (3.1)on (a, b);
(c) uAC(a,b) and @2(u-n-H2-Ha)>-0 (or >0) on (a,b) where

pu, H2 pzu and H3-- P3,
(d) u e C(a, b), and 2(U G G2 G3) -> 0 (or > O) on (a, b) where

G’ pu, Gz -up’ + p2u and G P3;
(e) u AlC(a, b), and u- HI HE Ha is convex (or strictly convex) on

(a, b) where H H2 and Ha are as in (c);
(f) u C(a, b), and u- G- G2- G3 is convex (or strictly convex) on

(a, b) where G, G2 and G3 are as in (d).
Moreover, if u satisfies any of the conditions (a)-(f), then u is locally Lipschitzian

on (a, b).
Proof. If (d) holds, then u G G2 Ga must be convex by the charac-

terization of convex functions given in [17, p. 54]. From this it follows that u
is locally Lipschitzian on (a, b). Since Lipschitz functions are absolutely continuous,
we have that u Al(a, b). The remainder of the proof now follows from Theorem
3.1 and Lemma 3.4.

Again we omit the obvious analogue of Theorem 3.5 for superfunctions.
Remarks. In Theorem 3.5, if pl C(a, b), then (f) is equivalent to: u is locally

integrable on (a, b) and u- G- G2- G3 is convex (or strictly convex) on
(a,b).

Note that the equivalence of (d) and (e) in Theorem 3.5 does not follow from
Theorem 2.4 in the special case y" 0 since u is not required to be in Al(a, b).

COROLLARY 3.6. Let p be locally absolutely continuous on (a, b), and let P2
and P3 be in C(a, b). Then y is a solution to (3.1) on (a, b) if and only if y C(a, b)
and 2y py + Tp2y+p3.

Proof. By (d) of Theorem 3.5 we can conclude that if y C(a, b) and satisfies
(3.1) in the distributional sense, then y G1 G2 G3 is both convex and con-
cave; i.e., its graph is linear. This implies that y C2(a, b) and hence is a classical
solution.

On the other hand, if y is a solution, an easy calculation shows that (3.1)
holds in the distributional sense. This completes the proof.

Thus any continuous function on (a, b) that satisfies (3.1) in the distributional
sense, where p is locally absolutely continuous and P2 and P3 are in C(a, b), is
in fact in C2(a, b) and is a classical solution.
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When the pi’s (i 1, 2, 3) are in C(a, b), Corollaries 3.2 and 3.6 follow from
2.3 of[4, pp. 39-43] (also see [18, p. 53]).

4. The nonlinear equation y"----[(x, y). Now we consider the case that (1)
does not depend on y’. We identifyfwith its restriction to (a, b) R and write

(4.1) y" f(x, y.
We shall always assume that condition (i) holds"

(i) f (a, b) x R R is continuous.

We shall sometimes assume that (4.1) has property (ii)"
(ii) If Yl and Y2 are solutions of (4.1) on Ix1, x2] c (a, b) with y(x) y2(xx)

and y,(x2) y2(x2), then Yl Y2 on [x, x2].
It is known [3, Thm. 2, p. 1256] that if(i) holds and ifu is a bounded subfunction

for (4.1) on (a, b), then u e C(a, b). Moreover, if (i) and (ii) hold and if u C2(a, b),
then u"(x) >= f(x, u(x)) on (a, b) is a necessary and sufficient condition for u to be a
subfunction with respect to solutions of (4.1) on (a, b) (see [15, Corollary, p. 1011]).

LEMMA 4.1 (see [9, Thm. 2.1, p. 309] and [3, Lemmas 1, 2, 3, p. 1252] for related
results). Assume that f satisfies (i) and that M > 0 and [c, d] (a, b) are given.
Let q be the maximum of If(x, y)[. on the compact set {(x, y)" c =< x _< d, [y[ _< 2M}.
Then, if6 (8M/q) I/z, any boundary value problem

y"= f(x,y), y(x,)= ya, y(x2)= Y2

with Ix,, X2] C [c,d], x2 x __( 6, ly,I <- M and ly2l <= M has a solution
y C2[x, x2]. Furthermore, given e > O, the solution y described above will satisfy
[y(x) co(x)l =< e on [xl, x2] provided x2 x <_ (8e./q) x/2 where co is the linear

function with o)(xx) Yx and 09(x2) Y2.
Proof The set

B[X1, X2] {Z Z e C[x1, x2] Iz(x)l 2M for x, <_ x <__ xz}
is a closed convex subset of the Banach space C[x, X2]. The mapping

defined by

T" C[x,, x2] --* C[x x2]

(Tz)(x) G(x, t)f(t, z(t)) dt + co(x),

where G(x, t) is the Green’s function for the boundary value problem y"= 0,
Y(X1) Y(X2) 0, is completely continuous. For a z B[x, x2] we have

I(rz)(x)l -q(x2 X1)2 -b M

on Ix1, X2]. Thus X2 X 6 implies T maps B[x, X2] into itself. It then follows
from [6, Corollary 0.1, p. 405] that T has a fixed point in B[x, x2]. The fixed point
is a solution ofthe stated boundary value problem. Ify is a solution ofthe boundary
value problem with y B[xa, x2], then

lY(X)- o9(x)l <- -q(x2 x l)z
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on Ix1, X2] and the last assertion of the theorem follows.
DEFINITION 4.2. Let u and v be locally integrable, locally bounded functions

on (a, b) and assume that (i) holds. Then we let U and V be the distributions in
(a, b) defined by

U(ck) f(x, u(x))ck(x) dx,

V(c/)) f(x, v(x))c])(x) dx, where e ((a, b)).

Also, just as in 1, we define the distributions 2u and 2v by

2U() U(X)tt(X) dx and @2v(b) v(x)"(x) dx.

LEMMA 4.3. Let [c, d l be any closed subinterval of (a, b) and let u be in C(a, b).
Suppose that (i) holds and suppose that the restriction of2u U to ((c, d)) is a
positive distribution in (c, d). Then there exists > 0 such that if Ix1, x2] c [c, d]
with x2 xl <-_ 6, the boundary value problem

y" f(x, y),

has a solution y e C2[x1, x2] and

y(x,) u(x,), y(x) u(x9

y(x) >= u(x) for X - X X2

Proof Define F, F (a, b) x R R by

F(x, y) , f(x’ y) for y >= u(x),

( f(x, u(x)) for y < u(x).
By Lemma 4.1, there is a 6 > 0 such that if x2 xl =< 6, then the boundary value
problem

y"= F(x, y), y(x) u(x,), y(x) u(x9

has a solution y e C2[x1, x2]. We need only show that y(x) >= u(x) for X X X2

to complete the proof.
If y(xo) < U(Xo) for some Xo in (x l, x2), then we can find an interval Ix3, x4] c

[x, x2] such that y(x) < u(x) for x3 < x < x4, y(x3) u(x3) and y(x4) u(x4).
Let W be the distribution in (xa, x4) defined by

w() ff (u(x) y(x))"(x) dx for e @((X3, X4)

Since y"(x)= f(x, u(x)) for x3 < x < x4, we obtain after two integrations by
parts that

])y(x)c"(x) dx U(4) for 4 e ((x, x)).

Thus we have that W- 2(u y) 2u U in (x3,x4). Now W >= 0 since
2u U is positive in (c, d) = (x3, x). Then by the second distributional deriva-
tive, test, u y is convex on (x3, x4) since it is continuous. But u y being convex
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on (x3, x4) contradicts the facts that u y > 0 on (x3, x4) and u(x3) y(x3)
u(x4) y(x4) 0. The proof is complete.

LEMMA 4.4. Let (i) and (ii) hold, and let u C(a, b) be a subfunction with respect
to solutions of (4.1) on (a, b). Then for any [c, d] c (a, b) and for any l, 0 < # < 6
(where 6 comes from Lemma 4.1 with M max {lu(x)l c =< x =< d }, yx u(xl)
and Y2 u(x2)) there exists a partition of[c, d], c Xo < xl < < x, d with
xi xi-1 =< #(i 1,2, ..., n), and a solution yi of(4.1) on [xi- xi] which satisfies
yi(xi-1) u(xi_ 1), yi(xi) u(xi) and yi(x) >= u(x) for xi-1 <= x <= x provided
i= 1, 2,..., n. Moreover, Yi satisfies yi(x) <= u(x) on [xi, ci) for some ci > xi,

1, 2, ..., n (if n this condition is vacuously satisfied).
Proof The proof is by induction on the smallest positive integer m such that

c + m/z >_ d. If c +/ => d, then let Xo c, x d and Y be the solution of (4.1)
(which exists by Lemma 4.1) satisfying yl(x) >= u(x) for c =< x <_ d, where equality
holds at x c and at x d. Thus the lemma is true for m 1. Now assume that
the lemma is correct for some fixed value of m, m _> 1. We shall prove it for m + 1.

Let c+m#<d and c+(m+ 1)#__>dwhere#,0<#<,is fixed and 6
is determined by Lemma 4.1 applied to [c, d] with M max {lu(x)l’c <= x <_ d}.
Then let 61,61 ->- 6, be determined by Lemma 4.1 applied to the interval [c, d #].
Thus 0 </ < fi __< 61, so by the induction hypotheses applied to the interval
[c,d #], there exists a partition of [c,d -/], c to < < < t, d #
with t- t_ =< # for 1, 2, ..., n and solutions zi of (4.1) on Its_ 1, ti] which
satisfy zg(t_ ) u(ti_ ), zi(t) u(t) and z(x) >= u(x) for t_ _< x <= ti provided

1, 2, ..., n. Moreover, zi satisfies zi(x) <-_ u(x) on [ti, d) for some d > ti for
1, 2,..., n (vacuously ifn 1). Let x ti, c d and Yi z for 0,

1,...,n- 1.
We need to consider two possibilities. If there is a point bo satisfying

t,_ < bo < t,, t, bo < #/16 and z,(bo) > u(bo), then let y, be any solution on a
maximal interval of existence (o91 -, (1 + of the boundary value problem

y" f(x, y), y(t,_ x) u(t,_ 1), y(bo) u(bo)

which exists on [t,-1,bo] c (o91-,o91 +) by Lemma 4.1 and which satisfies
y,(x) >_ u(x) for t,_ =< x =< bo since u is a subfunction. Let ao, bo _-< ao < t,,
be the largest value of x satisfying bo _-< x < t, and y,(x) u(x). Then let x, ao
and c, be any point in (ao, t,) f’l (co1-, co +). If no such number bo exists, then
let x, t, #/32, c, t, #/64 and y, z,.

Let w be the solution of y" f(x, y), y(x,) u(x,), y(x, +
If there is a point bl satisfying x,<bl <x,+/, x,+/-bl <#/16 and
wl(bl) > u(bl), then let Y,+I be any solution on a maximal interval of existence
(0,)2 --, (_D2 + of the boundary value problem

y" f(x,y), y(x,) u(x,), y(bl) u(bl)

which exists on [x,,bl] c (0,)2--,(D2--1--) by Lemma 4.1 and which satisfies
y, + l(x) >= u(x) for x, __< x _< b since u is a subfunction. Let a, b _-< a < x, +/,
be the largest value of x satisfying b __< x < x, +/ and y,+ x(x) u(x). Then
let x,+ al and c,+ be any point in (al, x, + #) I"l (ooz-, 0,)2 + ). If no such
point bl exists, then let x,+l =x,+/-#/32, c,+x =x,+/-//64 and
Yn+ Wl



62 ROBERT CARMIGNANI AND KEITH SCHRADER

Now let y, + 2 be the solution of the boundary value problem

y" f(x, y), y(x,+ x) u(x,+ l), y(d) u(d)

which exists by Lemma 4.1 and which satisfies y,+ 2(X) " /,/(X) since u is a sub-
function. This completes the proof.

THEOREM 4.5. Suppose that (i) and (ii) hold. Then u is a locally bounded sub-
function for (4.1) on (a, b) if and only if u C(a, b), and @2u U is a positive dis-
tribution in (a, b). Moreover, v is a locally bounded superfunction for (4.1) on (a, b)
if and only if v C(a, b) and V 2v is a positive distribution in (a, b).

Proof We only prove the first equivalence since the proof of the second is
similar.

Let u C(a, b) be such that 2u _>_ U. Now suppose that u is not a subfunction
on (a,b). Then there exists an interval [c,d] c (a,b) and a solution z of (4.1)
with z(c) u(c), z(d) u(d) and z(x) < u(x) for c < x < d. For each positive
integer n, we let P(n) be the proposition that there exists an interval [a,, b,] c [c, d]
with 0 < b, a, __< d c (n 1)6/2 (where 6 comes from Lemma 4.3) and a
solution z, of (4.1) on [a,, b,] such that z,(a,) u(a,), z,(b,) u(b,) and z,(x) < u(x)
for a, < x < b,. We will show that under our assumption that u is not a subfunction
on (a, b) relative to solutions of (4.1), it follows that P(n) holds for each positive
integer n. This gives a contradiction since it is not possible to have 0 < d c
(n 1)6/2 for every positive integer n.

The fact that P(1) is true follows by letting a c, b d and z z. We
assume that P(k) is true and will show that this implies P(k + 1) is true. If
bk ak <--_ 6, then we get a contradiction from Lemma 4.3, so we have bk ak > 6.
Let Y be any solution defined on a maximal interval of existence, (o91-, o91 +),
to the boundary value problem

y"= f(x,y), Y(ak) U(ak), Y(ak + )= U(ak + )

which exists on [ak, ak d- t] (091 --, 091 d- by Lemma 4.3. If P(k + 1) is not true,
then yl(x) >- u(x) for ak _--< X < min {bk, o91 + }. Also, if P(k + 1) is not true, then
u(x) yl(x) for ak d- /2 <= X <= ak q- t, for otherwise the solution y, given by
Lemma 4.3 of the boundary value problem

y" f(x, y), Y(ak) u(ak), y(bo) u(bo)

(where bo is chosen so that ak + 6/2 <= bo <= ak + 6 and u(bo) < yl(bo)) when
extended to a maximal interval of existence to the right would contradict P(k + 1)
not being true.

If bk ak 6 <= 6/2, we let Y2 be the solution given by Lemma 4.3 to the
boundary value problem

y" f(x, y), y(ak + 6/2) u(ak + 6/2), Y(bk) u(bk).

Then y2(X) U(X) for ak + 6/2 <= X <= bk and y2(x) =< yl(x) for ak + 6/2 <= x <
min {col +, bk}. This implies that u(x) yl(x) y2(x) for ak + ,5/2 <= X ak + 6.
But now (ii) is violated since the function defined by

f (x)Y
l(x)

y(x)

for ak <- x <= ak h- b,

for ak + t < x bk,
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is a solution of (4.1) and is a solution to the same boundary value problem that
Zk is, but and Zk are not identical on [ak, bk]. We conclude that bk ak > /2.
Now let Yz be any solution on a maximal interval of existence (092-, 092 +) of the
boundary value problem

y" f(x, y), y(a, + 6/2)= u(a, + 6/2),

which exists on [ak + 6/2, a, + 36/2] c ((D2-- 002 +) by Lemma 4.3. Note that
yz(x) ->_ u(x) for a, + 6/2 =< x < min {0)2 +, b} for otherwise the function rn
defined by

f y (x) for a =< x __< a + 6,

for a + 6 < x < 0)2 ---,
is a solution of (4.1) that would imply P(k + 1) was true. Continuing in this way
we construct Y3, Y4, until we have worked our way across the interval [ak, bk]
which implies P(k) is not true. Thus P(k + 1) is true. So by the induction principle
we obtain a contradiction. This proves that u is a subfunction on (a, b) whenever
u C(a, b) and 2u _>_ U.

Suppose on the other hand, that u is a locally bounded subfunction for (4.1)
on (a, b). It follows from [3, Thm. 2, p. 1256] that u C (a, b).

We shall now show that @2u _> U. Let [c, d] be any compact subinterval of
(a, b). Take any nonnegative b @((a, b)) with support contained in [c, d].

For each n such that 1/n < 6 (where comes from Lemma 4.1 with

M max {lu(x)l’c <= x <= d})

let/ 1/n and apply Lemma 4.4 on the interval [c, d]. Then define u," [c, d] --, R
by

u,(x) yi(x) for xi- <= x <= xi, i= 1,2,-..,k.

It follows from the last sentence in the statement of Lemma 4.1 and from the con-
tinuity of u that u,(x) converges uniformly to u(x) on the interval [c, d]. If we can
show that

u.(t)qb"(t) dt >= f(t, u.(t))(D(t) dt,

then by taking the limit of each side as n + , we would have that

u(t)(ib"(t) dt >= f(t, u(t))clb(t) dt,

and since [c, d] is arbitrary, we could conclude that 2U U.
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Now

u,(t)"(t) dt y,(t)ck"(t) dt
i=1

(y(t)’(t) y’(t)4(t + y’[(t)4(t) dt
i= xi- i= xi-

k k

E (yi(xi)(t(Xi) Yti(Xi)(X’)) (yi(xi- 1)t(X/-1) Yti(Xi-1)(X/- 1))
i=1 i=1

+ y’[(t)(t)dt
i=1 i-

k-1

y,x,)’x,) y’,x,)x,)) y,x,_ )’x,_ ) y’,x,_ )x,_ ))
i=1 i=2

+ f(t, y(t))(t)dt
i=1 i-

k

(y_ (x_,)’(x_ ) y_ (x_ )(x_
j=2

(yj(xj_ )’{xj_ ,) yxj_ )xj_
j=2

+ f(t, u(t))4(t) dt

(_ (x_ (x_ t’(x_ + ()(x_ )_ (x_(x_
j=2 j=2

+ f(t, u(04(0 t

(y}(x_ y}_ (x_ 4(x_ + f(, u(04(0
j=2

f(t, u(t))4(t) dr.

The last inequality holds because it follows from Lemma 4.4 that y}(x_)
y_(x_)forj 2,3,..., ksincey(x) u(x) y_ (x)holdsfor x_ N x < c_
The proof is now complete.
LN 4.6. Assume that (i) and (ii) hold and that solutions to initial value prob-

lems for (4.1) are unique. If u C(a, b) is a subfunction for (4.1) on (a, b), but not a
strict subfunction, then u is a solution to (4.1) on some subinterval of (a, b).

Proo Since u is a continuous subfunction, but is not a strict subfunction,
there exists a solution y on some interval (c,d) (a, b) such that y(c)= u(c),
y(d) u(d), y(x) u(x) on [c, d] and y(xo) u(xo) for some xo e (c, d). Suppose
that u were not a solution on any subinterval of (a, b). Then by Lemma 4.1, there
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exists an interval (xl, x2) containing Xo and a solution Yo on Ix1, X2] C (C, d)
such that u(x) <= yo(x) for x [x, x2], yo(x) y(x) > u(x) and yo(x2) u(x2) <
y(x2). Since yo(x) <-_ y(x) on [x, x2] by (ii), it follows that yo(Xo) y(xo), and hence
yo(x) y(x) for xa __< x __< Xo. Since yo(X2) < y(x2), Yo and y are different solutions
of the same initial value problem which is a contradiction. Therefore u must be a
solution to (4.1) on some subinterval of (a, b) containing Xo.

THEOREM 4.7. If (i) and (ii) hold, and if u is a locally bounded strict subfunction
on (a, b)for (4.1), then u C(a, b) and 2u > U. Furthermore, if(i) and (ii) hold, and
ifsolutions to initial value problems of(4.1) are unique, then u is a strict subfunction on
(a, b) whenever u C(a, b) and 2u > U.

Proof We can essentially apply the proof of Theorem 2.7, using Theorem 4.5
and Lemma 4.6. The details will not be repeated.

THEOREM 4.8. Let u be locally bounded and locally integrable on (a, b). Assume
that (i) and (ii) hold (and in the strict case, assume also that solutions to initial value
problems for (4.1) are unique), and let H be such that H"(x)= f(x, u(x)) for all
x (a, b). Then thefollowing are equivalent"

(a) u is a subfunction (or strict subfunction)for (4.1) on (a, b);
(b) u is a local subfunction (or local strict subfunction)for (4.1) on (a, b);
(c) u C(a, b) and @Z(u H) 2u U >__ 0 (or > 0);
(d) u- H is a convex (or strictly convex)function on (a, b).
Moreover, if u is locally bounded on (a, b) and satisfies any of the conditions

(a)-(d), then u is locally LipsChitzian.
Proof We can apply the proof of Theorem 3.1, using H instead of

H + H2 d- H3 and Theorems 4.5 and 4.7. The details will not be repeated.
Remark. Note that u is a subfunction (or strict subfunction) for (4.1) if and only

if u H is a subfunction (or strict subfunction) for

y" f(x, y + H) f(x, u(x)).

We will not give the analogues of Theorems 4.7 and 4.8 for superfunctions.
COROLLARY 4.9. Suppose that (i) and (ii) hold. Let u C(a, b) be a distributional

solution of (4.1) on (a,b) (i.e., 2u- U is the zero distribution in (a,b)). Then
u C2(a, b) and u is a classical solution on (a, b).

Proof By Theorem 4.8 we obtain that the graph of u H is linear. The result
now follows.

5. Boundary value problems. In this section, we give necessary and sufficient
conditions for the boundary value problem

(5.1) y"= f(x,y), y(x)= yl, y(xz)= Yz

to have a solution. This result is a useful improvement of the result in [16, Cor.
3.1] making it easier to get close bounds on the solution as the later example will
show.

THEOREM 5.1. Assume that (i) holds and that [X1,X2] C (a,b). Then (5.1)
has a solution if and only if there exist locally bounded, locally integrable functions
u and v on (a, b) such that 2u >__ U, 2v <__ V, u(x) <= v(x) a.e.,

(5.2) lim infv(x)>__ y __> lim sup u(x),
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and

(5.3) lim inf v(x) >= Y2 >= lim sup u(x).
x- x--,

Proof. If (5.1) has a solution y, then choose u v y. On the other hand,
if.u and v as described in the theorem exist, then let H and H be such that
H’(x)- f(x, u(x)) for all x (a, b), and H’(x)- f(x, v(x)) for all x (a, b). Since
@2(u H) @2u U _> 0, and 2(v H) 21) 12, 0, the distributional
characterization of convex functions (see [17]). gives that u H and -v + Ho
each equals a.e. a convex function on (a, b). Since convex functions are continuous,
it follows from the continuity of H and H that there exist functions u and Vc
in C(a, b) such that u uc a.e. and v vc a.e. Thus we have that u =< v, in par-
ticular, (5.2) and (5.3) hold. We also have that u Huc is convex on (a, b) and
v Hvc is concave on (a, b). Define F’[xx, X2] )< R R by

f(X, Vc(X)) for y(x) >= vc,

F(x, y) f(x, y) for u(x) < y(x) < v(x),
I

f(x, u(x)) for y(x) <= u(x),

and consider the boundary value problem

y" F(x,y), y(xl)= Yl, y(x2)= Y2.

It follows from [10, Lemma 2.2, p. 250] that this problem has a solution
y C2[xl, x2]. If we can shown that u(x) <= y(x) <= v(x), we are done, for then y
is also a solution to (5.1). The proof that y(x) >= u(x) is essentially the same as the
second paragraph of the proof of Lemma 4.3. The proof that y(x) <= v(x) is similar
so is omitted.

The next result and its analogue provide us with a practical method of con-
structing continuous functions u and v for use in Theorem 5.1.

THEOREM 5.2. Assume that (i) holds and that [xl, X2] (a, b). Suppose there
exist a partition of [x,x2], x 0x < t2 tk --X2, and a function
u C(a,b) having left-hand and right-hand derivatives at each i (i 1,..., k)
which satisfyfor each i,

(5.4) u’_ (ai) =< u’+ (i).

Suppose also that the restrictions of2u U to each (,+ ) for 1,..., k 1
are positive. Then the restriction of@2u U to (x x2) is positive.

Proof Let H be such that H"(x)= f(x, u(x)) for all x (xl,x2). Then the
restrictions of u- H to (, +), 1,..., k- 1, are convex. This and the
fact that (5.4) holds imply by [7, (18.43), p. 300] that u’ H’ exists a.e. in (xa,
and is nondecreasing where it is defined. From the same result in [7], we obtain
that u H is convex in (x, x2). This means, as we have seen before, that @2(u H)

@2u U restricted to (x, x2) is positive, which completes the proof.
Remark. It is now clear that if uC(a,b) is such that v’-(i) v’+(i),

i= 1,..., k, ( as in Theorem 5.2), and if 52v =< V in each (, +), then
2/) V in (Xl, X2).
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To illustrate the use of the results in this section to establish the existence of
solutions to two point boundary value problems and to obtain closer bounds on
the solution than is easily possible by known methods we investigate one example.

Consider the boundary value problem

Define

and

y" 4xy + y3,

y(-1) -2, y(2) 1.

for-1 _<x =<2,

for-1 =<x__< 2,

for-1 =<x__<2,

for-1 __<x__< 2,

for -1 __<x__< 2,

for-1 __< x__< 0,

for0 < x__< 2,

x+ for-1 _<x_< 1,
v(x)

2X/2 for < x __< 2.

Then ui(x) <= ui+l(x) <= /)i+2(X) __--< /)i+I(X) __--< l)i(X for all xe [-1,2], i= 1,2, and
we also have that ua(-1) __< -2 __< v4(-1) and u3(2) <- __< v,(2). It is easy to
check that for each u, @2u _>_ U, where U is the distribution in the interval
(- 1, 2) defined by -4xui(x) + (u(x))a, and for each v, @2vi __< V, where V is the
distribution in the interval (- 1, 2) defined by -4xv(x) + (vi(x))3. It now follows
from Theorem 5.1 using any u and any v that the boundary value problem has a
solution y satisfying

u,(x) <_ y(x) <__ v,(x) for x e [-1,2].

Clearly the best choice of the given functions would be//3 and v,, which gives
that

u3(x) -< y(x) <= v4(x) for x e [- 1,2].
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EXISTENCE THEOREMS AND A SOLUTION
ALGORITHM FOR PIECEWISE-LINEAR

RESISTOR NETWORKS*

T. OHTSUKI, T. FUJISAWA:I: AND S. KUMAGAI:I:

Abstract. This paper deals with nonlinear networks which can be characterized by the equation
t(x) =y, where is a continuous piecewise-linear mapping from R into itself. The main theorem
asserts that the existence of solutions x R of i(x) y for an arbitrary given y R is guaranteed by
fairly general conditions based on the theory of the degree of mapping. Then it is shown that an
iterative algorithm (generalized Katzenelson algorithm) leads to a solution in a finite number of
iteration steps. Finally, a comprehensive study of physical nonlinear elements demonstrates that the
theory can be applied to most of the currently used nonlinear networks.

1. Introduction. The problem of analyzing large scale nonlinear resistor
networks is becoming of widespread interest. In particular, the theory of networks
composed of resistors with continuous, piecewise-linear characteristics has been
developed rapidly 1]-[6]. This is partly due to the ease of numerical computation.

In 1965, Katzenelson gave an algorithm for solving networks which contain
uncoupled, piecewise-linear resistors of the strictly increasing type [1]. The
piecewise-linear model was then extended to include coupled resistor networks
[3]. Following these works, Kuh and Hajj made an attempt to modify the
Katzenelson algorithm to deal with networks having multiple solutions, yet there
remained many theoretical problems to be investigated [4].

In 1972, Fujisawa and Kuh presented a fairly general theory of piecewise-
linear mappings and some sufficient conditions for such a mapping to be a
homeomorphism [5]. They also showed that the application of the Katzenelson
algorithm leads to the unique solution whenever the mapping is a
homeomorphism.

Recently, Fujisawa, Kuh and Ohtsuki further extended the theory in two
directions [6]. First, they gave a sufficient condition which guarantees the exis-
tence of solutions, and also verified the applicability of the original Katzenelson
algorithm to this case. Secondly, they formulated an efficient computational
method which exploits not only the very nature of piecewise-linear mappings but
also the sparsity of Jacobian matrices.

In spite of the development mentioned above, there still remains a serious
question on availability of a convergent algorithm for solving a more general class
of resistor networks which one often encounters in practice, i.e., those containing
so-called "active" elements such as transistors and tunnel diodes. Common to
almost all existing iterative algorithms, including the original Katzenelson
algorithm and the Newton-Raphson algorithm, to solve i(x)=y for a given y, is
that a sequence {x(k); k 1, 2,...} of approximate solutions has to be generated
in such a way that the value of Ily-f(xll decreases monotonically as k increases.
Because of this restriction, one often encounters the case where a solution cannot
be found even if it exists.

* Received by the editors February 23, 1975.

" Central Research Laboratories, Nippon Electron Co., Ltd., Kawasaki 213, Japan.
t School of Engineering Sciences, Osaka University, Toyonaka 560, Japan.
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It is the purpose of this paper to give an affirmative answer to the question
posed in the above paragraph. To be more precise, the main theorem asserts the
existence of a solution of resistor networks of a fairly general class, like those
containing "active" elements. It is then shown that the application of an algorithm
(generalized Katzenelson algorithm) leads to a solution in a finite number of
iteration steps if the condition of the main theorem is satisfied. The condition for a
resistor network to have at least one solution, or for the solution algorithm to
converge, is imposed only on the characteristics of component resistors, i.e.,
independent of the network topology. This type of condition is very favorable in
implementing a general circuit analysis program [7].

The solution algorithm presented here is designed, by taking advantage of the
simplicity of piecewise-linear mappings, so that it converges to a solution of
y t(x) for a given y even if a number of local minimums of IlY- l(x)[[ exist. In other
words, the original Katzenelson algorithm is generalized so that it treats
piecewise-linear mappings which possess regions with both positive and negative
Jacobian determinants and even those with singular Jacobian matrices. It is only
fair to mention here that the generalization of the Katzenelson algorithm in this
direction is motivated by the work of Kuh and Hajj [4].

After the introduction of fundamental propositions in 2, fairly general
theorems on the existence of solutions based on the theory of the degree of
mapping [8], [12] are given in 3. Then it is shown in 4 that the generalized
Katzenelson algorithm leads to a solution if the given piecewise-linear mappings
satisfy a certain condition (1-degree condition). In 5, it is concluded that a very
general class of nonlinear networks are covered by the theory described in the
previous sections. More specifically, it is shown that if each component resistor
possesses a certain property (Property U), the network equation satisfies the
1-degree condition independent of the interconnection of the resistors. In Appen-
dix A, it is shown that the definition of the degree of piecewise-linear mappings
given in this paper can be derived from the one in [8, p. 154]. Appendix B shows
that typical physical elements possess Property U under a pertinent piecewise-
linear approximation of their characteristics.

2. Preliminaries. The following notations are used throughout this paper.
The n-dimensional Euclidean space is denoted by R n, each element of which is an
n-column vector. If xRn, then xi denotes the ith component of x "for
1, 2,. , n. For any x, y R", the inner product Y.i__ x,y is denoted by (x, y). The
norm of x is denoted by Ilxll- <x, x>1/=. The superscript T stands for the transpose of
a vector or a matrix. The determinant of a square matrix J is denoted by det J. For
any subset S CR", the closure of S is denoted by S and the boundary by OS.

A continuous mapping t: R R is said to be (i) norm-coercive if

(1) II (x)ll - oo as Ilxll-,
(ii) weakly coercive ifthere exists a R such that

(2) (t(x), x-,,)/llx-,,ll-+ oo as I1,,11-+ oo,

and (iii) strongly coercive if (2) holds for all uR. It is easy to see from the
Schwarz inequality that weak coerciveness implies norm-coerciveness.
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A continuous mapping f: Rn->R is said to be (i) monotone if

(3) (f(u)- f(v), u-v) >_- 0

for all u, v R", (ii) strictly monotone if the strict inequality holds in (3) whenever
u v, and (iii) uniformly monotone if there exists a > 0 such that

(4) {f(u)-f(v), u-,,’>--> vllo-vll
for all u, v R".

A continuous mapping f: R" -> R" is said to be (i) passive on u if there exists a
u R such that

(5) {i(x)-i(u), x-u)=>0

for all x Rn, (ii) strictly passive on u if the strict inequality holds in (5) for all x u,
and (iii) uniformly passive on u if there exists a /> 0 such that

(6) {f(x)-i(u), x-u> >-  llx-ull
for all x R". It is clear that if f is monotone, strictly monotone or uniformly
monotone, then f is passive, strictly passive or uniformly passive on any u
respectively. It is also clear that if f is uniformly monotone or uniformly passive on
u, then f is strongly coercive or weakly coercive, respectively.

Remark I. A physical interpretation of passivity is as follows. Let f be the
voltage-current characteristics of an n-port resistor. Thus if xi represents the
voltage (current) of the ith port, then (f(x))i represents the corresponding current
(voltage). Therefore (f(x)-f(u),x-u) expresses the net power flow into the
resistor when it is operated on the point u. If this inner product is positive, it means
that the resistor consumes energy [9].

A continuous mapping f: R" -> R" is said to be piecewise-finear if the whole
space R" is derided into a finite number of convex polyhedral regions by a finite
number of (n- l)-dimensional hyperplanes so that, in each region, f is an affine
mapping. Namely, in each region, say Rk, f is represented by

(7) f(x) j(k)x +b

for any x Rk, where j(k) is a constant n x n matrix called a Jacobian matrix and,

b(k) is a constant n-vector. For a piecewise-linear mapping f: R -> R ", the term
boundary hyperplane is, henceforth, used to mean an (n 1)-dimensional hyper-
plane which separates two neighboring regions. Throughout the arguments
hereafter in this section, the mappings f: Rn-R under consideration are
assumed to be continuous and piecewise-linear.

The continuity of a piecewise-linear mapping on boundary hyperplanes leads
to the following property, which plays a key role in the solution algorithm [5], [6].

PROPOSITION 1. IftWO regions R andRE with Jacobian matn’ces jo) and j(2),
respectively, have a common (n 1)-dimensional boundary hyperplaneH (see Fig.
1), then there exists a constant n-vector c such that

(8) J2)-J) crT,
where r is the normal vector ofH.
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R

with

FIG. 1. Two neighboring regions havinga common boundary hyperplane

As an immediate consequence of the above relation, one obtains the follow-
ing important property of piecewise-linear mappings [5].

PROPOSITION 2. Let (1) and :I2 be as in Proposition 1. Then the ranks o]’ (1
and :I2 differ at most by one.

Since the number of regions is finite, one easily obtains the following
proposition [5].

PROPOSITION 3. There exists a 3" > 0 such that

(9)

for all u, v R’, i.e., f is Lipschitzian.
Remark 2. For the value of y it suffices to take the maximum of matrix norms

of all the Jacobian matrices [8].
The following property is an immediate consequence of Proposition 3 and the

definition of piecewise-linear mapping.
PROPOSITION 4. /f f is weakly coercive, then it implies that f is strongly

coercive, too.
When a continuous mapping under consideration is piecewise-linear, the

term coercive is, henceforth, used to mean either weakly coercive or strongly
coercive.

If a continuous piecewise-linear mapping is strictly monotone, then all the
Jacobian matrices must be positive definite. Therefore one can easily derive the
inequality (4), where 3’ is the minimum of the eigenvalues of symmetric parts of all
the Jacobian matrices [3], [5]. This proves the following proposition.

PROPOSITION 5. ff f is strictly monotone, then it implies that f is uniformly
monotone, too.

Remark 3. If a continuous mapping t: R -> R is strictly monotone, then f is
one-to-one. In addition, if f is piecewise-linear, i.e., uniformly monotone due to
Proposition 5, then f is coercive. Thus f maps R onto R (see 5.4, Theorem A).
Therefore a continuous, strictly monotone, piecewise-linear mapping is a
homeomorphism.

In this paper a real square matrix is said to be positive definite if its symmetric part is positive
definite.
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The norm-coerciveness of a piecewise-linear mapping, which plays an essen-
tial role in the degree invariance property discussed in the next section, implies the
following property.

PROPOSITION 6. If is a norm-coercive, then

(10) f(E) Of(B),

where E R is the set of all points in re#ons with singular Jacobian matrices, and
B R is the set of all points on boundary hyperplanes.

It suffices for the proof to show that, for any interior point x of a region with a
singular Jacobian matrix, there exists a point x’ B such that f(x’) f(x). Let Rk be
the region in which x lies. Then the singularity of the Jacobian matrix jk> implies
the existence of a unit vector such thatJx 0. Hence f(w(A)) f(x) for any real A
whenever w(A) x+ Ax Rk. If the straight line {w(A)IA (-oo, oo)} wholly lies in
region Rk, it contradicts the norm-coerciveness assumption. Therefore the line
must meet a boundary hyperplane of Rk at a point, say x’. This completes the
proof.

3. Degree of mapping and existence of solutions. The problem considered in
this section is whether

(11) f(x) =y

has a solution for an arbitrary given y R n, where f: R n--> R is a continuous,
piecewise-linear mapping. Throughout this section, B CR denotes the set of
points on boundary hyperplanes and E CR the set of points in regions with
singular Jacobian matrices.

Let CCR be an open bounded set and assume that y f(B) LI f(E) f(0C).
Then there are, at most, finitely many solutions of (11) in C. Let {x(1, , x("}
{x CIf(x) y} be the set of solutions and ]’, 1,. , m, be the Jacobian matrix
of the region in which x( lies. Then the integer

(12) deg (f, C, y)=
i=1

is called the degree of f at y with respect to C.
An analytic definition of the degree of continuous mappings and its proper-

ties are found in [8]. The definition (12) for y f(B)[3 f(E) coincides with the one
given in [8]. (See Appendix A for the proof.)

The following invariance property of the degree [8] is needed in the proof of
Theorem 1" Let C be an open bounded set and assume that yl), y2) f(0C). If the
two points can be connected by a continuous path without passing through f(0C),
then

(13) deg (f, C, y(1)) deg (f, C, y(2)).
If f is norm-coercive, then for any x R, f-(f(x)) is a compact set. Therefore

one can determine the maximal connected subset of f-(f(x)) containing x [10, p.
54] which, henceforth, is denoted by X(f, x).

THEOREM 1. Let f: R’-R be a continuous, norm-coercive, piecewise-
linear mapping and x* R be a point. Furthermore, let C be an open bounded set
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such thatX(f, x*) C Cand’[f-l(f(x*))-X(f, x*)] . Then there exists an open
neighborhood D of f(x*) such that (13) holds for anyyC1), yC2)6 D-f(B).

Proof. First, note that the degrees at y(1) and y()) are well-defined by (12) if f is
norm-coercive (see Proposition 6). From the continuity of f, the compactness of
OC and f(x*)e f(0C), it is easily seen that f(0C)D for a sufficiently small
open neighborhood D of f(x*). Hence the theorem follows from the degree
invariance property.

Remark 4. The connected, compact set X(f, x) is complex [11, p. 13] as
shown in Fig. 2 since f is piecewise-linear. Each one-dimensional part is in a region
with Jacobian matrix of rank n 1, each two-dimensional part is in a region with
that of rank n- 2, and so forth.

FIG. 2. An illustrative example ofX(f, x)

For a point y R" and unit vector a R", consider the straight line

(14) L(y, ot)={zRlz=y+Aot, A (-, )}

THOgM 2. Let f: R-->R be a continuous, norm-coercive, piecewise-
linear mapping, x* R be a point and ot R be a unit vector. Furthermore, assume
that f(x*)+ha|(B) for all sufficiently small A 0. Then there exist an even
number of unit vectors [$ such that, for all sufficiently small v > O,

(15) v +1 X(I, x*)

and

(16) f(v+ vl) L(f(x*), c),

where v s 0X(f, x*) is a point uniquely determined for each
Proof. Let C be an open bounded set as in Theorem 1. Then there exists an

open neighborhood D of f(x*) such that (13) holds for any y<l), y</)D-f(B).
Namely, there exists a > 0 such that f(x*) + Ax sD f(B) for all A s (0, ], and
the degree preserves a constant value, say d. Let yl)=/(x*)+Xx and y<)=
f(x)-X.

Suppose f(x)= y<l) has n) solutions in C, n (resp., n)) of which are in
(1) (1)regions with positive (resp., negative) Jacobian determinants. Then d n+ -n_

(1) (i) (1) (2) (2) (2)and n n+ + n_. Integers n n+ and n_ are defined in the same way for
(2) (2) (2) (2) (2) (2)f(x) y Then d n+ n_ and n n+ + n_. Therefore the total number of
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solutions of f(x) y) and f(x) y(2) is equal to 2(d + n -) + n)), which is an even
number.

First, consider the case where x* B LIE and hence x* is an interior point of a
region, say Rk, with nonsingular Jacobian matrix. In this case, the single point x*
constitutes whole X(f, x*), and hence v x* OX(I, x*). Then it is clear from the
definition of that f(x) y<i) has a unique solution, say x<i), in Rk for 1, 2. Thus
exactly two unit vectors 1(1) (IK.(1)_ lKg)/11111[(1)_ X:g[[ and I(2) (IK(2) X:g)/[]X(2) XI[--
-15(1) are found so that (15) and (16) hold for [1 [$(i), i= 1, 2.

Next consider the case where x* B [.J E. It is clear that no two solutions of
f(x) y(1) or f(x)= y() can be found in the same region. Let x(1) be a solution of
f(x) =y(1) and Rk be the region containing x(1) as an interior point. Since the
Jacobian matrix ](k) of Rk is nonsingUlar, a unit vector I such that ](k)l et is
uniquely determined. Consider the set {x Rn[x x)-/x13} which is contained in
Rk for sufficiently small/x -->0. Then for such a/z, f(x1-/xl$) f(x*)+ ( -/z)et. It
should be noted here that f(x(1)-/zl) f(B), i.e., x(1)-/x13 is an interior point of Rk
for any/x [0, ). It follows from the continuity of f that [(x(1)-[)= f(x*) and
that the point v x(1)-l lies on the boundary of Rk, i.e., v 0X(f, x*). Let
v -/x then v+ vl e X(f, x*) and f(v+ vl) f(x*) + vet for all/x [0, ), i.e.,
for all , s (0, ]. Hence (15) and (16) hold for all sufficiently small v > 0. Since the
same argument is valid for any solution of f(x)= y(1) or f(x)= y(2), the proof has
been completed.

Remark 5. This theorem may be viewed as a generalization of Theorem 4 of
[6].

Remark 6. When x*B L] E, each v must be found on the boundary of a
region having a nonsingular Jacobian matrix.

Remark 7. If x* lies on a single boundary hyperplaneHwhich separates two
regions with nonsingular Jacobian matrices as shown in Fig. 1, then for any unit
vector et, the identity

(17) ((,l))-et, r) det ,I)= ((,l2))-et, r) detJ2)

holds [5]. Suppose the determinants have the same sign. Then if ((,(1))-l13g, I’ > 0,
is only one unit vector such that I(x*+vll))

i(x*) + vet for all sufficiently small v > 0. Also I2)= _($2))-et/ii0))-,,11 is only
one unit vector such that i(x* + vl2)) I(x*)- vet for all sufficiently small v > 0.
The case (($))-1et, r) < 0 can be treated in the same way. Next consider the case
where the two determinants have opposite signs. Then, if ((l))-let, r)>0,
f(x* + vl) f(x*) + vet for all sufficiently small v > 0 with 13 1(1) or 13 -I(:) and
no other unit vector possesses this property. It is important to note that there
exists no vector 13 such that f(x* + ,,13) f(x*) vx for any sufficiently small v > 0.
If (($(*))-*x, r) < 0, then f(x* + vl) f(x*) vx for all sufficiently small v > 0 with

I 13 (*) or I -I(2), and there exists no vector I such that f(x* + vl) f(x*) + va
for any sufficiently small v > 0. Therefore if x* lies on a single boundary hyper-
plane separating two regions with nonsingular Jacobian matrices, there are
exactly two such I’s that satisfy (16) with v x*.

Remark 8. The existence of an even number of I’s possibly holds even if
f(x*) +Aet f(B) for all sufficiently small A. However, in this case, the interpreta-
tion of the number of I’s is slightly different. Since f(B) is a set union of a finite
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number of at most (n- 1)-dimensional convex polyhedral domains, there exist a
unit vector e 6 R" and ],/2 > 0 such that t(x*) +A (at +/xe) d f(B) for all X (0, ]
and/x (0,/2 ]. Thus for any fixed/z (0,/2 ], there exist an even number of unit
vectors [(i)(tz), i= 1, 2,..., 2m, and corresponding points v(g) 0X(f, x*), i=
1, 2,. ., 2m, such that v" -[-/]1(i)(]./,) X(f, x*) and f(v(i) -[-/[(i)(/d,))
L(f(x*), at+/xe) for all sufficiently small v >0. Let R be the region in which
v(/)+ vl](i)(/x) lies. Then since the Jacobian matrix of R is nonsingular, g(i(0)
lim,_0 vl3(i)() exists in R for any fixed, sufficiently small v > 0, preserving the
relations V(i)-"/)1(i)(0) X(f, x*) and f(v(i)-+-/1(i)(0)) L(f(x*), at). Since
v(i) + v[<i)(o) may lie on the boundary of Ri, it is possible that two or more
merge into a single vector as/x 0. In this case, such [’s should be considered to
have the corresponding multiplicity. It should also be noted that, as/z --> 0, some
new I’s might appear. Such I’s should be excluded in counting the number. In this
way of counting, the even number property still holds. Note that the number of I’s
depends on which e is taken. The following example demonstrates what happens
in such a degenerate case.

Example 1. The whole space R 2 is divided into four regions by the xl-axis
and x2-axis as shown in Fig. 3. Let f: R2-> R 2 be defined as follows:

R 1: Y x + x2, Y2 x2,

R2" Yl Xl, Y2

R3" Yl -x1, Y2 --2Xl

R4" y -x + x2, Y2 =-2x + X2:

RI

R2

X2 X2

R4 Rt

R3 R2

R4

R3

FIG. 3. An illustrative example ofdegenerate casefor Theorem 2

Note that f is norm-coercive. Letx* (0, 0)T and a (- 1, 0)T; then X(f, x*) {x*}
and L(f(x*), at) runs on the y1-axis of the y-space. As is shown in Fig. 3, three
linearly-independent [’s (-1, 0)T, (1,-2)T and (1, 2) satisfy (16) with v=x*. If
one considers the perturbed straight line L(f(x*), at+e), where e=(0, e)T and
0<e<< 1, there are four I’s, (-l-e, e), (-1,-e)x, (1, -2-e)w and (l+e, 2+
e)x as illustrated by the broken lines in Fig. 3(a). In this case, the first two vectors
merge into the single vector (-1, 0) as e -0. Thus the vector (-1, 0)T may be
considered to have multiplicity 2. If one considers the perturbed line L(f(x*),
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t- e), on the other hand, there are only two I’s (1,-2+e): and (l-e, 2-e):
as illustrated by the broken lines in Fig. 3(b). At the limit as e 0, the new
vector (-1, 0): suddenly appears. Therefore the vector (-1, 0)T can be excluded
in counting the number of I’s. In this example, the number changes depending on
e. Note, however, that the even number property holds no matter in which
direction the straight line is perturbed.

For a continuous, norm-coercive, piecewise-linear mapping f: R R n, let
y d f(B). Then the number of solutions of (11) in R" is finite. This leads to the
following definition of the degree in the large. Let {x(1), x(m)} be the set of
solutions of (11) and j(i), 1, 2,. , m, be the Jacobian matrix of the region in
which x(i lies. Then the integer

(18) deg (t, R", y) Y’. sgn det
i=1

is called the degree of at y in the large.
THEOREM 3. Let : R"-R" be a continuous, norm-coercive, piecewise-

linear mapping. Then

(19) deg (f, R", y(1)) =deg (f, R", y(2))
holds for any yl), y2) R" -(B).

Proof. The norm-coerciveness of | implies that there exists a sufficiently large
open ball C such that all the solutions of f(x) yi), 1, 2, are contained in C and
that the line segment {xR"ly= Ayl)+(1-A)y2), A [0, 1]} does not intersect
I(0C). Then the degree invariance property (13) yields (19).

In what follows the Kronecker theorem [8, p. 161] plays an essential role in
asserting the existence of solutions of (11). The Kronecker theorem says the
following: Let f: R" -R" be continuous and C be an open bounded set. If
y i(0C) and deg (f, C, y) 0, then f(x) =y has a solution in C.

THEOREM 4. Let : R"-.R be a continuous, norm-coercive, piecewise-
linear mapping. If, for all unbounded regions, the Jacobian determinants are
nonnegative and, for at least one unbounded region, the Jacobian determinant is
positive, then maps R onto itself.

Proof. Let Ri be an unbounded region with det ji > 0. Then it follows from
the norm-coerciveness of f that there exists a u R such that i(u) (B) and no
solution of i(x) i(u) exists in any bounded region. For such a point u, it is clear
that deg (f, R",i(u))>0. Then it follows from Theorem 3 and the Kronecker
theorem that (11) has at least one solution for any y R" i(B). If y 6 (B), then
there exists a point x B which is a solution of (11). This completes the proof.

COROLLARY. Let R -. R be a continuous, piecewise-linear mapping and
assume that all the unbounded regions have positive Jacobian determinants. Then
maps R onto itself.

Proof. This assumption made above implies the norm-coerciveness of , from
which the corollary follows.

Remark 9. This corollary is an extension of Theorem 5 of [6].
The following definition is important for the purpose of finding a good initial

point with which one can start the iterative algorithm described in the next section.
DEFINITION 1. Let : R" -R" be a continuous, piecewise-linear mapping. A

point u R" is said to satisfy 1-degree condition with respect to if (i) u B, (ii)
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f(x) # f(u) for any x # u, and (iii) det J > 0, where J is the Jacobian matrix of the
region in which u lies.

Remark 10. If u satisfies the 1-degree condition, then deg (f, R n, f(u))= 1.
However, the converse, in general, is not true.

The following lemma is needed to derive the solution algorithm for some
degenerate cases in the next section.

LEMMA 1. Let f" R -> R be a continuous, norm-coercive, piecewise-linear
mapping and u R be a point satisfying the 1-degree condition. Then there exists
an open neighborhood C of u such that any point in C satisfies the 1-degree
condition.

Proof. Let " be the Jacobian matrix of the region R in which u lies. Then
the definition of the 1-degree condition implies that f(u)f(B) and that det
<) > 0. Thus there exists an open neighborhood U of u and an open neighborhood
V of f(u) such that UC R, V f-) f(B) and f is a homeomorphism of U onto V.
Let W f-(V); then Wis an open bounded set due to the norm-coerciveness of f.
Let {y"}C V be any sequence which converges to f(u). Then for each y’), there
exists a unique point x("* U such that f(x(’’) y(’. Suppose, for each rn 1,
2,. ., f-l(y(,,) contains a point z("* # x(". Then the sequence {z(m} is wholly
contained in the compact set W- U, and hence there exists a point of accumula-
tion z if’- U for which f(z) lim f(z(’) f(u). This contradicts the definition of
the 1-degree condition. Therefore there exists an open neighborhood CC U of u
and an open neighborhood D C V of f(u) such that f is a homeomorphism of C
onto D and that, for any y D, no solution of f(x)=y exists in R" -C. This
completes the proof.

The following theorem is an existence theorem on which the solution
algorithm described in the next section is based.

THEOREM 5. Let f: R"-->R" be a continuous, norm-coercive, piecewise-
linear mapping and assume that there exists a point u R satisfying the 1-degree
condition. Then f maps R" onto itself.

This theorem follows from Theorem 3 and the Kronecker theorem by noting
that deg (f, R", f(u)) 1 and f(u) g f(B).

Remark 11. The existence of solutions is guaranteed even if the 1-degree
condition is replaced by "there exists a point u such that f(u)gf(B) and
deg (f, R", f(u)) 0". However, as will be seen in 5, the equations of many kinds
of nonlinear networks satisfy the assumption of Theorem 5. Furthermore, the
existence of a point satisfying the 1-degree condition is essential to let the
algorithm successfully converge to a solution.

COROLLARY. Let f: R --> R be a continuous, piecewise-linear mapping, and
assume that (i) all the unbounded regions have positive definite Jacobian matrices
and (ii) all the bounded regions have positive Jacobian determinants. Then f is a
homeomorphism ofR onto itself.

Proof. Let r be a positive number such that the ball S= {x
contains all the bounded regions. Let M> 0 be the maximum of the norms of
Jacobian matrices of the bounded regions, and rn > 0 be the minimum of the
eigenvalues of symmetric parts of Jacobian matrices of the unbounded regions. It
is readily seen that there exists an interior point u of an unbounded region Ro such
that the distance between u and OR0 is not less than 3Mr/m. Suppose there exists a
v R such that v # u and f(v) f(u). Then v R0. Thus the line segment L
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{xRnlx=(1-A)u+Av, A [0, 1]} intersects 0R0 at a point, say w. Let 01
(t(u)-I(w), u-v) and 1o be the positive definite Jacobian matrix of region R0.
Then 01 (J0(u- v), u-v). I1 -wll/ll - vii->- mll - vii" II -wll >-- 3Mrll vii. Since
the length of the subset L’CL contained in S is less than 2r, 0z
(f(w)-f(v), u-v)=>-2Mrllu-vl]. Let 0 =(f(u)-f(v), u-v); then 0 01+02_->

Mrllu-vll. Hence u # v implies f(u)# f(v), which is a contradiction. Thus it has
been shown that deg (f, R’, f(u)) 1. Furthermore, the norm-coerciveness of f
implies that, for any y R -f(B), deg (f, R, y)= 1 due to Theorem 3. Since all
the Jacobian determinants are positive, (11) has one and only one solution for any

It remains to show that for any y e t(B) ther exists a unique solution of (11).
Suppose (11) has two solutions, say u and , for some y t(B). Then due to [6;
Thm. 4], there exists an open neighborhood U (resp., V) of u (resp., ) and an
open neighborhood Y of y such that U (.J V and t maps U (resp., V) onto Y.
This means that, for a point y’ Y-t(B), dg (t, R", y’) =>2, which is a contradic-
tion. Therefore t is a homeomorphism of R" onto itself.

4. Solution algorithm. The problem under consideration is to find a solution
of

for a piecewise-linear mapping f: R" - R" and a given input y R n. Initially, an
inner point x(1) of a region, say R 1, is selected as the starting point. It is assumed
that the determinant of the Jacobian matrix $(1) of region R is positive. Let Ly be
the line segment joining yl =t(xl) and y in the y-space. The problem is then
to trace a continuous polygonal curve Lx such that |(Lx) Ly, starting with x(1 in
the x-space. Thus the other endpoint of L is a solution of (11).

The portion of the solution curve Lx which lies in R is indicated by

(20) wI(A X
(1) "-/ (.l())-l(y-- y(1)),

where A >0 is a parameter. If w1 (1) happens to be in R, then it is the desired
solution. Otherwise, the value of , (0, 1) has to be determined in such a way
thatw(,) lies on a boundary hyperplane, sayH, of R. Let ,, be such value of,,

(2) (1) (2) (2) (1) (2)
and define x w (A 1) and y f(x ). The line segment joining x and x is
thus the first portion of the solution curve.

The next step is to extend the solution curve beyond x(z). For simplicity, to
describe the essence of the algorithm, it is assumed, for the time being, that x(2) lies
on a single boundary hyperplane which separates R1 from one and only one
neighboring region, say R2. Then the portion of L lying in R2 is indicated by

(21) W(2)( X
(2) + A (,(2))-l(y_ y(2))

unless det j(2) 0.
ff det J{2>>0, w2)(a) lies in R2 for >-0. As in the initial step, if w(2)(1) is

a solution, the algorithm terminates here. Otherwise, the value o e (0, 1) is

As will be seen in what follows, the starting point is selected so as to satisfy the 1-degree
condition, which implies that the region has a positive Jacobian determinant.
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determined in such a way that W(2)(/) lies on another boundary hyperplane, say
H2, of R2. Let/2 be such a value of A, and define x(3= /(2)(/2) and y(3 i(x(3).
The line segment joining x(2) and x(3 is thus the second portion of the solution
curve. Continuing this way, we extend solution curve as shown in Fig. 4(a). Note
that, in this case, the sequence {y(, y(2, y(3} approaches y monotonically as shown
in Fig. 4(b). Generally speaking, the algorithm described here is no different from
the original Katzenelson algorithm [ 1] as long as the solution curve traverses only
regions with positive Jacobian determinants.

H Hz

(a) Lx" detj(1)>0

y(I)

y(I)

f (H)

_ly(2
f (H2)

_1 y()

(b) Ly" det 3(2) > 0

Y

f(H2) f (H,)

(c) Ly" det 3(2) < 0

f (H) f (Hz)

y(I) y(): y() Y

(d) Ly" det ,(2) 0, rank 3(2) n 1

FIG. 4. Construction ofthe solution curve
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If det$2)<0, w{2)(A) lies in R2 for a--<0. In this case, too, the value of
a (-m, 0) is determined in such a way that wZ(a) lies on another boundary
hyperplane, say H2, of R2. Suppose such a value, say a 2, of A exists. Then the line
segment joining x2) and x{3 w{2(A2) is regarded as the second portion of Lx. It
should be noted here that the vector y(3) y(2); y(3) |(x(3)) is directed away from y
is shown in Fig. 4(c) if det $<2 < 0. In other words, the solution curve is temporarily
extended away from the solution.

Even if detJ<2) =0, the solution curve can be extended into R2. Since
det j<l)> 0, it follows from Proposition 2 that j<2) is of rank n- 1. Therefore the
nonzero vector I such that

(22) j(2)[ 0

is uniquely determined within constant multipliers, and the portion of Lx lying in
R2 is indicated by

(23) w<2)(A) x <2) + A I.
Then the value of A (-00, 00) is determined so that w<2)(A) lies on another
boundary hyperplane, say H2, of R2. If such a value A2 is found, the line segment
joining x<2) and x<3)= w<2)(A2) constitutes the second portion of Lx. In this case, the

(2)whole line segment is mapped into the single point y i.e., the whole region R2 is
mapped into hyperplane f(H1) as shown in Fig. 4(d). It should be noted here that
w{2(A) in (21) or (23) never runs along hyperplane Hi for A # 0. If this were the
case, then x1) H1 and two or more points on H1 would be mapped on Ly, which
would contradict the nonsingularity of Jl>.

Next, consider the special case where the next region R3 also has a singular
Jacobian matrix $3). If j{2 is of rank n 1, it follows from Proposition 2 that the
rank of 3) is n- 2 or more. Suppose J) is of rank n- 2. Then there exists a
two-dimensional plane H*, containing X(3), such that f(n*()R3)={yc3}, i.e.,
t(H* f’l H2)= {y{3)}. As long as H2 is the only boundary hyperplane on which x3)

lies, the hyperplane H* 71 H2 containing x{3) is at least one-dimensional. Hence let
x*# x{3} be a point of H*f)H2; then i(x*)=t(x{3)) and, for the two linearly-
independent vectors x* x(2) and X(3)- X(2), J(2)(x* x(2)) J(2)(x(3) X(2)). Thus the
rank of j2) is at most n 2, which is a contradiction. Therefore the rank of jc3 must
be n 1. Furthermore, the extension of the solution curve beyond x3), in this case,
never runs along H2, because, if this were the case, then the rank of j2 would be
just as before, less than n- 1, which would be a contradiction. Since the above
argument is valid for any iteration step of the algorithm, one obtains the following
key property of solution curves.

LEMMA 2. Let Lx be a solution curve startingfrom an interior point ofa region
with nonsingular Jacobian matrix, and assume that Lx crosses only one boundary
hyperplane at a time. Then (i) Lx never enters a region with Jacobian matrix ofrank
n -2 or less and (ii) for any boundary hyperplane Hwhich Lx crosses, L intersects
H at a single point.

It has been shown that the solution curve can be extended into a new region
whenever it crosses a single boundary hyperplane. When the solution curve hits
two or more boundary hyperplanes simultaneously, the way to extend it into a new
region is confirmed by means of Theorem 2.
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Without loss of generality, the solution curve is assumed to hit a corner3 at x
in the first iteration step. Let X(f, x) be the maximal connected subset of f-l((x))
containing x. If is norm-coercive, then X(, x) is a compact set. Since the line
segment joining x(1) and x( is a portion of Lx, it is clear that (x(+ u(x(l-x())
Ly for all u [0, 1]. Therefore it follows from Theorem 2 that the solution curve
has at least one and, in general, an odd .number of extensions outside X(I, x()),
excluding that lying in R 1. Note that if Ly runs along I(B) in the neighborhood of
y(e, the number of extensions of the solution curve is counted in the sense of
perturbation as described in Remark 8. Thus each extension can be considered as
lying in a region with nonsingular Jacobian matrix. LetR be the region in which
one such extension lies and 2) be the Jacobian matrix of R. Then due to
Theorem 2,
(24) w(2)(h (2) +A (,I(2))- (y y(2))
indicates the portion of Lx lying in R2, where

(25) V
(2)

G R2 (] OX(f, x(2))
is the point from which the solution curve is extended.4

When the solution curve comes back to X(I, x(z)) again, it must be extended
into a region which has not been traversed. This is always possible since Lx has
an even number of branches incident with each corner and two of them are
traversed whenever the solution curve passes it.

From the above arguments, it is clear that the solution curve can always be
extended into a new region regardless of whether it hits a corner. Furthermore,
the piecewise-linearity of [ implies that no two line segments in a region possessing
a nonsingular Jacobian matrix can be portions of a solution curve. Since there exist
at most a finite number of regions, a solution can be found in a finite number of
iterations unless one of the following unfavorable phenomena occurs.

Case A. The solution curve, in some region, might be extended infinitely
without crossing any other boundary hyperplane and without obtaining a solution.

Case B. The solution curve might reenter region R in which starting point
IK

(1) lies without obtaining a solution.
In the previous section, it has been shown in an unconstructive way that (11)

has at least one solution for any y if t satisfies the condition of Theorem 5. Now it
shall be shown in what follows that, under this condition, the algorithm described
above always leads to a solution; i.e., one never encounters Case A or Case B.

As long as is norm-coercive, Case A never occurs in any region with a
singular Jacobian matrix. Suppose the solution curve enters region Rm at x(’) and
it is extended infinitely in R,,. Since no solution has been obtained, it is clear that
(y_y(1), y_y(m)) > 0. If y(’) is located on the extension ofL as shown in Fig. 5(b),
it means that the solution curve has passed a solution, say i(1) of

(26) f(x)

3 A corner is a closed, connected set determined by the intersection of at least two boundary
hyperplanes, or determined by the union of regions with Jacobian matrices of rank at most n -2.

4 In many cases, X(t, x(-)) consists of the single point x(2) v(2). In general, v(2) and x(1) are vertices

of the complex X(f, x(2)).
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(a) Lx" (y-y(), y(m)_yO))__<O (c) L," (y_y(1),

y(m) y(l*l) yO) y(j) y y() y(m) ,_._ i_

(b) Ly" (y-y(), y(.,)_y(t)) <=0 (d) Ly" (y_yO), y(m)_y())__> 0
FIG. 5. Illustration ofCase A

in some region R/, 2 _<-j _<-- m, as shown in Fig. 5(a). Ify(m) is located on Lv as shown
in Fig. 5(d), it means that the extension of the solution curve passes a solution, say
i(t), of (26) in region R,, as shown in Fig. 5(c).

Next Case B shall be analyzed. Suppose the solution curve reenters region R
(m) (m)at x as shown in Fig. 6(a). Then y should be located on the extension of Ly as

shown in Fig. 6(b), since y(2) lies on Ly. It means that the solution curve has passed
a solution, say i(1), of (26) in some region R/; 2 .-<_] _-< m.

Now the above arguments lead to a strategy to get rid of Cases A and B; that
is, to impose the 1-degree condition on the starting point x(). Under this
assumption, x) is the unique solution of (26), which excludes the occurrence of
Cases A and B. In summary, the following theorem has been proved.

HI
Hm-I

x

""-,,..)/ ^ x( I
){’(I j)

/ \
y(m) y(I) y(2) y

HJ-I : -- :

(a)

FIG. 6. Illustration ofCase B
(b) Ly



84 T. OHTSUKI, T. FUJISAWA AND S. KUMAGAI

THEOREM 6. Under the same condition as Theorem 5, the generalized
Katzenelson algorithm, starting from u, converges to a solution of (11) in a finite
number of iteration steps for any y R n.

There remains a computational problem to be investigated; the corner
problem. Whenever the solution curve hits a corner, it can theoretically be
extended into a new region. The problem from a computational point of view,
however, is how to find such a new region.

A corner includes no interior point of the regions with Jacobian matrices of
rank n 1 or n. Thus let F be the set of all points lying in corners; then f(F) is the
finite set union of convex polyhydral sets K1, K2, , K., each of which lies in an
(n- 2)-dimensional hyperplane in the y-space. Let K

1) be the starting point
satisfying the 1-degree condition and y(l f(Z(1)), then y(l f(B) and, obviously,
f(F) C |(B). Let y be the given input and Ly be the line segment joining y(l) and y. It
is clear that the solution curve never hits a corner if Lr does not meet f(F) except at
y. Due to Lemma 1, there exists a > 0 such that any point of the open ball C with
center x(1 and radius 6 satisfies the 1-degree condition and C is wholly contained
in region R in which x( lies. Since the Jacobian matrix J( of R is nonsingular,
there exists an e > 0 such that Ilz-y()l[ < e implies z f(w) for some w C. In what
follows, it shall be shown that there exists a point i(1) C such that the line
segment joining (= f(i(l) and y never meets (F) except at y.

Suppose Ly meets K1Cf(F) at a point y* y()+ A*(y-y(l); * (0, 1) and
let H* be an (n 2)-dimensional hyperplane including K1. First, consider the case
where Lr f)H* is the single point y*. Let (, 1, 2, , n- 2, be a basis of
the vector space {v R"lv w-y*, w H*}. Then y(l_y and another vector
can be added so that 3g(1),... ,13g(n--2),y(1)__y, a(") form a basis of the n-
dimensional vector space R ". Let/z be a sufficiently small positive number. Then
it is easy to show that the line segment joining y and y(X)= y(x)+/ZOt(n) does not
meet H* except at y. Secondly, consider the case where a portion of Ly with a
positive length is contained in H*. Let a(x), ., a("-3), y(a)-y be a basis of the
vector space {vR"[v=w-y*, wH*}. Then two vectors (,-1), (,) can be

(n)added so that Ot(1), ", a(n-3) y(1)_y, a(,-a), form a basis of R Again,
(1) y(1) +/xa(,) does not meet H* except at y for sufficiently small/z > 0. Since
this modification can be made small enough to guarantee [[(1)_y(1)[[ < e, one can
repeat this process so as to remove Lr, except at y, away from K1, , Ko.

Remark 12. With this modification of the starting point, the solution curve
does not hit a corner except at a solution. This implies, due to Lemma 2, that the
modified solution curve never traverses along a boundary hyperplane.

In numerical computation, this modification cannot be determined a priori.
There are two practical methods to perturb the solution curve as described in the
following two paragraphs.

The first method is the following. If the solution curve hits a corner, one
selects a new starting point, which is close enough to the solution curve and is an
interior point of the region just traversed, so that a new solution curve does not hit
the corner. This modification has to be small enough so that the solution curve can
be included in another solution curve starting with a point in a neighborhood of
X (1). The difficulty in this method is to judge what is small enough.
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The second method is based on the following principle. What is necessary to
do, when the solution curve hits a corner, is to determine a region into which it can
be extended. Let y, y1),/x and aCn) be as before. Then it is easily seen that the line
segment joining y+xn) and y1) +/zx) does not meet the image of the corner.
Thus one selects a new starting point, which is an interior point of the region just
traversed, so that the new solution curve does not hit the corner. It should be
noted that the new solution curve is parallel with the old one in any region. Once
the new solution curve moves away from the boundary of the corner, the
perturbation is removed; i.e., the original solution curve is again traced. This is
illustrated in the examples in this section.

Example 2. Figure 7(a) illustrates a twin tunnel diode circuit. Its input-output
characteristics are governed by the two-dimensional equation

(27)
g(xl) + G(x +xa) yl,

g(x) + G(x +x)
where y (yl, yz)T represents the values of given current sources and x (Xl, X2)T

represents the voltages across the diodes both characterized by Fig. 7(b). Then the
x-space is divided into nine regions as shown in Fig. 8(a), where Jacobian
determinants in regions R 1, R3, Rs, R6 and R8 are positive and those in R2, R4, R7
and R9 are negative.

Let the value of given input be y=(69, 75)T and the starting point be
x1)= (0, 1)TR1. Note that x1) satsifies the 1-degree condition. Calculate
f(xl))=(1, 7)T and consider the line se ment L "oining yC1) and y. Then the

-1
g Y

inverse mage f (Ly) consists of an open polygonal curve L and a closed
polygonal curve Lb as shown in Fig. 8(a). The solution curve starting from x{1)

traverses through Lx and finds the solution x (16, 17)w e Rs of (27) in five steps.
Figure 8(b) illustrates how the sequence of approximate solutions approaches the
solution in the y-space.

Next replace the starting point by x{6) =(13, 4)TGR6 with the same input,
keeping 3’(6) =f(X(6)) (35, 41)T on Ly. Note that x{6 does not satisfy the 1-degree
condition. The line segment L joining 3’(6) and y is a proper subset of Zy, i.e.,
[13’(6)- 31[ < lit<’- r[I. However, the solution curve starting from 111[

(6) traverses
through Lxb) and comes back to region R6 without finding a solution. Figure 8(c)
illustrates the behavior of the solution curve in the y-space.

Example 3. In the same circuit as in Example 1, let the given input be
y= (68, 68) and the starting point be xl (0, 0)R1; yl (0, 0). Then the
solution curve starting from x{a hits a corner at x2= (6, 6)w. In the neighborhood
of x{2), the inverse image of the line segment Ly joiningyl and y has four branches
as shown in Fig. 9(a). By means of the perturbation technique (the second
method), it is seen that the solution curve can be extended into region R2 or R9.
Independent of the region to which the solution curve is extended, it finally
reaches the solution x (16, 16) Rs.

(28)
g(x1) Y 1,

g(X2) Y2,
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(a)

g(x)

30

le

O.
2 4 6 8 I0 12 14 16

(b)
FIG. 7. Twin tunnel diode circuit

where

(29)

x, x (-oo, 1],

g(x) ], x [], 2],

x-l, x E [2, oo).

The x-space is divided into nine regions as shown in Fig. 9(b), where Jacobian
determinants in regions R1, R3, R5 and R6 are positive and those in the other
regions are all zero. More precisely, regions R2, R4, R7 and R9 are of rank 1 and
region R8 is of rank 0.

Let the value of a given input be y=(2, 2)T and the starting point be
lK

(1) (0, O)T E R 1" Note that x() satisfies the 1-degree condition. Let Ly be the line
segment joining y(1) (0, O)T and y. Then the inverse |-l(Ly) includes the whole
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FIG. 8. Illustration o.fthe solution curve

region R8. Even in this case, the solution can be obtained as follows. The solution
curve starting from x(1) hits a corner at x(2)= (1, 1)T. Then by means of the
perturbation technique, it is extended through the boundary between R8 and R9.



88 T. OHTSUKI, T. FUJISAWA AND S. KUMAGAI
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FIG. 9. Solution curve hittinga corner

Finally, it reaches the solution x (3, 3)T E R5 of (9), passing through vertices
x(3) and x(4) of the square R8.

5. Resistor networks.
5.1. Branch characteristics. In this paper, a resistoris regarded, in general, as

a multiport element characterized by

(30) z

where h
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into itself. The underlying restriction imposed on the expression (30) is that when
an entry, say x k), of x(k) is the voltage (resp., current), then the corresponding

(k) (k)entry z of z s the current (resp., voltage). According to the dimension nk of
h(k), the resistor is called an nk-port resistor.

The branch constitutive relation for all the resistors, say r resistors, is
represented by

(31) z=h(x),

where h" R
_
R is a block-diagonal mapping such that each block characterizes

a resistor. In other words, h is the direct sum of resistor characteristics, i.e.,

(32) h(x) h(1)(x(1)) 4- h(2)(x(2)) 4- 4- h(r)(x(r)).

The dimension n is equal to the total number of resistor ports.

5.2. Network topology. Consider the graph associated with a resistor net-
work such that each edge corresponds to either a resistor port or an independent
source. The graph is assumed to be connected, without loss of generality. Choose a
tree which contains all the voltage sources, the maximum number of voltage
controlled resistor ports and no current source. Based on the tree, subscript
(resp., l) is attached to represent the variable associated with a tree branch (resp.,
link). According to the hybrid characterization (31), subscript v (resp., c) is
attached to represent the variable associated with a voltage controlled (resp.,
current controlled) resistor port. In this way, the set of resistor ports is partitioned
into four disjoint subsets, and the Kirchhoff’s laws are thus expressed by 13], [ 14]

(33)

Vvl "Ji- Fvv vvt eo,
T.

i, + Fcclcl jc,
To To

Fvvio/ + i, Fcolcl

Fccvct + Fcvvvt + cl eo

where

vl cl

rillcl 0

ct vt

01
is the fundamental loop matrix with respect to the tree, and eo and ec (resp., ]c and
iv) stand for the voltage source (resp., current source) vectors around fundamental
loops (resp., across fundamental cutsets) determined by the links (resp., tree
branches).
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To simplify the presentation, let

(34) X ER n,
Yvt

icl

y sR",

e
Then (33) can be written in the form,

(35) Pz+Qx y,

where

(36)
[0 0 ]P
AT I

vt cl

Ct 0 Fc

vt

cl

vt cl

The pair (P, Q) of n x n square matrices represented by (36), with B being
skew-symmetric, possesses the following properties.

LEMMA 3. Pz+Qx 0 implies that (z, x) 0.
Proof. According to (35), partition z and x as

Z-" X--

z(2) x(2)

Then Pz+Qx 0 implies that

X(1) A(2)

and

z(2) _ATz() Bx(2).

Since B is a skew-symmetric matrix,

<z, x> <z<’), x<’> + <z<=),
<z(), Ax(2)> +<-Ax() Bx2), X(1)>
-<Bx(2), x(2)> 0.

Remark 13. This property can be viewed as an alternative expression of
Tellegen’s theorem.
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LEMMA 4. If H: n x n is positive definite, then det (PH+Q)> 0.
Proof. According to (36), partition It as

Then PH+Q is of the form,

where

Hlli H12 ]H 4---

Hzall H22

-AI
PH+Q

ATH11 +H21 H22+ATH12+B

ATH11+H211 1 0 C

H211 H22
Since H is positive definite and B is skew-symmetric, C is also positive definite.
Hence det (PH+ Q) det C> 0.

5.3. Formulation of the network equation. By rearranging x and z in (31)
according to the partition (34) and then substituting (31) into (35), one obtains the
network equation in the form

(37) f(x) Ph(x) +Qx y,

where f: R -R and the dimension n is equal to the total number of resistor
ports.

A solution of a network is a set of branch voltages and branch currents which
satisfy both Kirchhoff’s laws and the branch constitutive relations. Thus to obtain
a solution of a resistor network is nothing but to obtain a point x Rwhich
satisfies (37) for a given input y R.

When there are some linear (passive) resistors in the given network, their
variables can be eliminated in (37). If all such variables are eliminated, the
dimension of the reduced equation is equal to the total number of nonlinear
resistor ports. The reduced equation can also be described in the form of (37),
although P and Q are not topological matrices any more. In the reduced equation,
Lemma 3 should be replaced by5

LEMMA 3’. Pz+Qx 0 implies that (z, x) <= O.
Remark 14. Although Lemma 3 has to be replaced by Lemma 3’, the

solution algorithm presented here works as it stands even if it is applied to the
reduced equation.

The reduction of linear resistor variables yields the formulation due to Sandberg and Willson
15], and the pair (P, Q) possessing the property of Lemma 3’ is called a passive pair.
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5.4. Existence and uniqueness of solutions. Regarding existence and uni-
queness of solutions of f(x)= y, the following theorem is known [8, p. 167].

TrmORZM A. Let f: R -R be continuous. Then (i) i maps R onto itself if f
is weakly coercive and (ii) f is a one-to-one mappingfrom R into itself if f is strictly
monotone.

In contrast to this theorem, it is interesting to give the following theorem
regarding existence and uniqueness of solutions of resistor networks.

THEOrtEM 7. Let h: R --> R be continuous and f: R -> R be defined by
(37). Then (i) f maps R onto itself if h is strongly coercive and (ii) f is a one-to-one
mappingfrom R into itself if" h is strictly monotone.

Proof. According to (36), partition (37) as

(38)
ATh(1)(x(1), x(2)) + h(2)(x(1), x(2)) + Bx2)

Eliminating x1) from (38), we have

g(x2), y(l)) ATh()(y) +Ax(2), x2))
(39)

+ h2)(yl) + Axe2), xZ)) + Bx2) y2).

Thus the problem of solving (38) for given y is equivalent to solving (39) for given
yl) and y"). Define a scalar function

O(x

and n-vectors

X----- U-"

x(2) - 0

for given x() and y(). Then it follows from the skew-symmetricity of B that

O(x<2),y<)) (h(x), x-u> IIx-ull
IIx-u[I

Now observe that Ilxll- whenever IIx<=)ll-, and that

+
1/2

Thus strong coerciveness of h implies weak coerciveness of g for each ed y).
Therefore it follows from Theorem A (i) that g is onto for each ed y), which
implies that f is also onto; part (i) of Theorem 7 has thus been proved.

Let u, v R" be two distinct points. Then as long as h is trictly monotone,

(h(u) h(v), n-v) > 0.

On the other hand, the contraposition of Lemma 3 yields

(u) (v) P(h(n) h(v)) + Q(u-v) 0.

Thus f has to be one-to-one; part (ii) has also been proved.
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COROLLARY. Let h and f be as in Theorem 7. Then (i) f maps R" onto itself if
h is uniformly passive and Lipschitzian and (ii) f is a homeomorphism ofR onto

itself if h is uniformly monotone.

Proof. Due to the definitions in 2, uniform passivity of h implies its weak
coerciveness and, if h is Lipschitzian in addition, then h is strongly coercive. Thus
part (ii) follows from Theorem 7 (i). Part (ii) is obvious since uniform mono-
tonicity, by definition, implies strict monotonicity and strong coerciveness simul-
taneously.

Remark 15. In the corollary, "Lipschitzian" can be replaced by "piecewise-
linear" due to Proposition 3.

Remark 16. Since h(. stands for the direct sum of resistor characteristics,
uniform monotonicity (resp., uniform passivity with Lipschitz condition) imposed
on the characteristics of each resistor guarantees existence of a unique solution
(resp., at least one solution) of a resistor network independent of the interconnec-
tion.

5.5. Starting point for the solution algorithm. In the solution algorithm
described in the previous section, the norm-coerciveness of a given piecewise-
linear mapping is an underlying assumption.

LEMMA 5. Let h: Rn-R be a piecewise-linear, coercive mapping. Then
f: R -R in (37) is norm-coercive.

Proof. According to (36), partition f as

f(x) x-Ax,
t:Z)(x) A’rh)(x) +h(2)(x) q- Bx2).

Consider the inner product,

(f(1)(X) (1)(0), hl)(x) hl)(0)) + (f<2)(x) f{2)(0), x<2))
<h(x)-h(0), x>,

which yields

Ill(x) f(0)ll (l[hl)(x) h)(0)ll2 + [Ix2)ll2) 1/2 (h(x) h(0), x).

Since h1) is piecewise-linear, there exists a 3’ > 0 such that (see Proposition 3)

Ilh ’(x) h  )(0)ll  llxll.

Noting that I1   >11 Ilxll, it follows that

(h(x) h(0), x)
II (x)ll->- ,/1 +  , llxil

-I1 (0)11.

Now it is seen that f is norm-coercive if h is coercive.
It is obvious that if h is piecewise-linear, then so is f defined by (37).

Furthermore, the domain R of f is divided into the same set of polyhedral regions
as that of h, so that f and h are linear in each region. Let Hi be the Jacobian matrix
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for h of aregion, say Ri. Then the corresponding Jacobian matrix Ji for f is given by

(40) Ji PHi + Q.

Letu R be an interior point of the region Ri, and assume that, for all x u,

(h(x) h(u), x-u> O.

Then Hi must be positive definite, which implies by Lemma 4 that det Ji > 0.
Furthermore, the contraposition of Lemma 3 yields t(x)-t(u) 0 for all x u.
Thus the following lemma has been proved.

LEMMA 6. Let u R be an interior point o.f a region o.f a piecewise-linear
mapping h: R"-R. Then u satisfies the 1-degree condition with respect to

defined by (37), if h is strictly passive on the point u.
The following definition provides a criterion to determine a starting point

which guarantees the convergence of the generalized Katzenelson algorithm
applied to resistor network equations.

DEFINITION 2. A point u R" is said to possess Property U with respect to a
piecewise-linear mapping h: R R if h is uniformly passive on u and u does not
lie on any boundary hyperplane in the domain of h.

Suppose u R possesses Property U with respect to h: R R ". Then it
implies, due to Lemma 5, that t in (37) is norm-coercive. It also implies, due to
Lemma 6, that u satisfies the 1-degree condition with respect to t. Thus the
following theorem has been proved.

THEOREM 8. Let h: R R be a piecewise-linear mapping and f:
be defined by (37), and assume that there exists a point u R possessing Property
U with respect to h. Then the generalized Katzenelson algorithm, starting with u,
leads to a solution of (37) in a finite number of iteration steps .for any y R.

This theorem suggests a scheme to give a starting point for the generalized
Katzenelson algorithm. For the characteristics of each resistor, a point possessing
Property U is chosen. Then the collection of such points for all the resistors
constitutes an n-vector which also possesses Property U with respect to h defined
by (32). In the special case where all the resistors are uniformly monotone, the
original Katzenelson algorithm converges to the unique solution starting from any
boundary-free point.

The piecewise-linear models of the static characteristics of almost all practi-
cal elements have points possessing Property U. This is demonstrated by two
typical examples in Appendix B.

Appendix A. It is shown in this appendix that the definition of degree in (12),
3 coincides with the one in [8]. Let i: R - R" be continuously ditterentiable and
Cc R" be an open bounded set. Then for any y |(0C), the degree of t at y with
respect to C is defined by means of an integral [8, p. 149]. In a special case where
t’(x) is nonsingular for all x F {x Clt(x y}, F consists of at most finitely many
points xl), ., x’’) and the degree is defined as follows [8, p. 150]:

(A.1) deg (f, C, y) sgn det f’(xq)).
j=l
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When a continuous mapping f" R -R is not differentiable, the degree is defined
as follows [8, p. 154]"

(A.2) deg (t, C, y)= lim deg (t(k), C, y),
koo

where f(k): R" -R is any sequence of continuously ditterentiable mappings such
that limk-,oo Ill(k)- fllc 0. Here 11" [Ic denotes the Loo-norm on C.

Now let f: R -R" be a continuous, piecewise-linear mapping and Cc R
be an open bounded set. Then for any y f(0C) U f(B U E), F {x e Clf(x) y} is a
finite set. Let {f(k)} be a sequence as defined above.

If F , it is clear from the compactness of t that {x CI f(k(x) y} is empty
for all sufficiently large k. Therefore it follows from (A.1) and (A.2) that
deg (f, C, y) 0.

If F is a nonempty finite set {x(1, , x(m}, each xq is an interior point of a
region Rj with nonsingular Jacobian matrix 0) for/- 1,..., m. Note that Rj,
/ 1, , m, are mutually distinct. Let p, q, p < q, be positive numbers such that

Wl nthe closed ball "th ce ter x and radius q is wholly contained in the interior of R,
(j) (/)forall/= 1,... ,m. Let={xeR IIIx-x II<pIandQ/-{x R IIl -x

2 2 2then q/(x) d (x, O/)/[d (x, P-) +d (x, O/)] is a contlnu_ously dltterentlable fun_c-
tion: R" R such that 0 _-< o/(x) _-< 1, 0j(x) 1 for x e P. and o/(x) 0 for x e O/,
where d(x, S) stands for the Euclidean distance between point x e R" and set
S C R". Now let

(x) E e(x)
j=l

and (= qf +(l-q)f(, for k i, 2,...; then ( is continuously differentiable
because qf=O on the boundary hyperplanes on which f is not continuously
dilIerentiable. Furthermore, ((x) f(x) for x P1U U Pm and

(k) < (k)limk_oll(k)--fllc 0 since
R n"for any x It is also easy to see from the compactness of t-P that (g)(x) y

has no solution in C-P for all sufficiently large k. Therefore {x C l(k)(x) y} F
for all sufficiently large k and furthermore, {(k)’(Xq))= J for all/" and sufficiently
large k. Thus (A.1) and (A.2) lead to the definition (12) in 3.

Appendix B. In practical applications, one often encounters a resistor
network containing so-called "active" elements such as tunnel diodes and transis-
tors. It is demonstrated here that the algorithm proposed in this paper works even
if a given network contains such "active" elements. More precisely, a pertinent
piecewise-linear model of such an "active" element has points possessing
Property U.

(I). Tunnel Diode. Consider the diode which is characterized by h: R R
illustrated in Fig. 10. Then it is seen that any point given by

(B.1) U e (--00, X (1)) (.J (x (2), x (3)) (.J (x (3), -I--oo)

possesses Property U.
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h(X)

I,

/IX
() X11 X()

FIG. 10. Piecewise-linear resistor oftunnel-diode type

(II). Transistor of Ebers-Moll Type. Consider the 2-port resistor charac-
terized by g(v)" R 2__> R 2 which can be written in the form6

(B.2) g(v)
--ce2 1 m2q(n2v2)

where

(B.3) Oel < ml/m2, nl/n2 < 1/a2,

mini, m2?z2>0
and q(-) is a strictly monotone piecewise-linear mapping.7 Note that, due to
Proposition 5, there exists k > 0 such that

(B.4) [q(x) q(x)] (x x) >- k (x x)2

for all x R 1.
Let u (Ul, u2)T be a point such that

(8.5) haUl n2u2 xO,

where x is an arbitrary boundary-free point in the domain of q(. ). In order to

6 The class of 2-port resistors discussed here is the same as the transistor model discussed in 15,
Thm. 6], except that q(. has to be strictly monotone and piecewise-linear in this paper.

7 More generally, q(.) can be of the form as in Fig. 10. This condition is imposed to simplify the
proof.
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prove that such a u possesses Property U, the same line of logical development as
in the proof of Theorem 6 of [15] is applied.

Define a scalar function 0(v) by

(B.6) 0(v) (g(v)- g(u), v-u)

and the transformation v (v, v2)v-> x (Xl, x2)T by

(B.7) Xl nlVl, X2 n2/92.

Note that, due to (B.5) and (B.7),

(B.8) (x x) + (x2 x)2 _-> n2lJv ull2,
where n2 min {n2, n}. Let

Iq(Xl)--q(x) Jx Ix2-x]A(B.9) q(x)=[Xl-
q(x2)_q(xo)

where

(B.IO)
[_-a211 a22 -ot2ml/n2 m2/n2

Then it is easily seen that q(x) 0(v). Furthermore it follows from (B.3) that

a 11 > a 12, a21 > 0,

a22 > a21, a12 > 0,

and hence a =min {all--a12, all--a21, a22--a12, a22--a21} is a positive number.
In order to observe the behavior of

q(x) [q(Xl)--q(x)] [al(Xl x) az1(Xz-X)]
(B.11)

+ [q (x2) q (x)] [azz(X2 x) a12(Xl x)],
the xa- x2 plane is divided into six regions as illustrated in Fig. 11.

In region I, Xl-X>-Xz-X>=O. In the case where a22(Xz--X)
a12(xi- x) -> 0, the second term of the right-hand side of (B.11) is nonnegative.
Then since x x --> x2 x => 0, it follows that

q (x) _-> (a 11 a21)[q (x a) q (x)](Xl x) _-> ka (Xl x)2.
On the other hand, if az2(Xz-X)-alz(Xl-X)<=O, then since q(xl)-q(x)>=
q(x2) q (x) => 0, it also follows that

q(x) >=[q(xl)-q(x)] [(all- a12)(x1-x)
+ (az2 az1)(x2 x)] ->- ka (xa x)2.

Since Xl x -> x2 x in region I, it follows from (B.8) that

(B. 12) 0(v) q (x) => 1/2kan 21Iv ull2.
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X2

(xo, xO) r

X2= X=

FIG. 11. Regions considered in an Ebers-Moll type transistor

In region II, x x -> 0 _--> x. x, and hence both terms of the right-hand side
of (B.11) are nonnegative. If Xl-X>--(x2-x), consider the inequalities (p(x)_->

X0)2. 0[q(x1)-,(x)]all(Xl-X)>ka(Xl On the other hand, if X1--X0) N--(XE--X ), consider the inequalities tp(x) >=[q(xE)-q(x)]a22(XE-X
ka(XE-X)2. Thus by means of (B.8), (B.12) holds for any x in region II.

In region III, one can also derive (B. 12) by means of a few obvious changes in
the argument used for region I. Now, due to the symmetric nature of q(x) (with
respect to the subscripts 1, 2) it is clear that the behavior is similar in the other
half-plane.

Now it has been proved that g is uniformly passive on any u satisfying (B.5).
Therefore, unless x is a boundary point of the piecewise-linear mapping q(. ),
any point u satisfying (B.5) possesses Property U.
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SOME ALTERNATIVE EXPANSIONS FOR THE DISTRIBUTION
FUNCTION OF A NONCENTRAL CHI-SQUARE

RANDOM VARIABLE*

RUDY A. GIDEON? AND JOHN GURLAND:

Abstract. A differential operator is defined and applied to the gamma density function. By formal
mathematical manipulations, the resulting function is identified with the distribution function of the
noncentral chi-square distribution. Several series expansions of a general nature result, and a table is
presented comparing the effectiveness of seven series in evaluating this distribution function.

1. Introduction. The main purpose of this paper is to present a formal
operator technique for obtaining series expansions of the distribution function of
quadratic forms in independent normal variables, and to compare the effective-
ness of these series expansions. Although this formal operator procedure with its
algebraic manipulations can be applied in a general way to many distributions, the
emphasis will be on the noncentral chi-square distribution. In particular, it will be
shown how this unified approach leads to the development of power, chi-square,
and various Laguerre series.

A general development and specific parameter choices for these series can be
found in [15, Chaps. 28-9]. The operator approach of this paper extends the
theory somewhat by allowing a broader choice of the parameters involved in these
series expansions.

A paper by R. B. Davies [3] investigates a numerical integration method of
evaluating the noncentral chi-square distribution function by an inversion for-
mula for the characteristic function. D. R. Jensen and H. Solomon [11] give an
improved Gaussian Wilson-Hilferty-type approximation formula. H. Ruben [19]
summarizes many recursive formulas and gives finite series expansions in terms of
Chebyshev-Hermite polynomials. Finally, C. G. Khatri [12] uses the approach of
Kotz, et al. [13], [14] on the multivariate noncentral case. The approach of this
paper may prove to be useful in the multivariate case, since like Khatri’s paper, it
identifies an infinite series expansion with a specific distribution. This paper
complements the work of D. R. Jensen and H. Solomon in that the table lists
parameter values of the noncentral chi-square variable in which a Gaussian-type
approximation is expected to do well (see the Edgeworth series). Finally, the
operator approach of H. Ruben [19] relies on the Hermite polynomials, whereas
the approach of this paper is based on the generalized Laguerre polynomials.

Although there are a large number of papers developing theoretical forms for
the distribution function (d.f.) of these quadratic forms, only a few, e.g., Gurland
[7], Tiku [22], and Kotz, Johnson, and Boyd [13], [14], [15], give an indication of
which series are to be preferred in obtaining probabilities as the values of the two
parameters in the noncentral x2-distribution vary. The formal series development
in this paper is followed by a table giving a comparison of relative effectiveness of
seven series expansions.

* Received by the editors November 12, 1974, and in revised form September 22, 1975.
? Department of Mathematics, University of Montana, Missoula, Montana 59801.
t Statistics Department, University of WisconsinmMadison, Madison, Wisconsin 53706.
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2. Specification of an operator function for quadratic forms. Let g,x denote a
gamma density function of the form

A (Ax) e-x
(2.) ga(x) x >_-0,

F( + 1)

and let L’)(x) denote the nth generalized Laguerre polynomial. The differential
operator D on g,,a (x) is defined as

(d) +r+x e-XF(r + 1)L’)(Ax)
(2.2) Dr[g,x (x)] g+r,a

F(a + r + 1)

If w is defined as w #/(1 it where Z-1, then the characteristic function
(c.f.) of D applied to g,a (x) is given by

(2.3) e"XD’g.x (x) dx (- w)’/(1 -it/A)+l.

In the following, the operatorD and the variable w are to be treated formally
as a variable in a power series. A function of D which will generate the series
expansions for quadratic forms in independent normal variates can be defined as

(2.4)
exp lET’-- (FD)/(1 GD)]

II]= (1-AiD);

where the F, Gj, Aj, K, 1, 2, , m, are constants. It will presently be shown
that appropriate choices of these constants will yield series expansions for the

t2noncentral chi-square distribution (X,,A) with degrees of freedom n and noncen-
trality parameter A. By formally computing the characteristic function O(t) of the
operator function (2.4) applied to density function (2.1) and using (2.3) with
various algebraic manipulations, it can easily be shown that

(2.5) O(t)
(1-it/a)-(+1) exp [Y= (-F,w)/(1 + G,w)]

I-[} (1 +Aiw)-KJ

In order to utilize 0(t), it is necessary to rewrite (2.5) in two distinct forms. The
first form will be called the expansion form and it regroups all the terms involving
like powers of w as follows:

(t) (1- it/A -(+) exp Y (-w)ld
/=1

(2.6) where

dl i -l {i5(lO])l-1 + I-K](AA])l}

The second form will be called the identification form as it is used to equate 0(t) to
the charcteristic function of a particular random variable (r.v.). In order to obtain
this form, replace w by it/(1 it/A) in (2.5), and after regrouping O(t) in powers of
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it,

(2.7) where

,(t) (1- it/a -(+ exp Y. (-it)’ht,
/=1

hi i -1 E {IFI"(IG] 1)/-1 "- I-K((AA, 1)’-(-1)’)
i=1

In order to generate series expansions, the following recursive formulation is
needed (cf. [ 13] or 15, p. 160]). If

(2.8) then

exp --t Y Ct,
k=l k=0

1 k-1

C= E d-iQ, k 1, 2,...
i=0

3. Alternative expansions. The constants F/, Gj, K., Aj will be specified
completely by the r.v. for which we seek an infinite series expansion. However, the
constants a + 1 and A can be suitably selected to give one or two moment fit
agreement between the r.v. whose d.f. is being expanded and the first term of this
series. However, in order to get a three moment fit, a location parameter 0 is
introduced. By letting o(t)= ei’(t), and using the formal identities

(3.1) e i’ exp { 0 1+ (w/h
exp Oh /=lE (--1)/-1

Oo(t) can be used to represent the Laguerrian expansion of the c.f. of a r.v.
Z X+ 0, where O(t) is the c.f. of the r.v. X and 0 is a constant to be selected. If
(1-(it/A)-(/l) in.(2.6), and (2.7) is rewritten as

(3.2) exp +(ce + 1) Y }- or
/=1

exp (ce +1)
(--1)/-1

1

then equations (2.6) or (2.7) can be viewed as exponentiated series in w and it
respectively. By combining (2.6) and (3.2) with (3.1) to form o(t), the first term of
the Laguerrian expansion can be made to have 1, 2 or 3 moments in common with
the r.v. being expanded by setting the coefficients of w l, 1, 2, 3, to zero and
solving the equation for 1, 1 and 2, 1, 2 and 3 according as a 1, 2, or 3
moment agreement is desired. The detailed solution for ,2

Xn.A will be presented
below.

4. Laguerrian expansions gor the d.f. of a noncentral chi-square r.v. with n
degrees oi ireedom and noncentrality parameter A; ,2

X,,A. In this section, the
general formulation of the previous sections is used to obtain specific expansions

2for the r.v. Xn,A. First, the constants F., G, A, K. from (2.7) are chosen so that $(t)
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r2represents the c.f. of X,,a. Equation (2.7) in the form utilizing (3.2) is used to
equate O(t) to the c.f. of ,2

If Yis a r.v. defined as i=1 ai(Zi + 6i)2, where ai are positive constants, 6i are
constants, and Zi independent N(0, 1)-r.v.’s, then Y is a noncentral positive
definite quadratic form in normal variable. If all the ai 1 and all ai a, then Y
becomes ,2 2

Xn.A, where A ng Although the generalities of the previous work can
be applied to Y, it is restricted at this time to the special but important case of /’n,A.
Since the c.f. of Xn, can be written in the form

(4.1) exp { 2/-1(/- 1)!n(1 +/t2)},
/=1

b(t) can be equated to (4.1) by choosing

AAj=AGj=I-2A, re=n,
(4.2)

F.=-32 and K.=21- for]=l, 2,...,n,

and letting, for the moment, t + 1 =Y.=I K.= n/2. Now that k(t) has been
identified with the c.f. of ,2

X,,A, (t) can be used in the form (2.6) directly or with the
location shift modification (3.1) to obtain Laguerrian expansions.

The general case is taken by expanding d/o(t), since if(t) o(t) if O 0. Thus
let d= d-(0A/A l), where d is defined in (2.6) and OA/A is the coefficient of
(-w) in (3.1). In order to use recursive formula (2.8), we must multiply d by ! so
that the coefficient of (-w)l/l becomes ldt-lO/A l-. Thus the Ck-COeflicients of
(2.8) are defined as

Co 1, C =- =o

(4.3) and

o(t) 1- 1 + 5". Ck(--w)k

k=l

Now inversion formula (2.3) can be used with (2.2) and formal term by term
integration applied to obtain (letting x + 0 x1)

xl

F(( -[- 1)
dy

(4.4)
,GF(k)+ e-xxl(Ax1)a+ =Z F(a + 1 + k)

L_I>(Ax).

The symbol is meant to imply the formal equating of two mathematical
quantities which under certain conditions on the parameters may be identical.

In formula (4.4), the two parameters (9 and A are still undefined, and although
a + 1 has been chosen as n/2, other choices are possible, as will soon be
demonstrated.

The notation Li will be used to denote an expression of the form (4.4) in
which the first moments of the r.v. associated with the leading term of the
expansion (a gamma r.v.) have been equated to corresponding moments of ,2
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The subscript will be equal to 0, 1, 2 or 3, and for the cases 0, 1 or 2, the
parameter 0 is chosen to be zero. For the case 0, a + 1 n/2, but A is still free
to be selected.

Since (t), by utilizing (3.2) and (4.2) in (2.6), has already been equated to the
c.f. of ,2

X-,A, only 8 and,A are free to be chosen. However, c + 1 can also be included
as a free parameter if $(t) is multiplied by (1 it/A)-+), and from (3.2) it is seen
that $(t) is unchanged if -(a + 1) ((- 1)+l/l)(w/) is added as a cancellation in
the exponent. $o(t) is now in its most general form for the Laguerrian expansions

(4.5)
Oo(t) O(t) e" (1- t)

--(+I)

The Li series are now obtained as indicated by solving equations involving the
coefficients of (w)l, 1 1, 2, 3.

For Lo,

For L,

For L2,

For L3,

a+l=n/2, 0=0, A=l/2.

a+l=n/2, 0=0, A=(a+l)/n(l+6).
a+l=nA(l+62), 0=0, A=(1+62)/2(1+262).
a + 1 2nA 2(1 + 262), 0 2nA (1 + 262) n(1 + 62),

a (1 + 26z)/2(1 + 362).
The various Laguerrian expansions are of the same form as (4.4), where the
constants Ck are derived recursively from d’, where d’ are defined to be the
coefficients of (--w)l/l in the exponent of (4.5).

5. Chi-square, power, and Edgeworth-expansions. In order to ascertain the
relative effectiveness of the alternative Laguerrian expansions above, the follow-
ing chi-square, power, and Edgeworth-expansions are provided and included in a
computer study.

For the x2-expansion, define u (1- (it/A))-. The c.f. needed for the term
by term integration in the X2-case is given by

(5.1) itxe g,,+k,a (x) dx u +(++’).

In order to obtain a x-expansion formula, (2.6) needs to be rewritten in
terms of the parameter u. If w A (u I) is substituted in equation (2.5) in which
the choices of the constants are given by (4.2) and a few algebraic manipulations
performed, ,(t) becomes

O(t)
exp (-(n/2)62)2n/2 (_)n/2[exp -eUtl],/=1

(5.2) where

n(2A 1)/-1( la- 1)el =- 1+
2a
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(t) can now be rewritten using recursive formula (2.8) in which Co 1,
c (/k) -/=o ek-iCi After applying term by term inversion (5.1) and integra-
tion, the final result is

(5 3) ,2 exp (-(n/2)82) [= Io A (At)+k e-’ t]P(Xn,A X)
2n/2 o

Ck F(a + k + 1)
d

In order to develop the power series-expansion, the Fourier transform of the
function x- over the positive real axis is needed"

n--1
-itxX dx (-it)-n.(5.4) e

F(n)

As in the X2-case, it is necessary tot rewrite O(t) of (2.5), however, this time in a
series involving powers of (it)-1. This is accomplished by substituting for w the
quantityitwhere again the choices of the constants given by (4.2) are
also inserted. After some algebraic manipulations, the following result follows:

1 {nt$2}(_it)_(n/2 [(--it)-ll](5.5) g,(t) 7 exp - exp b
/=1

where

bl (1 lt 2).

,(t) is now in a form to which the recursive formula (2.8) can be applied, where
k-1Co 1, Ck =(l/k)Y’-j=o bk-jQ. After this, the term by term inversion (5.4) is

applied and then integration; the result is

(5.6) P(X’.,= CF( + k + 1)"
For a complete comparison, the Hermite-Edgeworth-expansion is included.

This expansion (cf. Cramer [2]) is a regrouping of an expansion of the Hermite
polynomials for the d.f. of, in which coecients of like powers of n-/ are
grouped together. A recursive development for this expansion is now presented.
Let be the kth cumulant of X.A. Then from (4.1),

(5.7) X 2-1(k 1)n(1 + k62).
If d =- and p2= X2, then the c.f. of,+d)/p is

P
(5.8)

where

e -(’2/2 exp {(#)2 E dk (it)k},
k=l

,’k +2

(k+2)!pk+2= n

1 2k+a{l+62(k+2)}
k/2 (k + 2){2(1 + 2t2)}(k+2)/2"
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The c.f. of 0( t2.,A+ d)/p can be rewritten as

() { Chk(5.9) O e (a/lit= e -t2/z + (it)+zh e
k=l h=l

where

k-1 k-h+l

Cl,k dk, C2,k E Cl,mCl,k-m, Ch,k E Cl,mCh-1,k-re.

It is easily seen that Ch,k contains as a factor the term n -k/2. If Hk (y) denotes the
usual Hermite polynomial and the well-known relationships of the polynomials
are used, then (5.9) can be inverted and integrated term by term to produce

y e-U2
(5.10) P0(’2n,A =< ey-d)-- E

_
Ch’kH +2h_l(y) e-y2/2

k=l h=l

The seven series which have been compared on a computer have been
developed in formulas (5.10), the Edgeworth; (5.6), the power; (5.3), the X2; and
(4.4), the various alternative Laguerre series.

6. Comparison of the effectiveness of the series expansions for the d.f. of
t2

X,,A. All the comments made here for the seven series expansion for the d.f. of
t2

Xn,A are based on the results of computer evaluations. The results are summarized
in Table 1, and a few general comments are given now.

In general, for ,2
Xn,A, the Laguerre series expansions (Li) are best for A small in

relation to the parameter n. In contrast, the Edgeworth series (E) is best for A
large in relation to n and, in particular, is very strong in the central areas of the
distributions, that is, probabilities between 0.2 and 0.8. For low degrees of
freedom and small noncentrality A, the series E, L2 and L3 are very poor, but the
series Lo is very good. The series L1 is also good for low degrees of freedom n and
small noncentrality A.

Although the chi-square (X2) and power (P) series exhibit their best perfor-
mance for n and A both relatively small, they fall substantially short of the
performance of Lo. These series usually perform best in the left tails of the
distributions. Characteristically, the X

2 and P-series converge very rapidly after a
period of very slow convergence. For example, after 20 terms, the partial sums
may be accurate only to one place, but after four to eight additional terms, five
place decimal accuracy may be achieved. The Edgeworth series E also has this
characteristic, but, in general, if the E-series has not attained four to eight place
decimal accuracy after about 12 terms, it will start to diverge.

For n large and small noncentrality A, the series Lo, L1 are the best. The
series L2 and L3 produce good results in this range also. In choosing between a
higher moment series L2 orL and a lower moment series such as L0, it should be
pointed out that the higher moment series usually give three to five place decimal
accuracy with just a few terms (one to five) but may gain additional accuracy
slowly. The series Lo however, usually produces less accuracy up to the first five to
ten partial sums, but after that converges rapidly to the true probability.

For n large and A large, the strength of the (E, L0-series in producing good
approximations to the true probability is conspicuous from Table . For small n
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and large A, the E-series is good if A is very large, but L0 is much preferred if A is
only moderately large. The series L2, L3 are very poor in this latter range. A word
of caution for the L3-series in the left-hand tail of the distribution, is that for xl
values such that x x + 0 < 0, the series leads to negative probability values.
Although not indicated in the table, the series L0 was evaluated with other values
of A keeping a + 1 n/2. It was found that for A large relative to n, values of
A 1/3 and A 1/4 are quite effective; that is, as A increases, a decrease in A
improves the convergence rate of the Lo-expansion.

Prologue to Table 1. Description ofand instructions for using Table 1. Codes
for entries (Kx, K2, K3) in Table 1.
K 1, 2, 3, 4, or 5 for 1, 2, 3.
Ka represents left tail, that is, evaluated probabilities are in the interval (0, .2).
K2 represents center of distribution (.2, .8).
K3 right tail (.8, 1.0).

The number codes 1 through 5 signify how well the series behave on a five point
scale which is described as follows:
5 means very best among the series compared. Usually 5 place decimal accuracy

is achieved with only a few terms. In those cases, however, where it is difficult
to achieve 5 place decimal accuracy for all the series, code number 5 again
indicates the best, but more than a few terms of the series are required to
achieve 5 place decimal accuracy.

4 indicates very good, but not best; that is, 3, 4, or 5 place decimal accuracy can
be attained after a few terms in the series, but more terms are necessary than
for code number 5.

3 indicates good, but to obtain 3, 4, or 5 place decimal accuracy, a larger number
of terms is required than for code number 4.

2 indicates fair, that is, only 3 or 4 place decimal accuracy can be obtained after a
moderate number of terms, but more terms are necessary than for code
number 3.

1 indicates poor, that is, 3 or 4 place decimal accuracy can not be obtained after a
moderate number of terms, or the series diverges before even two place
accuracy can be attained.
Categories in Table 1. For each of the seven series the ranges of parameter n

and A are as follows. The degrees of freedom n are divided into five intervals:
2_-<n--<5, 5<n_-<10, 10<n_-<15, 15<n_-<20, 20<n_-<25. The approximate
centers of these intervals 3, 8, 13, 18, 23 appear as headings for the columns of the
table. Thus, for example, the entry (1, 2, 1) in the upper left corner of the table
under the Edgeworth-series corresponds to the interval 2 _-< n _-< 5, and is under the
column labeled 3.

The values of the noncentrality parameter A are divided into four intervals
0 -< A-< 5, 5 < A-< 10, 10 < A -< 18, 18 < A =< 25. The approximate centers of these
intervals 2, 7, 14, 21 appear as headings for the rows of the table. Thus the
aforementioned entry (1, 2, 1) for the Edgeworth series corresponds to a noncen-
trality parameter in the interval 0 =< A-< 5.

Comparison between series. Since for each of the series compared there are
five categories for degrees of freedom and four categories for noncentrality, there
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will be 20 classes in which the various series can be compared. For example, one
such class is for n 8 and A i4. In this class, (K1, K2, K3) appears as (4, 2, 5) for
the series L0, but (3, 5, 4) for the series E. Thus we see that the L0-series is better
in the left tail, but the Edgeworth is much preferred in the center areas, and both
are good in the right tail with the Lo-expansions slightly better.

r27. Conclusion. Table 1 is intended as an aid in obtaining probabilities for X
efficiently. Each entry in the table was the result of the comparison of a large
number of evaluations, and enough probabilities were computed in order to
discern clearly the pattern of the table. It should be pointed out that the first term
of the L2- and L3-expansions are the well-known Patnaik and Pearson approxi-
mations, respectively, and the first term of the Edgeworth-series is the simple first
two moment fit of the standardized Gaussian distribution. The Laguerrian
expansions resulting from (4.5) are set up in such a manner that other values of
a + 1, , and , may be inserted and the resulting expansion evaluated for its
efficiency. The table can be used as a starting point for choosing values of a + 1, 0,
and A, in order to obtain probabilities efficiently for particular values of n, A and x.
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UNIQUENESS OF SOLUTIONS TO
SINGULAR BOUNDARY VALUE PROBLEMS*

C. C. TRAVISY AND E. C. YOUNGer

Abslract. The paper is concerned with the uniqueness of solutions to non-well-posed singular
boundary value problems for partial differential equations. A method of proof is employed which is
completely independent of the type of the partial differential equation being considered, and which
allows the consideration of a class of nonstandard boundary conditions.

1. Introduction. The classical work of Bourgin and Duffin [ 1] concerning the
uniqueness of solutions of the Dirichlet and Neumann problems for the wave
equation utt- Uxx 0 in a rectangle with sides parallel to the coordinate axis has
been extended in recent years to various normal and singular hyperbolic and
ultrahyperbolic partial differential equations. See, for instance, [2]-[6]. All of
these papers employ essentially the same method of proof, namely, an energy
integral argument together with the assumption that a complete set of eigenfunc-
tions exists for an associated eigenvalue problem. More recently, by using an
entirely different approach, Travis [7] considered the singular hyperbolic bound-
ary value problem studied in [4] and obtained more general results under weaker
assumptions. The object of this paper is to employ the method of [7] to investigate
the question of uniqueness of solutions for the singular equation

(1.1) ., Ux,x, +ai u, Y, (auy)y + cu O,
i= Xi j,k

under a more general class of boundary conditions than studied by Young [6].
We shall consider (1.1) in the domain D=HG, where H=
{(Xl,. , xn) E 10 < xi < ai; 1 _-< _-< n} and G is a bounded regular domain in
Em. The oq (1 <- <= n) are real parameters, oo < eq < o0, and the coefficients ajk, C

are functions of the variables Yl, Y2,’" ", Y,, only. On the boundary HxOG, we
prescribe the boundary condition

(1.2) Ou/On + o’u O,

where Ou/On denotes the transversal derivative

Ou
ai, ur,u,an id=

(ua,..., u,,,) being the outward unit normal vector on OG and r being a
continuous function of y,..., y,, on OG. Additional boundary conditions on
OH G will be given later.

The study of the singular equation (1.1) raises some interesting questions
which are not present in the nonsingular case. In particular, there is the question as

* Received by the editors May 20, 1975, and in revised form September 15, 1975.
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to what is the proper boundary condition to be imposed on the solutions along the
singular planes xi 0 (1 _-<i-< n). Previous work in this connection (see [4], [6])
requires the solutions to vanish on these planes and to be class C2 in D and C in
D. In this paper we shall replace these assumptions with much weaker conditions
that allow the solution to be infinite on the singular planes. This relaxation enables
us to impose less stringent differentiability conditions on the solutions. For
brevity, we shall let x (x l, ", xn) denote a point in H and y (Y l, Ym) a
point in G.

In obtaining our uniqueness results, we shall have need of the associated
eigenvalue problem

(aqVy,)yj +V AV in G,
(1.3)

i,j=l

Ov
+ rv 0 on OG.

On

In contrast to previous works cited above, which assume that the equation in (1.3)
is elliptic and self-adjoint and that c _-> 0 in G, r _-> 0 on OG, here we shall assume
only that the eigenvalue problem (1.3) has a complete set of eigenfunctions. We
make no assumption about the symmetry or definite positivity of the matrix (aq),
nor do we assume that all the eigenvalues of (1.3) are of the same sign.

2. Preliminary iemmas and conditions. In this section, we shall present
certain lcmmas and conditions that will be needed in the statement and proof of
our uniqueness results. For convenience, we shall write x=xl...xn and

LMM 2.1. Let Ol. 1 ]:or 1, , n. The eigenvalues and eigenfunctions
of the singular eigenvalue problem

(x’X,,,)x, +x’lX 0 in H,
i=1

(2.1) X2x dx<c,

X(x 0 on X ai, 1 <--__ <-- n,

are given by tz tz + + fits, where tzi (1 <- <-_ n) is a root of the equation

(2.2)

and

Jil_ill2(iai O, 1 <--i <--n,

(1-,x.)/2X(x)-- H xi J(1-oq)/2(Nixi)
i=1

Here Jp(t) denotes the Besselfunction of the first kind of order p.
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LEMMA 2.2. Let 1 < ai for 1, , n. The eigenvalues and eigenfunctions
of the singular eigenvalue problem

X(x ,,),,+xX=O inH,
i=1

X(2.3) lim xi’ x, 0, 1 =< =< n,
xiO

X(x 0 on X di, 1 <-_ <= n,

are given by t I + +t, where [d (1 <-- n) satisfies (2.2) and

--c.)/2X(x) H xl’ -/(i-1)/2tN ILlbi xi).
i=1

Remarks. If the condition X= 0 on xi ai (1--<i =<n) in (2.1) and (2.3) is
replaced by Xx, 0 on xi ai (1 <= <- n ), then both Lemmas 2.1 and 2.2 remain
valid provided the i (1 =< n) are roots of the equation

(2.4) Jll+ai[/2(/ai) 0, 1 _--< _--< n.

Both Lemmas 2.1 and 2.2, and these remarks can be easily established by the
usual separation of variables argument.

To facilitate the statement of our results, we shall refer to the conditions that
are used in the uniqueness theorems as

Condition A. Given any eigenvalue hg of the eigenvalue problem (1.3), and
given any sequence of possibly complex constants ].i (1 <_--i <--n) satisfying/x -I-

+/x A, there exists, a/Zr (1 --< r =< n) such that

(2.5) J[1--Cr]/2(r ar) 0;

Condition B. Under the same hypotheses as in Condition A, there exists a
(1 -< r =< n) such that

(2.6) j[l+o,[/2(Xrar) O"

3. Uniqueness results. We are now in a position to state and prove our
uniqueness results.

THEOREM 3.1. Let ai <= 1 for 1,. , n, and suppose that u C2(H G)
is a solution of (1.1) satisfying (1.2) and the conditions

(3.1)
JG xClu(x’ y)[e dy dx <,1"

u (x, y) 0 on xi ai, 1 <-_ <= n,

for all y G. Then u =-0 if and only if Condition A holds.
Proof. Suppose Condition A is not satisfied. Then corresponding to an

eigenvalue Ak of the eigenvalue problem (1.3), there exist constants/Xl," ,
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satisfying/1 + "]-/n =hk such that J(l_a,)/2(xiai)=O (i 1,..., n). Let Vk
be an eigenfunction of the problem (1.3) corresponding to the eigenvalue hk. Then

(1--oi)/2 /- --oi)/2(’/Xi)l)k (Y)U(X, y)= 1-I Xi a(1
i---1

is a nontrivial solution of the problem (3.1), as is readily verified.
Conversely, suppose Condition A holds. Let hk be an eigenvalue of the

problem (1.3) with the corresponding normalized eigenfunctions Vk(y). Let
1, [/’n be constants satisfying/z + "[- t,m Ak for which (2.5) holds for

some r, 1 =< r =< n. Define

hk (X Io U (X, y)Vk (y dy,

where u is a solution of the problem (3.1). Then hk satisfies the equation

(xhx,)x, +XAkh 0
i=1

and the condition h (x) 0 on xi ai for 1, , n. Moreover, by the Cauchy-
Schwarz inequality and the fact that Vk is a normalized eigenfunction, it follows
that

IO foaIGxlhl2 dx <-_ xlu(x, y)l2 dx dy < oo.

Therefore hk is a solution of the problem (2.1) corresponding to/x Ak. However,
in view of (2.5), Ak =/z + +/,*n is not an eigenvalue of (2.1). Hence hk must be
a trivial solution, that is,

u (x, y)Vk (y) dy =- O, k=l,2,’"

By the completeness of the set of eigenfunctions Vk, it follows that u--0, as we
wish to prove.

COROLLARY 3.1. Let (ai]) be symmetric andpositive definite in Gand let c <-0
in G and tr >- 0 on OG. If ai <- 1, then every solution of the generalized GASPT
equation

(3.2) , (ux,,+ai)ux, + (ajkUr,)r + cu O in H G
i= Xi j,k

satisfying (1.2) and vanishing on X ai (i 1," , n) such that

IG XIU(X y)l2 dx dy < oo

is identically zero.
Proof. From the assumptions on (a0.), c and tr, it follows that the eigenvalues



UNIQUENESS OF SOLUTIONS 115

Ak of the associated eigenvalue problem

j,k=l
in G

0V + try 0 on OG,
On

are negative. Thus, for any sequence of constants/x 1, ]-/’n such that/x -- "[-

/,n Ak, there is a/xr (1 <=r<-n) such that/xr < 0, and hence (2.5) holds. The
conclusion now follows from Theorem 3.1.

THEOREM 3.2. Let -l <ai for 1,..., n. Then every solution u
C2(H G) of (1.1), (1.2) satisfying the conditions

limx Ux,=O, i=l,...,n,

(3.3)
u (x, y O on xi ai, l, n,

for y G is identically zero if and only if Condition A is satisfied.
The proof of this theorem, which makes use of Lemma 2.2, is similar to that of

Theorem 3.1 and is therefore omitted.
COROLLARY 3.2. If --1 <ai, for 1,..., n, then every solution u

C2(H G) of (3.2) satisfying (1.2) and (3.3) is identically zero.
If we replace the boundary condition u 0 on xi a (1 <- <-_ n) in Theorems

3.1 and 3.2 by Ux, =0 on x a (1 _-<i -<n), we obtain the following results:
THEOREM 3.3. Let

C2(H G) of (1.1) satisfying (1.2) and the conditions

fo’ f x’lu(x, y)[2 dx dy < c3,

Ux, (x, y) 0 on X ai, 1,. , n,

]’or all y G, vanishes identically if and only if Condition B holds.
THEOREM 3.4. Let -l <cti ]’or i= 1,..., n. Then every solution u

C(Hx G) of (1.1) satisfying (1.2) and the conditions

lim x Ux, O, 1, n,
xiO

Ux, (x, y) 0 on X ai, 1,. , n,

]’or all y G vanishes identically if and only if Condition B holds.
The proofs of these theorems follow the same line of argument as those of

Theorems 3.1 and 3.2, using the remarks made following Lemma 2.2. Obviously,
corresponding theorems can also be stated for the generalized GASPT equation
(3.2).

4. Other boundary value problems. In this section we consider uniqueness
conditions for (1.1) subject to more classical boundary conditions that include the
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ones treated in [6]. Because of our different approach, we are able to obtain more
general results under weaker assumptions.

THEOREM 4.1. Ifai < 1, ]:or 1," , n, then every solution u C2(H G) of
(1.1) satisfying (1.2) and vanishing on xi O, xi ai (1 <= <-_ n) is identically zero if
and only if Condition A holds.

The theorem is proved in the same manner as Theorem 3.1.
Remarks. We remark that in [6] a result corresponding to Theorem 4.1 was

obtained under the stronger assumption that u C2(H G) C1(/-- X ); that
result was valid only for ai _-< 0 (1 _-< _-< n). It is interesting to note that Theorem
4.1 remains valid for all values of the parameters ai if we impose the boundary
conditions u 0 on xi ai (1 -< _-< n) and [u(0, Y)I < c for every y 6 G. A corres-
ponding result involving the generalized GASPTequation (3.2) can also be stated.
We conclude this paper by stating a uniqueness result corresponding to the
Neumann boundary conditions

(4.1) ux,=0 onxi=0 and xi=ai, l<=i<-n.

This result, too, is independent of the value of the parameter ai.
THEOREM 4.2. For any value ofai (1 <= <-- n), every solution u C2(H x G) of

(1.1) satisfying (1.2) and (4.1) is identically zero, or u eonst, ifc =- 0 and tr O, if
and only if Condition B is satisfied.

We observe that in the case when c-= 0 and tr 0, the eigenvalue problem
(1.3) has a zero eigenvalue with the corresponding eigenfunction v0 const. Thus
the result hk(X) u(x, y)vk(y) dy 0 (k 1, 2," ") in the proof implies only
that u is a nonzero constant. Theorem 4.2 extends the result in [8] to all values of
the parameter ai, instead of 0 _-< ai only.

5. Concluding remarks. When rn n 1 and a 0, Theorems 3.4 and 4.1
reduce to the classical results concerning the uniqueness of solutions of the
Neumann and Dirichlet problems (o- 0 and o- c in (1.2), respectively) for the
one-dimensional wave equation Uxx-Uyy=O in the rectangular region
{xl0<x <a}{ylO<y<b}. The eigenvalues of the problem (1.3), in this one-
dimensional case, are given by A,, (m.tr)2/b 2, where rn 0, 1, 2,- , for r 0
and Am m, where rn 1, 2, , for o" c. Conditions B and A of Theorems 3.4
and 4.1 then reduce to the condition sin (m’n’a/b) # O, which leads to the classical
result that the ratio a/b is irrational.

It is clear that the method employed in this paper is completely independent
of the type of the partial differential equation being considered. Thus it provides
an alternative method of establishing uniqueness theorems that is more general
than the usual energy integral approach.
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THE GEOMETRY OF INDEFINITE J-SPACES AND STRONG
STABILITY CRITERIA OF CANONICAL DIFFERENTIAL

EQUATIONS WITH PERIODIC COEFFICIENTS*

KUO-LIANG CHIOUJ"

Abstract. In this paper we shall use the general results in J-unitary and related operators to study
equation dX(t)/dt iJH(t)X(t) and various special cases. We obtain several stability criteria which
generalize some cases treated by Lyapunov [9], Borg [2], Kreln [7], Gohberg and Krei’n [6], Brockett
[3] and Daleckii and Kre[n [8, Thm. 5.3].

1. Introduction. In this paper we consider stability criteria for the following
linear system with periodic coefficient of period T(>0):

(1.1) (dX’t-------’= iJH(t)X(t), 0< t < oo.
dt

We assume thatH*(t) H(t) H(t + T), J J*, j2 I and that H(t) is a function
with values in the ring R of bounded operators acting on a Hilbert space S. Here
A* denotes the adjoint operator of A. For the sake of simplicity, we will always
assume that the above properties hold for all differential equations in this paper.
We shall define stability and strong stability in the sense of Daleckii and Krein [8,
p. 220] as follows:

DEFINITION.
(i) The system (1.1) is called stable if all its solutions are bounded as t c.

(ii) The system (1.1) is called strongly stable if it is stable and if there exists a
e > 0 such that for any real symmetric bounded operator satisfying the condition

/-)(t + T) =/-)(t) and [[/-)(t)- H(t)[[ dt < e,

all solutions of the system

dX(t)
dt

iJIYl(t)X(t)

are bounded as t- c. Here I1" denotes the induced operator norm.
In this paper, we shall use the general results in J-unitary and related

operators to study (1.1) and various special cases to obtain several stability criteria
which generalize results of Lyapunov [9], Borg [2], Krein [7], Gohberg and Krein
[6], Brockett [3], and Daleckii and Krein [8, Thm. 5.3]. Related questions are
discussed in [5], [6], [8] and [12].

2. The geometry of indefinite J-spaces and differential equations. Let us
recall some facts from the theory of linear differential equations with real

* Received by the editors May 15, 1975, and in revised form October 29, 1975.
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parameter A having the form

(2.1) =dX(t) iaJH(t)X(t), 0 <= t <,
dt

where H(t) and J have been defined above. Denote by U(t; A) the operator
satisfying (2.1) with initial condition U(0;A)=/. Since (d/dt)[U*(t;a).
JU(t; a)] 0 and U(0; A) L we see that U*(t; a)JU(t; A) J. Such operators
are called J-unitary operators. On the other hand, if we take for any positive
integer n,

the identity matrix with dimension n,

then iJH(t)esp (n) (Hamiltonian Lie algebra) and U(t; A)e Sp (n) (Symplectic
group). From the uniqueness of the solutions of (2.1) we obtain U(t + nT; A)=
U(t;A)Un(T; A) with 0<-t=< T and n a positive integer. This suggests that we
study the bounded solutions of (2.1) by considering the spectrum of the monod-
romy operator of (2.1), U(T; A). We shall define stability and strong stability of
the J-unitary operator U in the sense of Daleckii and Krein [8] as follows.

DEFINITION.
(i) A J-unitary operator U is said to be stable if

IIu"l[ c, n 1, 2,..., c =constant.

(ii) A J-unitary operator U is said to be strongly stable if there exists e > 0
such that all J-unitary operators U1 satisfying uII < are stable.

If we use the equation U(t;A)x(O)=x(t) and the principle of uniform
boundedness, we see that in order for any solution x(t) of (2.1) to be stable
(strongly stable) on 0 <= <, it is necessary and sufficient that U(T; A) is stable
(strongly stable).

Let us call Lt+/-3= {x e Sl(Jx, y) 0 /y eL}, the J-orthogonal complement of
L, and tr(A)= {AI(A -AI) does not have a continuous inverse}, the spectrum of
A. We also say that L is J-nonnegative if (Jx, x) >= 0 /x e L and J-nonpositive if
(Jx, x) <=O Vx

DEFINITION. A real number A A0 is called a pointo[strong stability of (2.1) if
for A Ao all of the solutions of (2.1) are strongly stable.

DEFINITION. By the spectrum of the boundary value problem

(2.2) t-------’dX( iAJH(t)X(t), X(O) +X(T) O,
dt

we mean the closed set f consisting of those A for which the operator U(T; A) + 1
does not have a continuous inverse. We let A-a and A denote, respectively, the
maximal negative and minimal positive points of the spectrum of problem (2.2).

If we let

(0 I)and H(t)=(B(t) 0 )(2.3) J=
-I 0 \ 0 A (t)
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then (2.1) becomes

dX(t)
)t ( 0 A (t)] X(t),(2.4) d-- -B(t) 0 I

0<_--t<,

with A*(t) A (t) A (t + T), and B*(t) B(t) B(t + T).
The main result of this section is the following.
THEOREM 2.1. Suppose that

(il g(s as O, H(tl
\ 0 A (I

and
(ii) either A(t)->0, O<-_t<- T, or B(t)_->0, O<-t<- T. Then all the solutions of

(2.4) are strongly stable whenever 0 < A < A 1.

Remark. It is relevant to note that Daleckii and Krein [8, Thm. 4.4, p. 224]
have proved the following theorem.

THEOREM (Daleckii and Krein). Suppose that

H(t) >- O, O <- <-_ T, H(s) ds >>0.

Then all solutions of (2.1) are strongly stable whenever

Therefore Theorem 2.1 is a generalization of the above theorem in the case of
equation (2.4). Before proving Theorem 2.1 let us recall and prove some
theorems.

THEOREM 2.2 [8, p. 221]. In order for a J-unitary operator U to be strongly
stable it is necessary and sufficient that S decomposes into a direct sum of two
J-orthogonal subspaces L1 and L2;

S=LI[+]L2,

where the subspaces L1 and L2 are invariant with respect to U, r(UIL1)fq
o-(U[ L2) b, andL is J-nonnegative and L2 is J-nonpositive. This decomposition
is unique.

THEOREM 2.3 [8, p. 221]. If the operator

TIo H(S) ds

is uniformly positive (denoted by H(s) ds >> 0), then there exists a 6 > 0 such that
all points h, -6 < h < 6, )t O, are points of strong stability of (2.1).

LEMMA 1 [8, p. 222]. Suppose that U(T, A) is the monodromy operator of
(2.4) for 0<h </1. Then

(i) the spectrum of U(T; is on the unit circle, and
(ii) if V(, -i[ U(T; I][ U(T; + I]-, then

V(h JN(X ),
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where

and

A

N(A)= 2 [U*(T; tx)+I]-IR(tz)[U(T; A)+I]-1

T

R (X) U*(s; X)H(s) U(s; ) as.

LEMMA 2. Under the assumption of Theorem 2.1, if there exists a o,
0 < Ao < A 1, which is a point ofstrong stability of (2.4), then R (Ao) >= 0 (nonnegative
definite) where R (A) is defined above.

Proof. For any Xo S

Xo(a.o)Xo Xo* U*(s; ,o)H(s) U(s; ,o)Xo ,is

X*(s)H(s)X(s) as,

where X(t) is the solution of (2.4) with initial condition X(0)= Xo. Let

X*(t) (Y*(t), Z*(t)).

Then from (2.4) we obtain

io o /X’R(ho)Xo (Y*(s), Z*(s))
\ 0 A (s) \Z(s)

ds

1
(Z Y*oo Z*(T) Y*(T)) + 2 Z*(s)A (s)Z(s) ds(2.5) =-

1
(Z,(T)Y(T)_ZdY,oo)+ 2 Y*(s)B(s)Y(s)ds.(2.6) =-

Daleckii and Krein [8, p. 50] have shown that U(T; Ao) can be represented in the
form

U(T; Ao)= (exp 0 exp (iH’))(ill1) 0

for some H1 because U(T; o) is strongly stable.
Since

u(r; o Zo \Z(TI’

we obtain

and

Y(T) exp (ill1) Y(O)

Z(T) exp (iH)Z(O),
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which implies that

Z*(T) Y(T) Z ro.
Therefore, (2.5) (or (2.6)) now becomes

x(0lx0= 2 Z*(s(sZ(s ds (s(sr(sl ds

>-0

because of the assumption (ii) of Theorem 2.1. Thus Lemma 2 is established.
ProofofTheorem 2.1. From Theorem 2.3 we know that there exists > 0 such

that all points I, 0 < A < , are points of strong stability of (2.1). Now we want to
show that 6 _-> h i.e., all points A, 0 < h < h 1, are points of strong stability of (2.1).
Suppose to the contrary, that there exists ho, 0< ho < A 1, such that all points A,
0 < A < ho, are points of strong stability and h ho is not a point of strong stability.
Since U(T;/z) is close to I for/z sufficiently small, R (/z) >> 0 and then N(/z) >> 0.
From Lemma 2, we obtain that N(A) >> 0 for 0 < h < h0. Since N(A) is continuous
with respect to h and by definition of N(A), there exists a small e > 0 such that
N(ho+ e) >> 0, i.e., N(A) >> 0, 0 ( h < A0+ e. It will then follow from Lemma 1 and
the properties of normally decomposable operators (see Daleckii and Krein [8,
1.8.2]) that V(A) is normally J-decomposable, 0 < A < ho + e. Since U(T.; A) can

be expressed in the form of a linear fractional transformation of V(A) it too is
normally J-decomposable. In addition, this operator is J-unitary. By virtue of
Daleckii and Krein’s theorem (see Daleckii and Krein [8, Thm. 1.8.3]), this
operator will be strongly stable. This contradicts h -ho is not a point of strong
stability. Therefore, Theorem 2.1 is now established.

3. Stability criteria. In this section we consider stability criteria of the
following system"

(3.1)
dEX(t)
dt2

+p(t)X(t)-O, O-t(oo,

with p*(t) p(t) p(t + T). Let

/X(t)
Y(t) ldx(t)] S O) S,

\dt/

where S is the Hilbert space. We may write (3.1) in the form of (1.1) as follows:

dY(t) ( o
Y(,,(3.2)

dt -P(t)

By letting/J= -I 0 and H(t) \ 0 we see that (3.2) has the same form
as (1.1). (For details see Dalecki and Krein [8, p. 225-226].)

Dalecki and Kren [8, Thm. 5.3] have obtained a stability criterion in the
infinite-dimensional case which is a generalization of Lyapunov’s criterion [9]. In
their paper, p(t) is positive over [0, T] and the average of p(t) over [0, T] is
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uniform positive. Here for the case/3 1 (see the following theorem) we only
consider that the average of p(t) over [0, T] is uniformly positive. Thus we have a
criterion which generalizes Borg’s criteria [2] and Daleckii and Krein’s criteria [8,
Thm. 5.3] in some cases. We also consider the case/3 > 1. (For the case/3 2, c.f.
Borg’s criteria [1] for the 2-dimensional case.)

THEOREM 3.1. All solutions of (3.1) are strongly stable whenever there exists

fl >- 1 such that

(i)

(3.3)
(ii)

T

p(s) ds >>O,

llp(s)ll ds < c,

where I1" is the induced operator norm and

4
if=l, c=-,

gt>l, c=
T

and
13-1

Proof. If we show that the number A from Theorem 2.1 satisfies the estimate

-1 < -c p (s)11t ds,

then (3.3) will, accordingly, imply that X > 1 A, and the validity of Theorem 3.1
will follow from Theorem 2.1.

Consider the class C(S) of all continuous functions X(t) (O<-_t <- T) with
values in S. We define a norm

IIxII- 0m_<_,a_<_x (llx(t)ll}.

Thus (C(S), I[" [I) is a Banach space. Define the integral operator K from C(S)into
C(S) by

T

(KX)(t) g(t- s)p(s)X(s) ds,

where

g(t-s)

T l-s

4 2’ 0<s<t,

T t-s-+---, t<s<T.
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Thus by Schwarz’s inequality,

II(gX)(t)ll <- Ig(t- s)l IIp(s)ll IIX(s)ll ds

__< c-/(
Therefore the induced operator K has the following estimate:

(3.4)
Ilgll IlxSUpll {llgXll} <-c -/". o

liP (s)ll ds

Since A e II and is a positive real number, there exists a nonzero X(t) such that

(KX)(t) -X(t),

(0 I) X(t). Thuswhich is equivalent to d2X(t)/dt2= A2
-p(t) 0

1fll(gX)ll} >.(3.5) Ilgll= sup/ Ilxll J xIlxll0

From (3.4) and (3.5) we obtain that 11 > 1. Thus Theorem 3.1 is established.
COROLLARY 3.1. All solutions of (3.1) are strongly stable whenever

(i) p(s) ds >> 0,

8
(ii) sup IIp(t)ll <--.O<=tNT

Proof. From the proof of Theorem 3.1 we know
T

II(gx)(t)ll <- Jo Ig(t-s)l IIp(s)ll IIX(s)ll ds

-< IIX(t)ll sup IIp(t)ll
8 O<_t<T

Then we may follow the proof of Theorem 3.1 to obtain the desired conclusion.
Remark. For the scalar case (1-dimensional case) of (3.1), Zubovskii [10]

proved that the solutions of

d2x(t)
dt2 +a(t)x(t) O, a(t+T)=a(t), 0<t<oo,

where a(t) is a piecewise continuous function, are all bounded provided
n27r2T-<-a(t)<-(n + 1)27r2T-2for all and some n =0, 1, .... For the case of
n 0 we may compare the above Zubovskii result with Corollary 3.1.
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In the following theorem we shall deal with (2.4) and obtain a stability
criterion which is a generalization of Brockett’s criterion [3] and some criteria in
[11]. Brockett considers the case where B(t) > 0 over [0, T]. Here we assume the
average of B(t) over [0, T] is uniformly positive.

THEOREM 3.2. All solutions of (2.4) with h 1 are strongly stable whenever
(i) eitherA(t)>O, O<-_t<-_T, orB(t)>-.O, O<-_t<-_T,

Io I0(ii) A(s) ds >>0, B(s) ds >>0

and

(iii) IIA(s)ll ds IIB(s)ll ds < 4.

Proof. We note that (2.4) with A 1 is equivalent to

( dr(t))d A_l(t) +U(t)y(t) O.d- dt /

We will follow the proof of Theorem 3.1. Define an operator K from C(S) into
C(S) by

lltT IO lltT Is T(KY)(t) - A (s) B(z) Y(z) dz as -- A (s) B(z) Y(z) dz ds

fot IoA(s) B(z)Y(z) dz ds A(s) B(z)Y(z) dz ds.
4

us the induced operator K has the estimate

liT I0
T

Now we follow the proof of Theorem 3.1 to obtain X > 1. This proves Theorem
3.2.

Acknowledgment. I would like to thank R. W. Brockett for his encourage-
ment, helpful suggestions and general interest in this work. I also would like to
thank P. Crough for his helpful suggestions.
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CONNECTION FORMULAS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH MULTIPLE

TURNING POINTS*

F. W. J. OLVER’[

Abstract. A study is made of the differential equation

d2w/dx:={uf(u,x)+g(u,x)}w, al <x <a,

in which u is a positive parameter. For each value of u, 02f(u, x)/Ox and g(u, x) are assumed to be
continuous in the finite or infinite open interval (al, a2). The function f(u, x) is real and its only zero
within (a 1, a2) is a single zero of multiplicity m- 2, where m (>_-2) is an arbitrary integer. For large
values of u, asymptotic approximations for the solutions are constructed in terms of Bessel functions of
order I/m, subject to certain restrictions on the behavior of f(u,x) and g(u,x) as uoo. These
restrictions are satisfied, for example, if f(u,x) is independent of u and g(u,x)= O(u’), where
< min (4/m, 1). Each approximation is uniformly valid throughout (a 1, a2) and is accompanied by a

strict and realistic bound for the error term.
In the case in which a and a2 are singularities of the differential equation, the uniform

approximations are applied to solve the problem of connecting the known asymptotic solutions in
terms of elementary functions (the Liouville-Green approximations) valid in a neighborhood of a2,

with the corresponding asymptotic solutions valid in a neighborhood of a 1.

1. Introduction and summary
1.1. Introduction. Consider the following two questions concerning a

differential equation of the form

(1.01) dew/dxE= f(x)w,

in which the independent variable x ranges over a finite or infinite interval
(al, a2), and f(x) is a real function that has singularities at al and a2, and is
continuous within (al, a2):

What is the nature of the solutions as x approaches the endpoints ?
Given a solution with a certain behavior at one endpoint, how does this solution

behave as x approaches the other endpoint?
A satisfactory answer to the first question is furnished by the theory of the

Liouville-Green approximation given in [23, Chap. 6]. The general result is as
follows. Assume that:

(i) In the neighborhoods ofa and a2, f(x) is nonzero, f"(x) is continuous, and
the function 1 d2

,if(x)l/4 dxn<x)

is of bounded variation.

* Received by the editors June 12, 1975, and in revised form October 17, 1975. This research was.
supported by the U.S. Army Research Office, Durham, under Contract DA ARO D 31 124 73 G204,
and by the National Science Foundation under Grant GP 32841X2.

" Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
20742, and National Bureau of Standards, Washington, D.C. 20234.

Throughout, we adhere to the convention that (a, b) denotes the open interval a < x < b, and
[a, b] denotes the corresponding closed interval a =<x =< b; similarly for the partly closed intervals
(a, b] and [a, b).
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(ii)

[Ifa/2(x) dx[-->oo as x-> a, + or a2-.

Then equation (1.01) has solutions Wa(X), Wz(X), w3(x) and Wa(X), such that

Wl(X)---.f-’/4(x) exp {I fl/2(x) dx},
(1.02) x- aa +,

w2(x).f-1/4(x) exp {- f fl/2(x) dx},
w3(x).-,f-/4(x) exp { I fa/a(x) dx},

(1.03) x--> a:-.
w4(x).f-1/4(x) exp { I fl/2(x) dx},

The following comments on this result are pertinent to the present investiga-
tion. First, the given conditions admit almost all kinds of singularities at a and a2,

including most regular singularities and all irregular singularities of finite or
infinite rank; see [23, pp. 197-202]. Secondly, the choice of integration constant
in the indefinite integral of fa/Z(x) appearing in (1.02) and (1.03) is unimportant,
since it only affects the solutions by a constant factor. Thirdly, even when this
constant of integration is fixed, the solutions may or may not be unique, but this is
immaterial at the moment.

To answer the second question posed in the opening paragraph, it suffices to
know the coefficients in two of the linear relations holding between any three of
the four solutions, for example,

Wl(X)=A1w3(x)+B1w4(x), w2(x)=A2w3(x)+B2w4(x).

These linear relations are called the connection formulas for the given differential
system. Exact expressions for the coefficients A a, Ba, A2 and B2 can be found only
in rare cases, and in general approximate methods have to be employed. In certain
physical problems, for example, barrier penetration and the approximate har-
monic oscillator 10], [6], [3], f(x) is twice continuously differentiable throughout
(a a, a2) and contains a real parametermwhich we shall denote by uZ--as a factor.
Asymptotic approximations for the coefficients in the connection formulas are
needed for large values of u. Of great importance in constructing these approxi-
mations are the number and multiplicities of the zeros of f(x) within (aa, a2). A
zero of f(x) of multiplicity m is called a turningpoint (or transition point) of (1.01)
of multiplicity m.

Satisfactory approximations, complete with strict error bounds, have been
constructed for the solutions of the problem outlined in the preceding paragraph
in cases when (aa, a2) contains at most two turning points, both of which are
simple; see [3] and [23, Chap. 13]. The purpose of the present paper is to supply a
similar theory when (a a, a2) contains a single turning point of arbitrary (integer)
multiplicity. A subsequent paper [26] extends the analysis to the general case in
which (a a, a2) contains an arbitrary number of turning points of arbitrary multi-
plicities.
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1.2. Summary. The paper is arranged as follows.
In 2 we consider the simplest form of differential equation having a multiple

turning point, obtained by setting f(x) equal to a constant factor times a power of
x. Depending on the sign of the constant factor and whether the power is even or
odd, three essentially distinct cases arise, which we designate I, II and III. With m
denoting a positive integer such that m -> 2, our classification is given by:

Case I: f(x)= 1/4m 2x’-2, rn even.
CaselI:f(x)= :z m-2--m x rn even.
CaselIi. f(x)=l 2 m-2zm x m odd.

Thus in each case the multiplicity of the turning point at the origin is rn -2. The
normalizing factor + 1/4m 2 has been introduced to simplify subsequent notation. In
each case, the differential equation is solvable exactly in terms of Bessel functions
(or modified Bessel functions) of order 1/m. Also, in 2 the correct choice of
standard solutions is discussed, and relevant properties of the solutions are
supplied, including exact connection formulas and illustrative graphs.2

In 3 we study the equation

(1.04) d2w/dx2={u2f(u,x)+g(u,x)}w, al <x <a2,

in which u is a positive parameter, and f(u, x) is nonvanishing within (a l, a2),
except for a zero Xo, say, of multiplicity m- 2. By means of an appropriate
Liouville transformation, equation (1.04) is transformed into one of the forms

d2 W/d(2 { +1/4mZue(m-2 + cib(u, r)} W,

in which the function b(u, sr) is expressible in terms of f(u, x) and g(u, x). On
neglecting b(u, st), the transformed equation is solvable in terms of the standard
solutions of 2. Strict error bounds are constructed for the approximations found
in this way. The analysis in this section is very similar to that of [25], which treats
the more general case in which the zero of f(u, x) may have any multiplicity,
integer or fractional. It is not possible to quote needed results directly from this
reference however, because solutions are given directly in [25] for only one of the
intervals Ix0, a2) or (a l, x0]. Moreover, solutions that comprise a numerically
satisfactory pair3 in the neighborhoods of x0 and a2 (or a 1), do not comprise a
numerically satisfactory pair in the neighborhoods of a and a2.

In 4 the results of 2 and 3 are applied to derive the desired connection
formulas for (1.04), complete with strict bounds for the error terms in the
coefficients.

In 5 the asymptotic nature of the error bounds of 4 is explored in the
commonly occurring case in whichf(u, x) is independent of u and g(u, x) O(u TM)
as u, uniformly with respect to x in compact intervals within (a l, a2), w
denoting a real constant. With suitable supplementary conditions, it is proved that
each error bound vanishes as u c, provided that w<min (4/m, 1). This
establishes the asymptotic validity of the approximate connection formulas in
these circumstances.

2 A detailed investigation of solutions of the equation dZw/dz z’w for integer values of rn and
complex values of z has been carried out by Swanson and Headley [28], and Headley and Barwell [7].
Solutions that are appropriate for complex z, however, are not necessarily the most suitable for real z;
in consequence, these references do not supply all the results needed in the present paper.

In the sense of Miller [19]; see also [23, pp. 154-155].
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Lastly, in 6 the work of other writers on the problem is described and
related to the present analysis.

2. Standard solutions of the basic equations
2.1. Case I. The basic differential equation is given by

2 rn-2(2.01) d2w/dt2 zm w,

where rn is an even positive integer.4 All solutions of this equation are infinitely
ditterentiable when (-oo, oo). In defining standard solutions, we are guided by
asymptotic behavior as + oo. From the theory of the Liouville-Green approxi-
mation given in [23, pp. 197-202], we know that there exists a unique solution
that is asymptotic to t(2-m)/4 exp (-tm/2) as t +oo. Since this solution is recessive
compared with all linearly independent solutions in these circumstances, we adopt
it as one of the standard solutions, and denote it by U,, (t). Thus

(2.02) Um (t) (2-m)/4 exp (--tin
the relative error in this relation being O(t-/2). It is also known from the theory
of the Liouville-Green approximation that the last relation is differentiable; thus

(2.03) U’m(t) 1_ .-2)/4

again with relative error O(t-m/2). Next, from (2.02), (2.03) and the differential
equation (2.01), it follows that as increases from- to +c, U,, (t) is positive and
decreasing, and U’m(t) is negative and increasing.5 To determine the asymptotic
behavior of Urn(t) as -oo, as well as to derive other properties, we express
Um (t) in terms of modified Bessel functions.

From the properties of Bessel functions collected in [21, Chap. 9], it is known
that the general solution of (2.01)is It[1/Zl/m([tlm/2), where 21/,, denotes any
modified cylinder function of order 1/m. Examination of the asymptotic form of
the modified Bessel functions for large positive argument yields the identification

(2.04) U,,(t)=(2t/)l/2K1/m(t’/2), t>0.

Letting 0 in this relation and its differentiated form, we find that

1/22(2-m
(2.05)

Urn(0) r- /(mr(/m),
U(O) 7r-1/22-(2+’)/(2mF( l/m).

These relations enable Um (t) to be identified in terms of modified Bessel functions
when t is negative; thus

(2.06) U(t)=(2Itl/Tr)l/2{Tr csc(Tr/rn)I1/m(ltlm/)+K1/(ltl/2)}, t<0.

4 Although (2.01) has no turning point when rn 2, no complications arise on including this case
in the subsequent analysis. In fact, because the solutions of (2.01) are elementary functions when
rn 2, a useful check on the results becomes available. Similarly in Case II below.

Let tl be the (algebraically) largest zero, if any, of U,,, (t). From (2.02) and graphical considera-
tions, there exists tz e (q, oo), such that U’,,(t2)= 0. Referring to (2.03), however, we see that this is
impossible, since from (2.01) and the fact that rn is even it follows that U(t)>=O when
Hence for all t, U,,, (t) is positive, U,(t) is nonnegative, and Um(t) is negative.
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Thence we derive

(2.07) Um (t) csc (Trim)It[ (2-m)/4 exp (I/1/2), t

(2.08) U’(t)--1/2m csc (zr/m)[t[-2/4 exp ([t[m/2), t - -o,

with relative errors O(t-m/2) in both cases.
As the second standard solution of (2.01) we employ Um (- t). As t increases

from -o to + o, this function and its first derivative increase strictly from 0 to
+. Clearly Um(t) and Um(--t) are linearly independent; they also comprise a
numerically satisfactory pair in the sense of Miller [19]. Their Wronskian is easily
calculated by letting + or 0. Either way yields

(2.09) W{Um(t), Um(- t)}= m csc (zr/m).

The connection formulas for equation (2.01) are in effect given by the
combination of (2.02) and (2.07).

Lastly, in the special cases rn 2 and 4, we have

(2.10) U2(t)-- e -t U4(t)-- 21/2U(0, 2t)

where U(a, t) is the parabolic cylinder function in the notation of Miller [20], or
[21, Chap. 19].

2.2. Case II. The basic differential equation in this case is given by

(2 11) d2w/dt2 2tin--2m w,

where rn is again an even positive integer. The Liouville-Green approximation
shows that as t +, all solutions of this equation have the form

Xt(2-m)/4{cOs tin +X) + O(t-m/2)},
where the amplitude X and phase X are arbitrary constants. Similarly, as -,
the solutions reduce to

f([tl(2-m)/4{COS ([tl m/2 +,) + O(t-m/2)},
where X and , are further constants. Following Miller [19], we seek a pair of
solutions that differ in phase by Tr as t- +o and also as t-. -o. The general
solution of (2.11)is Itl// (Itlm/2), where c1/m denotes any cylinder function of
order 1/rn. By considering the asymptotic forms of the J1/m and Y1/, functions
for large positive argument and connecting the solutions at t 0, we find that an
appropriate pair of solutions is Wm (t) and Wm (-t), where6

(7/’/) 1/2{ (m)7/"
(2.12) Win(t) tan J1/m(tm/2)+ gl/m(tm/2) t>O,

(2.13) Win(t) cot (---m J1/m(ltlm/2) Y/m(lt[m/2) t<0.

6 The analysis also shows that when rn->4, the only solutions meeting the stipulated phase
conditions are constant multiples of W,,(t) and W,,,(-t). The normalizing factor has been chosen to
make W,(t) and W’(t) agree with U,, (t) and U’,,(t), respectively, at 0; compare (2.05) and (2.18)
below. This has some notational advantages when we come to Case III.
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Relevant properties of these solutions are as follows:

( r ) t(2-,,)/4{cos +r) O(t-"/)},(2.14) W=(t)=sec mm (t/ +

m
(2.15) W’(t) - sec -m t(m-2)/4{sin (tin + 1/4at)+ O(t-m/2)},

rr ) -ar) + O(t-/)},(2.16) W,,(t)=csc [t[(2-m)/4{COS (It[ m/2

-’lr) O(t-ml2)},(2.17) W’(t) -csc Itl{m-2)/4{sin (Itl +

Wm(O 7r-1/22(2-m)/(im)F(1/ m),
(2.18)

W’,,(0) r-1/22-E+’/(2")F(-1/m),

(2.19)

Special cases are:

W{W,,,(t), W(-t)}=m csc (Tr/m).

(2.20) W2(/) 21/2 cos (t W4(t)--- 23/4 W(0, 2t),

to +cx3,

to +00,

It is on account of the second of (2.10) and the second of (2.20) that the symbols U and Whave
been chosen for the solutions of (2.01) and (2.11), respectively.

Using (2.19), we see that

tt{ (m) Wm()} m 2(m) 1
tan

Wm =sec W2() > o.

compare (2.14) and (2.16). Then the weight function E(t) is defined to be

cot _--> q

{ Wm(-t)}
1/2

(2.21) (t) -q=<--t<-qm;

tan _-< q,,.

COS W (t) sin W,, t);

where W(a, t) is the modified parabolic cylinder function defined by Miller, as in
[20], or [21, Chap. 19].7

In order to have a convenient way of assessing the magnitudes of the
functions Wm(t) and W,,(-t) and their derivatives in the error analysis in
subsequent sections, we introduce auxiliary weight, modulus and phase
functions as was done, for example, for the Airy functions in [23, Chap. 11]. Let

q, denote the smallest nonnegative root of the equation
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From this relation and the fact that Wm (0) > 0, it follows that the functions Wm (t)
and Wm (--t) have no zeros in the interval -qm =< t--< qm, and hence that Em (t) is
continuous and nondecreasing in the interval (-c, o). It is also clear that
Era(0) 1, and if E,l(t) denotes 1/Em(t), then

(2.22) Em (- t) Enl (t).

Modulus functions Mm(t), Nm(t), and phase functions Ore(t), tom(t), are
defined by

(2.23) Wm(t)=E,(t)Mm(t)sin Ore(t), Wm(-t)=Em(t)Mm(t)cos Ore(t),

(2.24) W’m(t)=El(t)Nm(t)sintom(t), W’(-t)=Em(t)Nm(t)costom(t).

Each is continuous in (-c, c). From (2.22) it is seen that Mm(t) and Nm(t) are
even in t, and

(225) 0 (t) "1-" 0 (-- t) 1/27/’, (.0 (t) -- (.9 (-- t)

Using (2.21), we arrive at the following expressions, valid when _>-q,,:

Mm (t) cot WZm(t) + tan Wm2( t)
(2.26)

N (t) cot W’2m(t) + tan W(- t)

Om(t)=tan - cot mm Wm(-t)
(2.27)

o,(t) tan- cot
W(- t)

Similarly, when -qm <- N q, we have

(-t l

(.9) , (t) tan- W(- t)W(t)

Lastly, when , we obtain from (2.14) to (2.17) the asymptotic forms

(2.30)

2.3. Case III. The basic differential equation in this case is the same as in
Case I, that is,

2 --2(2.31) d2w/dte=m t w,

except that now m 3, 5, 7,. . For positive t, the solutions have exponential-
type behavior. As in Case I, the first standard solution, which we denote by Vm (t),
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is recessive as t- + co and fixed by the condition

(2.32) Vm(t) t(E-m)/4 exp (- tm/e){l + O(t-’/2)}, t- +co.

Because this relation has the same form as (2.02), the formulas for Um (t) given in
2.1 carry over directly to V,, (t) when _>-0. Thus

(2.33) V’(t)

_
.(m-2)/4

with relative error O(t-"*/2),
(2.34) V,,(t)=(Zt/rr)a/eK1/m(t"/e), t>O,

and

1/22(2-m)/(Zm(2.35) Vm(0)= 7r- )r(1/m), V’m(0) r-/22-(2+m)/(2m)r(- l/m).
When is negative, the differential equation (2.31) has the same form as in

Case II, hence the solutions are oscillatory. Moreover, since the initial conditions
(2.35) agree with (2.18), the formulas for Win(t) given in 2.2 carry over to Vm(t)
when t _-< 0. Thus

(2.36) V,, (t) cot \m J/m Vl/m t < 0,

-Tr)+O(t-"/2)}, t- -,(2.37) Vm (t) CSC

(2.38) V,,,(t)=
m ( rr ) -2/ tlm/Zcsc mm Itl(m 4{sin (I -1/4rr)+O(t-"/2)}’ t-+ -co.

Again, following Miller [19], we choose the second standard solution of
(2.31), Vm(t), say, in such a way that V,(t) and V(t) are Tr out of phase as
x -. A convenient normalization is given by

(’lr) _t__47r)+O(t_m/2)},(2.39) Vm(t) sec -m Itl(Z-)/4{COS (It[m/2

since this has the same form as Wm( t) when t -* co; compare (2.14). Then from
2.2 we immediately derive

m (o)(2.40) f"m(t)= sec mm Itlm-e)/4{sin (]tlm/Z +1/4rr)+ O(t-m/)},

(2.41) Vm (t) tan mm J/(Itl"/) + Y1/m (Itlm/) t<0,

and

(2.42)
Vm (0) "rr 1/22(2-m)/(2m)F(1/m ),

_1/22_(2+m)/(2V’m(O) -rr )r(-/m).
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For positive t, we have, as in Case I,

(2.43) m(t)=(2t/r)l/Z{Tr csc(r/m)I/",(t",/Z)+K1/",(t",/2)}, t>0,

(2.44) ",(t)--csc(r/m)tz-",)/4exp(t’/2), t- +c,

(2.45) 9",(t)1/2m csc (zr/m){m-2)/4 exp (t’/2), +c,

the relative error in the last two relations being O(t-m/2).
The Wronskian relation in the present case is given by

(2.46) W{ V",(t), V",(t)} rn csc (Trim).

In the special case rn 3, the solutions are expressible as Airy functions, as
follows:

(2.47) V3(t) 25/631/67rl/2 Ai {()2/3/}, 3(t) 25/63-1/371"1/2 Bi {()2/3t}.

Next, when [0, ), V", (t) is positive and decreasing, V’m(t) is negative and
increasing, and both V", (t) and V’m(t) are positive and increasing. In the case,of

V", (t) and V’(t), this result is proved by similar analysis to that sketched in 2.1
for U,, (t) and U’(t). For Q,, (t) and ff",,(t), the result follows from the Maelaurin
series for V", (t).

Auxiliary functions are defined as follows. First, consider the equation

cos Q",(t)=sin 7r
V",(t).

There are no positive roots, since the left-hand side exceeds the right-hand side at
t 0, and the former is increasing and the latter decreasing. Let t -q", be the
negative root of smallest absolute value. Then the weight function we shall use is
defined by

(2.48)

t=> -q",;

1/2

t--__< -q",.

From (2.46) we have

d V(t)
dt Vm(t)

m csc V2",(t) > O.

Hence as t decreases continuously from t 0, the value -qm is reached ahead of
the first zero of Qm (t), which in turn is reached ahead of the first zero of V", (t).
Thus E, (t) is continuous and nondecreasing in the interval (-o, o).

With E,l(t) again denoting 1/E",(t), modulus functions M",(t), N",(t) and
phase functions O",(t), to",(t), are defined by

(2.49) V",(t)= E,(t)Mm(t) sin Om(t), V", (t) Em (t)M", (t) cos 0", (t),

(2.50) V’(t) Enl(t)Nm(t) sin tOm(t), V",(t) E", (t)N", (t) cos tO,, (t).
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o
FIG. 2.1. Case I. U,,, (t), m 2, 4, 6

//

FIG. 2.2. Case II. W2(t);E]l(t)M2(t)

FIG. 2.3. Case II. W4(t) E-l(t)M4(t)

FIG. 2.4. Case II. W6(t) El(t)M6(t)
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FIG. 2.5. Case III. V3(t) E-l(t)M3(t)

,//

FIG. 2.6. Case III. Q3(t) "E3(t)M3(t)

FIG. 2.7. Case III. Vs(t)

r,--^-A-^7--’/5"" / J,
vvvvvv L/ 0

El(t)Ms(t)

FIG. 2.8. Case III. Vs(t) "Es(t)Ms(t)
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Each is continuous. Using (2.48), we see that when _-> -q,,,
2 V,(I)t2 .] 1/2

(2.51) M,,(t)={2V,,(t)f/m(t)}1/2, N,,(t) /V(t)VL(t)+
(2.52) 0 (t) 1/47r, (.o (t) tan-1 Q’m(t) Vm (t)

Alternatively, when t-<- qm,

Mm (t) tan VZm(t) + cot ’mZ(t
(2.53) 1/2

{ /Nm (t) tan
r V’2m(t) + cot Q(t)

(2.54) Om(t)=tan- tan Q-,
Lastly, as + o, we find that

(2.55) M,, (t) {2 csc (rr/m)}l/2[t[2-’)/4,

(-/)m (t) tan-1 tan m V’m(t) J"

Nm(t) m{1/2 csc (r/m)}l/ltl"-/4

2.4. Graphs. Typical graphs for the standard solutions in Cases I, II and III
are given in the accompanying diagrams.

The continuous curves in Figs. 2.1-2.4 represent the solutions U,, (t), in Case
I, and Wm (t), in Case II, for rn 2 (no turning point), rn 4 (double turning point)
and m 6 (quadruple turning point). The graphs of Win(t) in Figs. 2.2-2.4 are
accompanied by broken curves representing the auxiliary function E,a(t)M,,(t).
This function is used as a majorant for w(t)l in constructing error bounds in
subsequent sections; compare the first of equations (2.23). The discontinuities in
the direction of the tangent to the broken curves occur at the points t +q,,,,
defined in 2.2. Numerical values to three decimal places are found to be

q2----- 0.000, q4 0.431, q6 0.596.

In a similar manner, the solutions V,, (t) and Vm (t) in Case III are represented
by the continuous curves in Figs. 2.5-2.8 for m 3 (simple turning point) and
rn 5 (triple turning point). The graphs of Vm (t) and V,, (t) are accompanied by
broken curves representingE t)M,, t), and Em t)Mm t), respectively; compare
equations (2.49). The discontinuities in the direction of the tangent to the broken
curves occur at qm, defined in 2.3. Numerical values to three decimal places
are given by

q3 0.279, q5 0.528.

All diagrams are drawn to the same scale, that is, from -5 to 5 horizontally
and from -2.75 to 6 vertically, except that the vertical scales in Figs. 2.1 and 2.2
have been shortened to 0 to 6, and -2.75 to 2.75, respectively.
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3. Approximations for the solutions
3.1. Preliminary conditions. In this section we investigate solutions of the

differential equation

(3.01) dZw/dxZ=(uZf(u,x)+g(u,x)}w,
when x ranges over a finite or infinite interval (a l, a2) and u is a positive
parameter. For each value of u, we suppose that g(u, x) is a real or complex
function that is continuous (or sectionally continuous) in (a 1, a2), and f(u, x)/(x
Xo)’-2 is a real function that is nonvanishing and twice continuously differentiable
in (al, a2). Here Xo is a given interior point of (aa, a2) (which may depend on u),
and m is an integer not less than 2. Thus the only possible zero off(u, x) in (al, a2)
is a zero of multiplicity m 2 at x Xo. As in 2, there are three distinct cases I, II
and III to consider, depending on the sign of f(u, x)/(x x0)m-2 and whether m is
even or odd.

Following similar investigations in [24] and [25], we introduce abalancing
function m(t), an auxiliary variable =- (u, x), an auxiliary function f(u, x) and
an error-control function Hm(u, x). These are defined as follows.

First, ,,, (t) is any conveniently chosen continuous8 even function of the real
variable t that is positive, except possibly at 0, and has the properties

"m (t) 0(t<’--2)/2),(3.02)

For example, a suitable choice is given by,. (t) 1 + Itl"-2/2.(3.03)

Secondly,

= If(u, Y)l 1/2 dy al <x =<Xo;

(3.04)

ff If(u, y)l */2 x0 -< X < a2.

Clearly " is a continuous and increasing function of x.
Thirdly,

(3.05) ?(u, x)= 4If(u, x)ll(m2lffl -2).
Fourthly,

(3.06) nm(U X)= /1’/4 ’X) a 14 X) -’*’/2(U, X) am(u2/m)
the arbitrary constant of integration being immaterial.

For example, in the case of the equation

d2w/dx2 2 2 -2=au m x w

Actually "continuous" may be replaced here by "sectionally continuous." Also, m(t) may
depend on u, but this does not need emphasizing in the notation.
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we may take f(u, x) 1/4m2x m-2, X XO and g(u, x) 0. Then ( x, f(u, x) 1, and
Hm(u,x)=O.

(3.07)

(3.08)

where

3.2. Case |.

THEOREM I. Assume the conditions and notation of 3.1, and also that m is
even and the sign off(u, x)/(x -x0)’’-2 ispositive. Then in (al, a2), equation (3.01)
has twice continuously differentiable solutions Wa(U, x) and w2(u, x) such that

WI(U X) f-1/4(U, x ){U (- u2/m) -1- , I(U,

W2(U X)--f--1/4(U, x){U (u2/m) + E2(U

(3.09) I,(u, )1 loci(u, )/ol
u, (- U=/nc)’ #,U’/"T/’(U, X)I U’(- u’/"C)

_-< exp { u2/m [/’al,x(Hm) 1,

(3 o) I,(u, )1 Io,(, )/oxl {2/m), U2/m_a/.,U
_--< exp

U (u ll’m J- X)l Utm(u2/m)l
and

u2/m [/’x,az(Hm) 1,

(3.11) Am sup
te(-oo,)

(3.12) jr/, sup
te(-, )

In this theorem and subsequent analysis, denotes the variational operator
defined and discussed in [23, pp. 27-29]; thus, for example,

OHm(u, y)
Oy

We note that as a consequence of the behavior of Um (t) and U’m(t) as t +/- o,
given in 2.1, and the conditiofls on lm (t) imposed in 3.1, the suprema in (3.11)
and (3.12) are finite.

To prove Theorem I, we begin by transforming from x to sr as independent
variable in the differential equation. Let sr st1, (2 correspond to the endpoints
x a 1, a., respectively. Either st1 or st2 or both may be at infinity. From (3.04) and
the fact that in the present case, f(u, x) is nonnegative, we see that

2.m --2-m 2f(u, x),

where the dot signifies differentiation with respect to sr. In place of w, we adopt a
new dependent variable, given by

(3.13) W=2-1/2w.
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The transformation from x and w to ( and W is then a Liouville transformation
[23, pp. 190-193]; accordingly the new differential equation is given by

(3 14) d2 Wide2 2u2srm-2{am + 4,(u, st)} W,

where

qb(u, ) .i 1/2{dZ(.i-1/Z)/d(2} + .i 2g(u, x).

From the definition (3.05) we see that

f(u,x)=ll(3.5)

and hence that

] d2 (ill/4) "__ 1 d:" (fll_)e,(u, +?- +.

LEMMA. With the conditions in the openingparagraph of 3.1, (/(x- Xo) is a

positive, twice continuously differentiable function of x when a <x <a2, and

d (u, ) is sectionally continuous in the corresponding interval 1 < < 2.
The proof of this result in the case m 3 can be found, for example, on p. 399

of [23]. The extension to other values of m is straightforward, and it is unnecessary
to record details.

We return to the proof of Theorem I. Substituting w2(u, x) for w on the
right-hand side of (3.13) and using (3.08) and (3.15), we obtain

W-- U (u2/m) ’Ji- E2(U X).

On combining (2.01), with w U,, and t= u2/m, and (3.14), we arrive at the
following inhomogeneous differential equation for the error term:

(d2e2/d2) 2 2m-2-am u 8,2 (D(U, ){Um(u2/m)-lt-E2}.
Using the Wronskian (2.09), we construct an equivalent Volterra integral equa-
tion:

(3.16) r2(u, ()=mu2/,,sin - K((, v)b(u, v){U,,,(uZ/’v)+rl2(u, v)} dv,

where T/2(U ’) has been written for 82(U, X) and

(3.17) K(, I.))’-- Um(u2/m)Um(-u2/mv) Um(-u2/m)Um(u2/mv).
From the monotonicity properties of the function U,, (t) stated in 2.1, it follows
that the kernel is bounded by

0 K(’, v)< Um(u2/m)Um(-u2/mv),

Next, if we differentiate (3.17) with respect to sr and use (2.09), bearing in mind
that U’,,, is always negative, we find that

og(, )] 2/mm () Um(-u2/mt))
0"

U CSC
Um (__ u2/m),
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and hence

OK(, v)

where jt/’m is defined by (3.12).
Having bounded the kernel and its st-derivative, we can solve the integral

equation (3.16) by the standard procedure of successive approximations, for
example, by applying Theorem 10.2 of [23, Chap. 6]. Then returning from " to x
as variable, we arrive at the desired inequalities (3.10). The proof of (3.09) is
similar, or we may merely replace x by x in the result for w2(u, x) and e2(u, x).

3.3. Case II.
THEOREM II. Assume the conditions and notation of 3.1, and also that rn is

even and the sign of f(u,x)/(X-Xo)m-2 is negative. Then in (al, a2), equation
(3.01) has twice continuously differentiable solutions wl(u, x) and w2(u, x) such
that

(3.8)

(3.19)

W (U, X)--i-1/4(u, X){W (- u2/m)-- I (U,

W2(U, X)--’i--1/4(U, X){W (u2/m()t- E2(U

where

(3.20)
M,,, (u2/m() U2/mil/2(U x)N (u2/m()

(3.21)

_<-_Em(U2/m() exp UP/m W’,,x(H.,) 1
P,,,

M. (u /mcl xl .,

<-- O’m Enl(u2/m) exp 2/m
Pm

and

(3.22) Pm sup {1sin()m(t)M2m(t)},rn

(3.23) O" sup
t(--cx3,

{ 1--sinm ()-m(t)lWm(t)lLm(t)Mm(t)}"
In this theorem the functions W,, (t), E,, (t), M,, (t) and N,, (t) are defined in

2.2. The proof is similar to that of Theorem I, and it is unnecessary to give
details. Again, in consequence of the asymptotic properties of W,, (t) and Mm (t)
for large Itl given in 2.2, the positive constants p,, and o’,, are finite. It is also clear
from (2.23) that O" /9 in consequence, o-,, may be replaced by p,, in (3.20) and
(3.21), thereby simplifying the results.
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3.4. Case III.
THEOREM III. Assume the conditions and notation of 3.1, and also thatm is

odd and the sign off(u, x /(x Xo) -2 is positive.9 Then in a 1, a2), equation (3.01
has twice continuously differentiable solutions Wl(U, x) and WE(U, X) such that

(3.27)

(3.24) w(u, x)=-l/(u, x){m(u2/’r) + el(U, x)},

(3.25) w2(u, x)

where

x)l la ,(u,(3.26) mm (u2/m’() u2/mI/2(U X)Nm (U2/m()

N’N(u/() exp ,u/m %(H) 1

x)N 

N’N(u/() exp
uPm
2/m

and

(3.28) p,, sup
te(-,)

{-sin ()f.,(t)M(t)},
(3.29> o’m.1 sup _--Tsin{’_’__,O.,(t>lQ.,(t>lE,l(t)Mm(’)},

t(-,) tm \m/ J

(3.30) O’m,2: sup {sin ()..(t)lV.(t>lE.(t)M.(t)}.
t(-,) m

In this theorem, the functions V. (t), V. (t), E. (t), M. (t) and N. (t) are
defined in 9 2.3. e proof is similar to that of eorems I and II. Again, the
positive constants p., #m,1 and #., are finite, and since #.,1 and #.. are both
bounded by Pm, the ratios m,1/flm and #.,2/P. in (3.26) and (3.27) may be
replaced by unity.

3.5. Remarks on Theorems I, II and III. (i) The present results agree with
earlier ones in cases in which there are no turning points or one turning point.
Thus Theorems I and II reduce respectively to Theorems 2.1 and 2.2 of [23, Chap.
6] when m 2 and f2(t)= 1, and Theorem III reduces to Theorem 3.1 of [23,
Chap. 11] when rn 3 and ,3(t)----It[ 1/2.

(ii) The theorems are essentially inequalities for the solutions of the differen-
tial equation, and not asymptotic results per se. Subject to the given conditions
they are valid for any positive value of the parameter u, not necessarily large. But,
of course, the results are of interest only when the error terms el(U, x) and e2(u, x)
are small compared with the corresponding approximants U(wuZ/),

9 Cases in which the sign off(u, x)/(x Xo)"-2 is negative can be accommodated by replacing x by
x throughout.
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Wm( ::1:: u2/m), 9m (U 2/me) or V,, (U 2/m). When this happens, the graphs in Figs.
2.1-2.8) mirror the behavior of the actual solutions, or more precisely, the
products of each solution and the function 1/4(u, x). In 5 it will be shown that
with suitable dependence of f(u, x) and g(u, x) on u, the error terms are uniformly
vanishingly small compared with the approximants as u oe.

4. The connection formulas
4.1. Preliminary conditions. In this section we construct connection for-

mulas for a turning point of arbitrary multiplicity which are analogous to the
Gans-Jettreys formulas for the case of a single turning point given, for example, in
[23, pp. 491-494].

As in 3, we consider the differential equation

(4.01) d2w/dxZ={uZf(u,x)+g(u,x)}w, u >0,

in which the given interval (a 1, 22) is finite or infinite and contains just one zero x0,

say, off(u, x), the multiplicity of this zero being m 2. In addition, we assume that
within (al, a2):

(i) f(u, x)/(x-x0)m-2 is real and twice continuously differentiable.
(ii) g(u, x) is continuous.
(iii) As x al + or a2-, the integral Xxo If(u, y)]1/2 dy diverges and 7/’(F)

converges, where F(u,x) is the error-control function for the Liouville-Green
approximation, that is,

1 d2

f,g,/2!1.1 dx.(4.’02) F(u, x) I {[fll/4 ---x-2 (ifil/4)
We first show that these conditions ensure that the error-control function

H,,, (u, x) defined by (3.06) is of bounded variation in (a, a2), provided that the
balancing function lira (t) is chosen to satisfy the extra condition

(4.03) 12m(t)/[tlm--2/econst., - +oo.

Substituting in (3.06) by means of (3.05) and using the differential relation
If] 1/2 dx 1/2m](lm-2/2 d(, we find that

(4.04) Hm (u, x)

/4 /4 -m (u2/m)
2 Im -4 dsr

Condition (iii) above implies that (-oe as x al +, and ( +oe as x a2-.
Aided also by (4.03), we see that each integral on the right-hand side of (4.04)
converges absolutely, and therefore that t/(Hm) converges, as asserted.

4.2. Case I. Here m (_->2) is even and the sign of f(u,x)/(X-Xo)m-2 is

positive. With the given conditions it is known from the theory of the Liouville-
Green approximation [23, pp. 197-200] that for each value of u there exist
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unique solutions k21(U X) and l2(U X), say, of (4.01) having the properties:

(4.05) a(u, x)---’f-1/4(u, x) exp u fa/Z(u, y) dy x aa+,

((4.06) (u, x)-/4(u, x) exp u /(u, y) dy x a-.

Our object is to determine the asymptotic form of (u, x) as x a- and the
asymptotic form of (u, x) as x a +.

All the conditions of eorem I of 3.2 are satisfied with the present
assumptions, in consequence there exists a solution w(u, x) given by (3.08) and
(3.10). Furthermore, the right-hand side of (3.10) is finite for each u. Letting
x a-, we see that

E2(U X)/ U (u2/m) O,

and hence from (.08) that

(u, x)-/(u, x)V(u/).
Since +, we may replace U(u/) by its asymptotic form, obtainable from
(2.02). Then using (.04) and (.05), we derive

(w(u,x)(m)/u(-l/(-/4(u,x)expk-u y) dy

On comparing this relation with (4.06), we identify

(4.07) a(u, x)= wa(u, x).(m -/u-/

We now let x a +, that is, (-. From (3.08), (3.10) and (2.07), we
obtain

(u, xl

(m)/ csc (/m) (1 + k)u(-/(-/4(u, x) exp u (u, y) dy

where k is a constant bounded by

(4.08) ka N exp {mu-/%,(H)} 1,

provided that the right-hand side of this inequality does not exceed unity. Here
I is defined by (3.11). Combination of this result with (4.07) immediately yields

(4.09) (u, x)(1 + k) csc -/4(u, x) exp u /(u, y) dy

Relations (4.06) and (4.09) comprise one of the wanted connection formulas.
By symmetry, the other formula is given by (4.05) and

(4.10) (u,x)(l+k)csc()-/4(u,x)exp u /(u,y)d,

o Actually it is not obvious that k is a constant, that is, independent of x, because eorem
merely states that e(u, x)l/U(u/() is bounded as x a +.e assertion is justifiable, however,

f eorem 3.1 of [23, Chap. 6].
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where kl is a constant subject to the same bound (4.08) as k2.
4.3. Case II. Here m (_->2) is even and the sign of f(u,x)/(X-Xo)"-2 is

negative. With the conditions of 4.1, for each value of u there are unique
solutions (u, x) and 2(u, x) of (4.01), such that

(4.11) ff, l(U,X)=lf(u,x)l-/4 cos u If(u, Y)I 1lady+1/4 +o(1)

x->a1+,

(4.12) 1,2(u,x)=lf(u,x)[-1/4 cos u If(u, y)11/2 dy+1/4 +o(1)
0

X---> a2.

Using analysis similar to that of the preceding subsection and 7.2 of [23,
Chap. 13], we find that

( ’r/" ) --1/4(4.13) l(U, x) (1 + 3’1) cot mm If(u, x)[

cos u If(u, y)[1/2 dy-w+1 +0(1) X az-,

_1 4(4.14) 2(u, x) (1 + y) cot f(u, x)[

x
cos . [f(u, yl[ 1/

where 71, , 81 and 8 are constants bounded by

[(4.15) I1, [7, 211 282[<g exp u/Pm

and p and g are defined by (3.22) and (3.23). These results are the required
connection formulas, and are valid whenever the right-hand side of (4.15) does
not exceed unity.

4.4. C.se III. In this case, m (3) is odd and the sign of [(u, x)/(x -Xo) is
positive. 11 Again, with the conditions of 4.1, for each u there are unique
solutions (u, x) and (u, x), such that

(4.16) ffl(U,X)=lf(u,x)l-/4 cos u If(u, Y)I 1/edy+- +o(1)

x-->al +,

(Ix )(4.17) I’2(U x)f--1/4(U, X) exp u fl/2(u, y) dy x -> a2-.

11 As in 3.4, cases in which f(u, x)/(x --X0)m-2 is negative can be accommodated by reversal of
the sign of x.



CONNECTION FORMULAS 147

Using analysis similar to that in Cases I and II, we find that the required
connection formulas are given by

(4.18) ll(U x)---1/2(1 + k) csc --1/4(U, X) exp u fl/2(u, y) dy

(4.19) k2(u, x) (1 + y) csc If(u, x)l-

xa2-,

where k, 3’ and 6 are constants bounded by

(4.20) [k 21/2 Crm’----l exp 2/m
/9 U

(4.21) 13’1, 21 1 exp .u/ ,,(H) 1

x -.-> a -k-

and tom, O’m, and O’m,2 are defined by (3.28), (3.29) and (3.30). The only additional
condition needed is that in the case of (4.19), the right-hand side of (4.21) must not
exceed unity. It is easily verified that these results reduce to those given in [23,
pp. 491-494] in the case m 3.

4.5. Remark. In each of Cases I, II and III, we have constructed connection
formulas for two solutions of the given differential equation, complete with
bounds on the errors in the approximate coefficients. Provided that the error
terms are small compared with the coetticients--and this forms the subject of the
next sectionmeach pair of solutions of the differential equation is numerically
satisfactory, because the approximating functions were chosen in 2 to be
numerically satisfactory solutions of the corresponding basic equation. In conse-
quence, connection formulas for any other solution can be deduced whenever the
problem is not ill-posed. This aspect is discussed more fully in [26].

5. Asymptotic estimates of the error terms
5.1. Preliminary remarks. The error terms el(U, x) and e2(U, X) appearing in

the solutions given by Theorems I, II and III of 3 depend on the parameter u, as
do the error terms k, kl, k2, 3", 3’1, 3"2, 6, 61 and 62 in the connection formulas
derived in 4. The behavior of these error terms as u obviously depends on
the manner in which u enters the functions f(u, x) and g(u, x) in the given
differential equation (3.01).

5.2. A typical ease. Let us assume that the endpoints a and a2 of the
x-interval are independent of u, and that the conditions of 3.1 are satisfied. We
also assume that:

(i) f(u,x)=-f(x) is independent of u, and the variation of the function
f-1/4(x){f-1/4(X)}" dx converges as x al + or a2-.
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(ii) There is a real constant w such that u-’[g(u, x)[ is bounded when u is
arbitrarily large and x ranges over any fixed compact interval within (al, a2).
Moreover, the variation of u-’g(u, x)f-1/2(x) dx converges uniformly with respect
to u as x- a + or a2-.

The main problem is to find an asymptotic estimate of ]#al,a2(Hm) as U --- o0,where Hm(u, x) is defined by (3.06); thus

ffaa2j d2(f.1 )(5.01) l/’a’az(Hm) fl
1 1 __g(u, x) dx
/4(X) X"-2 /4(X ?/2(X) ’-m(ue/m)"

Consider first the interval Ix1, X2], where X and xs are any fixed points such
that a < xl < Xo < xs < as. From (3.05), we have

f(x)=_f(u,x)=4__ If(x) (X-Xo),,
m-2

By hypothesis, [f(x)l/[x- Xolm-s is nonvanishing and twice continuously differen-
tiable, and from the Lemma of 3.2, and the corresponding results for Cases II
and III, we know that the same is true of (X-Xo)/. Hence i-1/4(f-1/4)" is
continuous in (al, as) and therefore bounded in absolute value in Ix1, xs]. Next,
using Condition (ii) above, we see that u-’-/(x)lg(u, x)[ is bounded in Ix1, x].
Combination of these two results shows that

If 1 ds

() 1 )_g!u,x)l ’o(5.02) l’/4(X X2 i’/4(X fl/.(x)[ <=Au u >- 1, x e [Xx, x2]

where A is a constant and

(5.03) Wo max (xu, 0).

We now adopt the choice (3.03) for the balancing function ),m(t). Since
(X-Xo)/ is bounded in Ix1, xs], it follows that

1
1",, (u2/’") 1 + u

A
(m--2)/m [x XO[(m--2)/2’

where the symbol A is now being used generically. On combining this inequality
with (5.02) and referring to (5.01), we see that

oUXl xz(Hm) <=Auo lxX2 dx
1 + u(m-2)/m iX Xo[(m-2)/2"

With s u s/" (x- Xo) as new integration variable, we have

Ixx2 dX l lo"/’(x--X1 + u(m-2)/mlx--XoI(m--2)/2= U 2/m 1 +S

For large u, this is O(U-(m-2)/m), O(U-2/m In u) or O(u-2/m), according as
2 -< rn < 4, rn 4 or rn > 4. The same estimates hold for the corresponding integral



CONNECTION FORMULAS 149

over the interval [xl, x0], hence [/’xl,x2(Hm) is estimated by

O(um-l+(2/m)), rn 2, 3;

(5.04) O(u’-/2) In u), m 4;

O(uW--(Z/m)), m > 4.

Next, consider the contribution from the interval [x2, a2). Instead of (5.01),
we shall use the expression (4.04), with the same choice (3.03) for (t). Since ( is
nonzero in the present circumstances, we have

i1-/ (m-)l 1
m(u2/m) 1 + U(m-2)/m((m-2)/2

(
u(m-2)/m"

Combining this bound with Conditions (i) and (ii) in turn, we derive

fl/(x) fl/4(x) am(u2im) dx 0 u(m-2)/m’

and

If’/2(x) ’m(u21m() U(ni-’)lm")
For the remaining contribution in (4.04), let ’2 again denote the value of sr

corresponding to x a2, and z2(>0) the value of ( corresponding to x Xz. Then
we have

21m() .2{1 + u (m-2)lrn((m-2)12}

< u(rn--2)/m 7(m+2)/2 0 u(m--2)/m

since the last integral converges when rn -> 2. Substituting in (4.04) by means of
these three relations, we see that

[/’x2,a:z(nm)--= O(U(mmo--m+2)/m),
which is absorbable in the estimates (5.04) for cXl,xE(Hm). Similarly a,,x,(H,,) is
absorbable in (5.04). Accordingly /’a,az(Hm) also, is estimated by (5.04).

Uniform estimates for the error terms el(U,X) and e2(u,x) appearing in
Theorems I, II and III are easily available now by substituting (5.04) for the
variations of H,, appearing in these theorems. For example, in Case I both
81(u,x)/Um(-U2/m) and 82(u, x)/ Urn (u2/m) are estimated by

O(u’-l), rn =2, 3;

(5.05) O(U-1 In u), m =4;

O(uW-(41m)), rn > 4;

uniformly for x E(al, a2). Furthermore, with the additional condition that
1/2Io If y)[ dy diverges as x al + or a2- each of the error terms k, kl, k2, y, yl,

yz, 6, 61 and 62 appearing in the connection formulas of 4 is estimated by (5.05).
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5.3. Specializations. If the conditions stated in the first paragraph of 5.2 are
satisfied and r _-< 0, then from (5.03) we have 0. Accordingly, the estimates
(5.05) become

O(u-1), m=2,3;

(5.06) O(u-1 In u), rn 4;

O(U-n/’n), rn > 4.

In particular, these estimates apply when g(u, x) is independent of u, provided
that Igf-a/21 dx converges as x --> a + or a2-.

On the other hand, if w > 0, then Wo w. The estimates (5.05) for the error
terms are valid for any w, but they are useful only when they are o(1) as u --> .
Thus we require w < 1 when rn 2, 3 or 4, and w </4rn when rn >4. When
these conditions are fulfilled Theorems I, II and III, and the corresponding
connection formulas of 4 supply useful information, but not otherwise. To put
this another way, when w->min (1, 4/m), the term g(u, x) in (3.01) cannot be
treated as a perturbation compared with u2f(u, x); at least part of g(u, x) must be
taken into account in constructing the basic equation, in consequence Bessel
functions no longer furnish adequate approximations to the solutions.

6. Previous results and conclusions
6.1. Simple turning points. In the case of a simple turning point, two types of

method are available for the construction of connection formulas. The first
consists of approximating, in some manner, the solutions of the differential
equation by Airy functions or, equivalently, Bessel functions of order one-third,
and then substituting for the approximants by their asymptotic approximations in
terms of elementary functions for large positive and negative arguments. In the
case m 3, the method used in the present paper is of this type.

The second method is applicable onlywhen the coefficientsf(u, x) and g(u, x)
in the given differential equation (3.01) are analytic functions of the complex
variable x. We first map the so-called principal curves (or anti-Stokes lines)

(6.01) Re fl/2(u, y) dy 0

in the complex x-plane, where Xo denotes the turning point. Since f(u, x) has a
simple zero at Xo, three of these curves emerge from this point, dividing the
x-plane into three regions, which we refer to as the principal subdornains
corresponding to Xo. Associated with each principal subdomain there is a solution
of the differential equation which is recessive as x --> c within the subdomain, and
dominant as x --> az in the other two subdomains. Except in the neighborhood of
the turning point, each of the three solutions can be approximated uniformly in
terms of elementary functions by the Liouville-Green theory. The linear identity
holding between the three solutions is, in effect, the required connection formula.
Because two of the solutions are dominant in any chosen principal subdomain,
they have to cancel each other in the connection formula as x--> in this
subdomain. This condition yields exactly the right number of equations to
determine the coefficients in the connection formula. An attractive feature of this
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method is that approximations in terms of elementary functions are continued
around the turning point without having to construct approximations in terms of
nonelementary functions valid in domains that include the turning point. Another
advantage is that a simpler error-control function is used in constructing error
bounds (although the variation of this function has to be calculated along curves in
the complex plane instead of the real axis).

Wasow [29] appropriately has called the first type of method central connec-
tion, and the second type lateral connection. Detailed accounts of rigorous
methods of both types are included in [23, Chap. 13]. These references, and also
[11], [9], [6, Chap. 1], [3, Chap. 1], [30], [17] and [1, pp. 292-295], sketch the
history and modifications of the methods.

6.2. Multiple turning loints. As we have seen in the present paper, the
method of central connection can still be used for double and higher turning
points. A true analogue of the rigorous lateral connection procedure for a simple
turning point has yet to be found, however. All published methods, including
those mentioned below, that continue an approximate solution around a multiple
turning point in the complex plane are based, directly or indirectly, on approxi-
mate representations in terms of Bessel functions valid at the turning point. To
distinguish these complex-variable methods from direct central connection proce-
dures along the real axis, we shall call them pseudo-lateral methods.

Another way in which the connection formula problem for simple turning
points differs from that for multiple turning points is that in the former case, the
uniform asymptotic approximations for the solutions of the differential equation
can be extended in straightforward manner into uniform asymptotic expansions in
descending powers of the large parameter u; see [23, Chap. 11]. Although
asymptotic expansions in descending powers of u can be constructed for the
solutions in regions containing a multiple turning point [18], [27], [16], [31], in
marked contrast to the case of a simple turning point, these expansions are
uniformly valid only for bounded values of the independent variable; compare
[24, 11]. Moreover, in the case of [18], [27] and [16] the expansions are in terms
of functions of two or more variables.

The earliest paper deriving connection formulas for multiple turning points
appears to be that of Goldstein [4]. He treats equation (3.01) with g(u, x) 0 and
f(u, x)=-f(x) independent of x. The zero Xo of f(x) may have any multiplicity.
Goldstein’s method is an extension of the procedure successfully employed by
Jettreys for a simple turning point [8]. Thus f(x) is replaced by the first nonvanish-
ing term .f(’-2)(Xo)(X--xo)m-2/(m --2)t in its Taylor series expansion at Xo, where
m- 2 is the multiplicity of the zero. The differential equation is then solvable
exactly in terms of Bessel functions (or modified Bessel functions), as we saw in
2. The connection formulas are found by replacing the Bessel functions by their

asymptotic approximations for large positive and negative arguments. Goldstein’s
connection formulas agree with those obtained by rigorous analysis in the present

12paper.

Misprints on pp. 84 and 86 of [4] are corrected in [5].
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A second paper by Goldstein [5] treats the case in which f(u,x) and
u-lg(u, x) are independent of x, and f(u, x) has a double zero at x0. As we
perceived in 5.3, Bessel functions are no longer adequate approximants to the
solutions in these circumstances. By using parabolic cylinder functions instead,
Goldstein is able to derive connection formulas by analysis similar to that of [8]
and [4]. A somewhat more general version of the same problem was treated
subsequently by Langer [12]. Langer’s analysis is rigorous, and he supplies
uniform asymptotic approximations for the solutions in the complex x-plane. It
may be noted, incidentally, that recent results of the present writer for the case of
two coalescing simple turning points [24] are applicable to this second problem of
Goldstein is able to derive connection formulas by analysis similar to that of [8].

Returning to Goldstein’s first problem, we note that almost all subsequent
writers have espoused the pseudo-lateral approach, deriving rules for the discon-
tinuous changes in the coefficients in the Liouville-Green approximations as the
solutions pass from one principal subdomain in the complex plane to the next. The
first systematic treatment of this kind for a turning point of arbitrary multiplicity
appears to be the formal analysis of Heading on pp. 89-93 and pp. 110-115 of [6].
Similar analysis was given subsequently by Fr6man and Fr6man [3, pp. 69-74],
and also Evgrafov and Fedoryuk [2, pp. 34-35]. 13

Apart from 12], rigorous analyses of the pseudo-lateral methods begin with
papers of Lee [13] and Leung [14], [15], which establish the connection formulas
for adjacent principal subdomains for a double turning point. Extensions to
turning points of any multiplicity have been made by Nishimoto [22], Sibuya [27]
and Leung 16].

6.3. Conclusions. The present paper is essentially a rigorous formulation,
with extensions, of the results of Goldstein’s first paper [4]. For connection
formula problems along the real axis, this approach has the following advantages
over the complex-variable approach adopted in the references mentioned in
6.2:

(i) The coefficients f(u, x) and g(u, x) in the given differential equation
(3.01) need not be analytic functions of the complex variable x. It suffices that
oEf(u, x)/Ox and g(u, x) are continuous functions of the real variable x (and even
this condition could be relaxed to some extent).

(ii) There is no need to investigate the topology in the complex plane of the
principal curves (6.01).

(iii) A solution can be continued along the real axis through the turning point
by means of a single connection formula. With the complex-variable approach,
there are rn principal subdomains associated with a turning point of multiplicity

13 Instead of drawing on known properties of Bessel functions in discussing the equation
d2w/dt tm-2w, Fr6man and Fr6man, and Evgrafov and Fedoryuk, derive the necessary connection
formulas ab initio by elementary analysis. However, this analysis hinges upon the Fuchs-Frobenius
theory of the differential equation as t- 0, and can be regarded simply as a way of establishing the
connection formulas for the Bessel functions. Thus the connection procedure of these authors is
properly classified as central and not lateral. Incidentally, although the treatment of multiple turning
points in [2] and [3] is formal, the analysis of simple turning points in both references is rigorous. It may
also be noted that [2] includes a systematic study of the topology of the principal curves (6.01) in the
complex plane when any number of turning points are present.
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rn 2, and a total of almost [1/2m ] successive steps from one principal subdomain to
the next is needed to achieve the connection along the real axis.

(iv) Explicit and realistic bounds are available for the error terms.

Acknowledgment. Figures 2.1-2.8 were plotted mechanically from values of
the solutions obtained by numerical integration of the differential equations
(2.01), (2.11) and (2.31). The programs for the calculations and plotting were
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assistance.
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WEAK SOLUTIONS OF THE TIME-DEPENDENT
CONTINUOUS-ENERGY EQUATION OF NEUTRON DIFFUSION*

JOHN R. CANNON’[" AND PAUL NELSON:I:

Abstract. Existence, uniqueness, continuous dependence upon the data, and nonnegativity of the
weak solution is demonstrated for the solution of an initial-boundary value problem for the continuous
energy diffusion approximation to the neutron transport equatibn.

1. Introduction. Pao [ 1] has recently studied solutions of classical type for the
time-dependent continuous-energy version of the neutron diffusion equation.
The continuous-energy diffusion approximation to the neutron transport equa-
tion is frequently termed the "P1 equation" [2]. In the present paper we study
weak solutions to the time-dependent P1 equation. Hlaviek [3] has also been
motivated by neutron diffusion theory to consider weak solutions of certain
operator equations; however his results seem to require in an essential way the
appearance of the second time derivative in the underlying equation, and there-
fore are presumably not applicable to the "parabolic" equation considered in the
present paper.

In the next section we introduce the initial-boundary value problem and its
weak formulation. Section 3 is devoted to the study of weak solutions of an
auxiliary parabolic problem containing a parameter. Application of the results of
{} 3 is made in 4 to obtain existence and uniqueness. Properties of the solution
are discussed in {} 5.

2. The problem. We write the time-dependent continuous-energy neutron
diffusion equation in the form

(2.1) v(E)k(x, t, E, E’)(x, t, E’) dE’

+ v (E)q (x, t, E), (x, t, E) Or Qr x (o, oo).

Here t is time, x (xl, , xn) is in the normal domain , E is energy, V denotes
the gradient operator in the spatial variable x, Qr II x {t 0 <- <= T} for some
fixed T>0, the given functions v(E), D(x, t,E), (x, t,E), q(x, t,E) and
k(x, t, E, E’) represent respectively neutron speed, diffusion coefficient, total
scattering cross-section, external source and the expected density of neutrons of
energyE resulting from a neutron of energy E’ undergoing a collision at (x, t), and
the neutron flux q(x, t, E) is to be determined. All omitted arguments in (2.1) are
to be understood as (x, t, E). Note that the function k includes consideration of all
types of collisional events, including fission, scattering and absorption. The initial

* Received by the editors July 24, 1975, and in revised form May 25, 1976..

" Department of Mathematics, University of Texas at Austin, Austin, Texas 78712.
$ Department of Mathematics, Texas Tech University, Lubbock, Texas 79409.
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156 JOHN R. CANNON AND PAUL NELSON

and boundary conditions for (2.1) will be taken respectively as

(2.2) qg(x, 0, E) q0(x, E)(=>0), (x, E) 61" 1 (0,

and

(2.3) o(x, t, E) 0, (x, t, E) 6 $7-= $7- (0, oo),

where $7.=01 {t’0 < t _-< T}.
With regard to the given functions in (2.1)-(2.3) we make the following

assumptions.
(H1) v(E) is a nonnegative measurable function defined for E 6 (0, oo). (It is

important to the physics of the problem that v not be required to be bounded
either above or away from zero.)

(H2) D D(x, t, E) is a positive measurable function defined on 07- such
that the product v(E)D(x, t, E) is bounded above and away from zero on

(H3) Y_, E(x, t, E) is a nonnegative measurable function on 07- such that the
product v(E)Z(x, t, E) is bounded above on

(H4) k k(x, t,E,E’) is a nonnegative measurable function defined on
Ox(0, ) such that

(2.4) ess sup f [v(E)k(x, t, E, E’)] dE dE’= K< c.
(x,t)07- .(0,oo)(0,oo)

(H5) qo rC0(x, E) is a nonnegative measurable square-integrable function
on f f (0, c).

(H6) q =q(x, t, E) is a nonnegative measurable function defined on QT- such
that v(E)q(x, t, E) is square-integrable over

DEFINITION 1. We denote by U(T) the Hilbert space which is the closure
under the norm defined by

(2.5) ii 01 z [. 2[U(T)-- [(4 + Vq Vq] dx dt dE

of the functions q 6 C((7-) which vanish on 7-.
DEFINITION 2. By UI(T) we denote the subspace of U consisting of those

functions with a square integrable generalized t-derivative on 07-.
DEFINITION 3. A weak solution of the system (2.1)-(2.3) is a function

q 6 U(T) such that

-IO n,o dx dt dE + Io vDVq Vo dx dt dE + Io vElo dx dtdE

(2.6) fO n(x, t, E)v(E)k(x, t, E, E’)q(x, t, E’) dE’ dx dt dE
.-x(O,oo)

+ IO rlvq dx dt dE + I6 qo(x, E)rt(x, O, E) dx dE

for all functions n e U(T) such that n (x, T, E) --- 0, (x, E) .
Remark. Equation (2.6) is obtained from (2.1)-(2.3) in the usual manner.
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3. A parabolic partial differential equation with a parameter. We consider
first the problem of the determination of the weak solution u u(x, t, E) of

On

(3.1) Ot
v(E)V (DVu) + v(E)u f(x, t, E), (x, t, E) Or,

u (x, t, E) O, (x, t, E) e r,
U(X, O, E) g(x, E), (x, E) h,

where v, D and satisfy H1, H2, and H3 respectively, g replaces (00 in (H5), andf
replaces both q and vq in (H6). By the usual integration by parts, we make the
following

DEFINITION 4. A weak solution of (3.1) is a function u U(T) such that

(3.2)

for all functions
We begin our study of weak solutions of (3.1) by consideration of the method

of Galerkin approximations.
Let )(fl) be the closure of C(fl) (C-functions with compact support in

) under the norm defined by

(3 3)

Obviously )(fl) is a Hilbert space with the norm defined by (3.3) and generated
by the inner product

(3.4) (f,, [f(x)g(x) +V/(x) Vg(x)] dx.

Denote by {$(x)}= a countable basis in )(a). (By basis we intend a set
whose linear combinations are dense.) For convenience it will be assumed the
collection {O} is orthonormalized in L2(fl). We look for approximate solutions of
(3.1) in the form

N

(3.5) u(x, t, E)= B,(t, E),(x)
i=1

where the B are determined by the system

(3.6) d+ v(E)D 2 V re, dx + v(E)X X ,dx

=(t,E), (t,E)e(0, r)x(0, ), i=,... ,N,

(3.7) fl,(O, E)= g(E),
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where

(3,8) J=Ia ifdx and gi=Ia ,gdx.

By a solution of the system (3.6) we mean a sequence fl(t, E), 1,..., N, of
jointly measurable functions on [0, T] x (0, oo) such that"

(i) for almost all E(0, oo), each fli(t, E) is absolutely continuous in t
[0, 7];

(ii) for almost every [0, T], each/3 (t, E) is in L9(0, oo) as a function of E;
(iii) for almost all E (0, oo) equation (3.6) holds almost everywhere in

t [0, T];
(iv) equation (3.7) holds for almost all E (0, 00).
We denote by L,2(0, oo) (respectively L,2([0, T] (0, oo))) the set of n-vectors

whose components are functions square-integrable over (0, oo) (respectively
[0, T] (0, oo)). These function classes are Hilbert spaces under the respective
inner products

(3.9)

and

(w, Y)LO.oo ., w,(E)y,(E) dE,
0,oo)

(3.10) (w, y)t=,t0,Ta0,oo f W,(’, E)y,(’, E) dr dE.
i= d[0,T]x(0,oo)

We further denote by Vn(T) the subclass of w e L([0, T]x (0, m)) such that the
2mapping tw(t,. is continuous from [0, T] to L(0, m). This set is a Banach

space under the norm

(3.11) ]W[v,(r), max e-’llw(t, )llZ(o,
ONtNT

for any real . We also consider the class B, (T) of w e L([0, T] x (0, )) such that
the mapping tw(t,. is essentially bounded from [0, T] to L(0, m). The set

B(T) is a Banach space under the norm

(3.12) ess sup e-tllw(t, )ll(o,
ONtNT

for any real . e main result of this section can now be stated as follows.
THZOZM 1. Under the above assumptions and notation, the system (3.6) and

(3.7) has a unique solution fl =(fli). Furthermore V(T), and the corres-
pondence (L g) fl raking the dam into the solution is continuousfrom (L[0, T] x
(0, )))xLO, ) to VT).

Proof. If fl (fl) is a solution of (3.6) and (3.7), then clearly the equations

(3.13)
,(t, E)= (r, E)- v(E)D ’. (r, E)VOi V, dx

j=l

v(E), , (’, E)$$ dx dr + g(E),
j=l

i=1,...,N,
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hold everywhere in t [0, T] except possibly for those E in a null subset of (0, oo).
Conversely if (3.13) holds for all t[0, T] except for E in a null subset of (0, oo),
and each fli(t, E) is known a priori to be square-integrable in E for almost all
t [0, T], then/3 is a solution of (3.6)-(3.7). Thus the system (3.13) of integral
equations is completely equivalent to the initial-value problem (3.6)-(3.7) within
the framework of our definition of solution.

We denote the right-hand side of (3.13) by (fl)i(t, E), when it exists. Our
immediate aim is to prove that is a contractive mapping on BN(T). LetMbe an
upper bound for the integrals

fa vDVJ, Vd/, dx, ya vZyi dx, i, j 1,... ,N.

Suppose y y(t, E) Bu(T). For t 6 [0, T] we then compute

(3.14)
+2MNlYcto,(o,))+ ]gl[o,),

which showsy is also in Bu(T). If fl, y are both functions in Bu(T) we estimate

is shows is a contraction mapping in Bu(T) relative to the norm (3.12) for
sufficiently large .

It now follows from the contraction mapping theorem that (3.13) has a
unique solution, , in Bu(T). In order to see that Vu(T) note that the
inequality

follows from (3.13) and (3.14). It follows immediately from inequality (3.15) that
the mapping t- fl(t,. is continuous from [0, T] to L(0, o).

It remains only to show continuous dependence on the data as asserted in
Theorem 1. Note, as observed above, that 6BN(T) and satisfying (3.13) implies
it is a solution of the initial-value system (3.6) and (3.7) in the sense defined
previously. If we multiply (3.6) by/3i, sum over from 1 to N, and integrate on time
from 0 to t, we get the equation

Y. fli(t, E)2 + 2 v(E)D(x, r, E) ji(.l’, E)VJi = fl(-, E)VOi dx d"
i=1 i=1

(3.16) + 2 v(E)Z(x, "r, E) ji(’/’, E)qJ dx

gi(E) + 2 ](’, E)Bi(’, E) dr,
i=l i=1
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which holds for all (t, E) such that re[0, T] and E (0, az)---A, where the
exceptional set A has measure zero. From (3.16) and the nonnegativity of vD and
vE we obtain the estimate

(3.17)

From (3.17) and the Bellman-Gronwall lemma there now follows the inequality

2: 2}{3.a8) et{llgll +ll*llo,.

The continuous dependence upon data asserted in Theorem 1 follows
immediately from the inequality (3.18) and linearity of the problem (3.6)-(3.7) (or
(3.13)). Hence, Theorem 1 is finished.

Set
P

(3.19) r/ Z a,(t,E)d/i(x), P<-N.
i=1

where ai are smooth functions which vanish when t= T and Ooti/OtG
L2((0, T) (0, o3)). Multiplying (3.6) by ai and summing, integrating with respect
to over (0, T] and performing an integration by parts on the first term, and finally
integrating with respect to E over (0, ) yields

rtPt uN dx dt dE + vDVrl VuN dx dt dE + vZrtPu dx dt dE

(3.20) Io nPfdx dt dE + In g(x’ E)ne(x’ O, E) dx dE.

for all N and P with P _-< N. The inequality (3.18) and (H2) applied to (3.16) yields
the fact that

where C1 is a positive constant independent of N. From the weak compactness of
the Hilbert space U(T), there exists a u 6 U(T) which satisfies (3.20) for each P.

PSince the r/ are dense in UI(T), it follows that u is a weak solution of (3.1).
Moreover, since (3.18) yields

(3.22) ess sup Ilu (., t,. c=
where C2 is a positive constant independent of N, clearly

(3.23) ess sup [lu( , t,. )llc:(6)=< c2.
OtT

In addition, it is clear that the argument of [4, pp. 156-159] can be utilized to show
that the mapping t-.u(., t,. )L2() is continuous for all t[0, T]. From the
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continuity it follows from [4, pp. 141-143] that

1
[u(x, t, E)]2 dx dE + vDVu Vu dx dE dt + vXZu 2 dx dE dt

2
(3.24)

1 2=- g dx dE + fu dx dE dt.

An application of the Bellman-Gronwall inequality yields
2 2(3.25)

Clearly,

(3.26)

(3.27)

and

(3.28)

2 2 2ess sup I1( t, )lle{llgl /
O<=tT

2 2 2

2 2 2I/v <const. {llglle
where the constant depends on T.

In summation, we can state the following result.
THEOREM 2. Under the assumptions upon the data which are described

following (3.1), there exists a unique weak solution of (3.1) which satisfies (3.26)-
(3.28).

4. Existence and uniqueness of the solution to the problem. Let (x, t, E)
L2(0T) and consider the function

(4.2)

(4.1) F(x, t, E)= v(E)k(x, t, E, E’)(x, t, E’) dE’.

From Fubini’s theorem and Schwarz’s lemma we can calculate

io {ioIFlle<o> v(E)k(x, t, E, E’)O(x, t, E’) dE’ dE dx dt

;o Iolo
Io Io {Io i v dE’dE 6 dE’ &dt

N ess sup yak
x
OtT

gll 2lictor) (see (2.4)).

By definingf vq +F and g qo, the results of 3 yield a unique weak solution u
of (3.1). If u=$, this defines the map ’L(Qr)-(T)cL2(QT).
Obviously, the map is linear for 0o vq 0. For ui /G 1, 2, inequality
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(3.27) yields

(4.3) [Ul 2 2U2I[L2(OT) < TeKII
Consequently, for T sufficiently small, J//is a contraction of the Banach space
L2(0T) into itself. Thus, there exists a unique fixed point o :gq for Tsufficiently
small but positive. Since o is a weak solution of (3.1) and thus continuous as a map
t-p(., t,. )L()T), it follows that the solution 0 can be continued as a fixed
point of to any positive T.

Since a fixed point of /is a weak solution of (2.1)-(2.3), we have demon-
strated the following result.

THEOREM 3. Under the assumptions (H1)-(H6), there exists a unique weak
solution of (2.1)-(2.3).

5. Properties of the solution. In this section we shall derive stability estimates
for the solution and we shall discuss the continuous dependence of the solution
upon the data and the nonnegativity of the solution.

We consider the stability estimate first. From (3.24), (4.1) and (4.2) with

f vq +F and g qo, it follows that

I1 0( t,’)[

From the Bellman-Gronwall inequality, we obtain
2 (K+2)t 2 2(5.2) Ilqg( , t,. e / Iloqlk

and

(5.3) (K+2)t 2 2

By using (3.24) coupled with (5.1), it is clear that
2 2(5.4) I1 o const. {llq,01l =(  + Iloqll =(0, l,

where the constant depends upon T and K. Thus far, we have shown that the
L2(1) norm of o grows at most exponentially as tends to infinity provided that
llvqlk=(o, grows at most exponentially as t tends to infinity. Also, from the linearity
of (2.1)-(2.3), we have shown that p in the norm of U(T) depends continuously
upon the initial and source data. We shall consider next the dependence upon the
coefficients vD and vE and the. kernel k.

Let pi, 1,2 denote the weak solutions of (2.1)-(2.3) corresponding
respectively to the data vi, Di, Z, q, k, and po, 1, 2. It follows from elementary
calculations that z pl- o2 satisfies (2.1)-(2.3) where vD, vZ, vk, vq, and q0 are
replaced by VlD1, viE1, Vlkl, (b’0), and Zo, respectively, and

(q) V (VlDl v2D2)Vqo2-[- (/-)11 --/-)2z2)(,2
(5.5)

+(vlq-vq)+ (vlk-vk2)o dN’.

and Zo (Oo,1 q90,2.
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In estimating the (q) term in the energy relation for (2.1)-(2.3) which is
analogous to (3.24), we must estimate the following term

(O’q, Z)LZ(07.) --f (vlDI-v2D2)Vq92 Vz dEdx dt

"1- IO (/)1-1- U22)2Z dE dx dt

(5.6) + IO (Vlql--V2q2)z dEdx dt

q-" Z{ (/)lkl- v2k2)q2 dE’} dE dx dt

I +G +I3 + I4.

First,

(5.7)

1Ill ess sup IVlDa- v2D21"
O<=tT
E[0,oo]

IOT V(02 VZ dE dx dt

=< const. ess sup Io1D1 v2D21,
x
Ot<=T
E[0,oo]

where an application of (5.4) shows that the constant depends upon T, Ki,
Ilq 0 lk (,  and [[vq[[-(o), i= 1, 2. Likewise,

(5.8) 1121 =< const. ess sup [V1-1- D2.21
OtT
E[O,]

I is handled like the original vq term in (5.1), and

(5.9) [hi const.. ess sup (Vlkl-o2k2)2 dE’ dE
x
OtT

An application of the Bellman-Gronwall lemma and elementary estimates yields

{ (02nLZ(fi)const. 11po1 2

+ [I/)lql--v2q2[[LZ(Or) +ess sup [OLD1- 02D21
x
OtT
E[0,]

(5.10) +ess sup [D11- D2-21
E e[0,oo]

+ess sup { (Dlkl- D2k2)2 dE’ dE
x’

where the constant in (5.10) depends upon Ka, K2, II 011k -( ),
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[IVlqll[L2(oT), IIvq.l[(o), T, and the lower bounds on/1D1 and v2D2. Hence, the
solution q of (2.1)-(2.3) depends continuously in the norm of U(T) upon all of the
data in the manner displayed in (5.10), where the constant on the right side of
(5.10) is independent of the particular data when the norms of all the data are
uniformly bounded.

We shall conclude this section with a discussion of the nonnegativity of q
almost everywhere. From the maximum principle for parabolic partial differential
equations [4], it follows that for positive smooth vD, v, f, and g and compact 1
with smooth boundary in (3.1), the solution u(x, t, E) is nonnegative for each E.
For smooth coefficients which are continuous with respect to a parameter in a
linear parabolic partial differential equation, it follows that the parametrix and its
x and t derivatives are continuous in the parameter. Consequently, the Green’s
function and its x and derivatives are continuous. Thus, u and its x derivatives
are continuous with respect to E. Consequen.tl.y, u and its x derivatives are jointly
measurable in x, and E. Thus, for compact , u is also the weak solution in the
sense of (3.2) for (3.1). Now, let Um, rn 1, 2," , denote weak solutions of (3.1)
which correspond respectively to the data (vD),,, (vE),,, f,,,, and g,,, where each
data function satisfies the relevant hypothesis set forth in 2 and (vD),, and (VZ)m
are bounded uniformly by the respective bounds for (vD) and (rE). Suppose
(vD),, and (rE),, converge pointwise to (vD) and (rE), respectively, as rn tends to
oo. Also, suppose that

(5.11) lim o

and

(5.12) lim

Let u denote the weak solution of (3.1) corresponding to (vD), (rE), f and g.
Simple calculations yield

[(u um)(x, t, E)]2 dx dE + (vD)mlV(u Um)[2 dx dt dE

"J- Id (1))m (U Urn)2 dx dt dE

(5.13) IO (u uml(f-fm dx dt dE

+Ifi (g-g’n)2 dxdE-I, {(vD)-(vD)m}VU V(U-Um) dxdtdE

IO {(1)’)--(O,)m}U(U Um)X at dE.

Using ab <=ea2+(1/e)b 2 in the third integral on the right side of (5.13) and the
boundedness of (vD),, and (vD), it follows from the Bellman-Gronwall lemma



WEAK SOLUTIONS 165

that

+ . I(vD)-vD) Ivul dx dtdE
(5.14)

where the constant depends only on the bounds for vD, (vZ), and Z Conse-
quently, from Lesbesgue’s dominated convergence theorem, we see that

(5.15) lim l[u ull(O) O.

is implies that a subsequence of the u tends to u pointwise almost everhere.
As the u 0, m 1, 2,. , we have that u 0 almost everhere. us, for
compact 0r the solution u of (3.1) is nonnegative almost everhere when f 0,
g 0, and (vD) and (vZ) are pointwise limits almost everhere of positive
continuous functions that are respectively uniformly bounded by the bounds for
(vD) and (vZ). Since simple functions are almost everhere pointwise limits of
continuous functions and simple functions are dense in L, it is clear that for
measurable (vD) and (vZ) sequences of simple functions (vD) and (vZ),
m 1, 2,. , can be chosen such that the third and fourth terms in (5.14) can be
made arbitrarily small as m tends to infinity. For example consider the integral
involving (vD). Partition 0r into the sets {17u[NN} and {lVulZ>N}. Use the
boundedness of (vD) and (vD) for the integral of IVu 2 over {IVu 2 > N}. Fix N.
en use the L convergence of (vD) to (vD) to handle the integral over the set

{lul2 NN}. Consequently, for compact 0r, the solution of (3.1) is nnegative. As
it is not difficult to show that the solution of (3.1) for noncompact Or is the weak
U(T) limit of solutions of (3.1) for compact 0r, we conclude that solutions of (3.1)
are nonnegative almost everhere. Since k is nonnegative and an iteration
process for producing the fixed point of can be initiated with o 0, it follows
immediately that the weak solution of (2.1)-(2.3) is nonnegative.

In summary we have shown the following result.
Tnzoz 4. Under the hypotheses (H1)-(H6), the soluaon of (2.1)-(2.3) is

nonnega6ve almost everywhere, depends congnuously upon the dam as shown in
(5.10) and exhtbtts a growth ofL () norm as deptcted tn (5.2).
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INEQUALITIES FOR THE ZEROS OF
BESSEL FUNCTIONS*

ROGER C. McCANNf

Abstract. Let l"p..,/’., denote the nth positive zeros of J,, J respectively. It is shown that both
p--I --I

1,,. and p lp.. are strictly decreasing functions of p.

1. Preliminary lemmas. We begin by considering the eigenvalue problem

(1) (xy’)’ "+" x-ly tX2p-ly, p >0,

(2) y(a)=y(1)=O, 0<a<l.

It is easily verified that the general solution of (1) is y(x)=
CIJ/p(A 1/2xP/p) + C2 Y1/(A /2xO/P) and that the eigenvalues A are solutions of

(3) j1/p(a 1/2/p)_ J1/p(I 1/2aP/P) 1/2/p)

In particular, the nth eigenvalue of (1), (2) is the nth positive zero of (3).
LZMMA 1. For q > 0 and 0 < a < 1 set

J’(aa/qx)
Yq(x)fa,q (X Jq (x q(a’/qx’-’-"

Then
(i) fa,q Jq uniformly as a0+ on any interval of the form [a, B] with

O<a<fl=<l.
(ii) f’,q- J’ uniformly as a- 0+ on any interval of the form [a, fl] with

0<a<fl_-<l.
(iii) There exist e, 8 > 0 such that ]’a. (X > 0 and Jo (x > 0 ]’or a (0, 8) and

x (0, e].
Proof. For z 0+

2r(q)
J(z) (2F(q + 1))-1z Y(z) -z-,

J’c(z)-q(2’F(q + 1))-1zq-1 y,c(z)q2’r(qZ-q-1.

Since Jq (0) 0 and [Ya (a /qx)[ oo as a0+ for every x > 0, statement (i) is valid.
Using the above asymptotic expansions it is easy to verify that

fa.(X)=j,(X)
a/J’(aa/qx)
ya(aa/x Y(x)

Y’(x Yo (a /qx a/Y’(a 1/x Y. (x
[Y(a /x)]2 J, (a /x) - ’.(x

* Received by the editors October 29, 1974, and in final revised form February 2, 1976.

" Department o Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio
44106.
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uniformly on intervals of the form [a, fl], with 0 < a < fl =< 1. Finally, it is easily
verified that

/,q (x) (2qF(q + 1))-lxq(1 a 2) > 1/2(2F(q + 1))-x --1/2Jo(x)
whenever a is sufficiently small. Thus, there exist e, 8 > 0 such that f. (x) > 0 and
Jp (x) > 0 whenever x (0, e) and a (0, 6). This proves 0ii).

LEMMA 2. Let z. (a, q) denote the n-th positive zero off.q and ]q.. denote the
n-th positive zero of Jq. Then z. (a, q) ]q.. as a 0+ whenever q > O.

Proof. The proof proceeds by induction. Let e and 6 be as in Lemma 1 (iii).
Assume that a is so small that Y.(al/"x)#O for x (0,].). Then J(e) >0 and
fa..(e) >0. Moreover, we also have that zl(a, q) > e and f..a > e. It is well known
that J. changes sign at each of its positive zeros. Let 0 < e < (]q,E-fq,1). Then

Jo (f.1 + e 1) < 0 so that for a sufficiently small f.o (fo. + e) < 0. Thus, we must have
z(a, q) (e, fx.o + el) for all a sufficiently small, say a <61. Let z be any accumu-
lation point of {z(a, q):0<a <6} and let {ai} be a sequence with a0 and such
that za(ai, q) z. Then O=f,(zl(ai, q)) J(z). The only zero of J. in the interval
[e, jl,q + eli is jl,q. It follows that zl(a, q)j,q. Now suppose that z(a, q)],.
Let 0 < e < n {]q, -]q.-l, 1.+1-1,, ],n+2--]q,n+i}. Then for a suciently
small z(a,q)(]q,-e,l,+e) and Yq(al/qx)#O for x(O,]q..+2). Since Jq
changes sign at each of its zeros, Jq(]q. + e) and Jq(]q.+ + e) have opposite signs.
For a suciently small f.q(]q, + e) and f,q(]q.+i + e) have opposite signs. Thus,
Z+l(a, q) (]q.-e, I.+1 + e). Since f,q Jq uniformly, any accumulation point
of {z+(a, q)} is a zero of Jq. The only zeros of Jq in []q, -e, 1,+1 + e] are 1, and
1.+1. Suppose there is a sequence {ai} with ag0 and such that Z+m(au q)l...
Then f,q(Z+l(ai, q))=f.q(Z(ai, q))= 0. By the mean value theorem there is a

bbg (z (au q), Z.+l(au q)) such that fa,q() 0. Notice that b lq, since both
{z.(ai, q)} and {z+(ai, q)} converge to lq,. Thus, 0=f,q( i) q(lq,) This is
impossible since Jq and J do not vanish simultaneously. It follows that
Z+l(a, q)l,. This completes the proof.

2. e inequalities. Let Rip, y] denote the Rayleigh quotient

R[p, y] la (--(XYt)’ +x-ly)Y dX
x2p-ly2dx

It is well known that the eigenvalues {A,(p)} of (1), (2) can be obtained from the
Rayleigh quotient, [2, 31 and 35]. Let Vdenote the linear space of all functions
in C((a, 1)) which satisfy the boundary conditions (2). Then

A (p) nR[p, y].
yo

Let yl, Y2, Y. be n functions in V, let A denote the subspace of V spanned by
Y l, Y2, ", Yn and let A x denote the orthogonal complement of A relative to V.
Then

A.+l(p) max min R[p, y]
A yA

y#O

where the maximum is taken over all sets of n functions in V.
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Notice that A. (p) (pz. (a, 1/p))2 where z. (a, 1/p) is the n th positive zero of
fa,1/p. Whenever p>-q we have that x2P-l<-_x 2q-1 for x [a, 1] and, hence,
Rip, y]>-R[q, y]. It follows that ,t.(p)>-Aq(q) whenever p->q or, equivalently,

pz.(a, 1/p)>-qz.(a, 1/q)

whenever p ->_ q. Setting t q-1 and s p-1 we have that

(4)
z.(a, s) >__z.(a, t)

s

whenever t _-> s. If we now let a 0+ in (4) and apply Lemma 2 we obtain

(5) --]’s,n ,n
S

whenever t _-> s > 0.
THZORZM 3. (t/s)fs,. > ft,. > fs,. whenever > s >0.
Proof. The second inequality is well known. A proof using the Sturm

comparison theorem may be found in [1]. An alternate proof is in [5, p. 508].
From (5) we have s I,. --> 1,,.. Suppose that there are numbers and s, 0 < s < t,
such thats ljs, -1.

]t,n. Then

js, , s<-p<=t.
s p

For simplicity set s-lL,. k > 0. Then 1",. kp for p [s, t] and we have

(6) O Jp(f,.) Jp(kp)

for p [s, t]. References to proofs of the following properties of J may be found
on page 44 of [5]. Jo (z) is an analytic function of z for all values of z (z 0 possibly
being excepted) and it is an analytic function of p for all values of p. Moreover, the
series which defines Jp(z) converges absolutely and uniformly in any closed
domain of values of z [the origin not being a point of the domain when R (p) < 0],
and in any bounded domain of values of p. It follows that J(kp) is an analytic
function of p on any compact interval not containing p 0. Hence, Jp(kp)--0 on
any compact interval not containing p 0. It is known [5, p. 508] that L,1 is an
increasing function of t so that/t,. >--/’t,1 >jo,1 > 2.4 whenever >0. Ifp l/k, then
J1/k(1) 0. Thus, jl/k,. 1 for some n. This impossibility leads us to the conclu-
sion s-ljs,. # t-aft,, whenever s # t. The desired inequality follows.

Theorem 3 states that t-lL,, is a strictly decreasing function of t. This is in
contrast to the classical result that/’t,, is a strictly increasing function of t, for t > 0
[5, p. 508]. Since -1.t lt.. is a strictly decreasing function of t it is natural to evaluate
limt_ -1.

lt,.. In [4] it is shown that

/’t,. + i1,. 6-1/3t 1/3 + (i1.,,)26-2/3t-1/3 + O(t-1) (n 1 ,2, ...)

where i1,. is independent of t. It follows that limt_ -1.It,.=lforn=l, 2,’".
COROLLARY 4. For each n the function L.. satisfies a uniform Lipschitz

condition of order one in any interval 0 < a <= t < o.
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Proof. Let t, se[a, o) with t>-s. Then

t-s
0_-<j,.-j,. _-<-;,.-i.,. j,.

S S

and fs,, < (s/a,)fa,, so that

O<--ft,n--]’s,n <=]a’n(t--s).
a

The best known upper bound for jr,1 is [4, p. 486]

it,1 < (2(t + 1)(t + 3)) 1/2.

Using the data in [3] it can be shown that (11.5)-1f11.5, < v/. Hence

ft,1 < (11.5)-1f11.5,1 <4/< (2(t + 1)(t + 3)) 1/2

whenever > 11.5. This illustrates just one of the inequalities for ]t,, which may be
obtained from Theorem 3.

If (2) is replaced by

(2’) y’(a) y’(0) 0, 0 < a < 1,

then the above procedure may be modified to show that t-if’t,, is a strictly
decreasing function of where "lt,, is the n th positive zero of Jr. If we set

J’(a 1/qx)
Y’q(x)ga,q(X) Jq(X)-

r’(a 1/qx)

analogies to Lemmas 1 and 2 may be proved. In this case z (a, q)-->], as a --> 0+.
Line (4) remains valid with (2) replaced by (2’) so that

S

whenever t ->_ s > O. Proceeding in analogy to the proof of Theorem 3 wc arc able
to verify

THEOREM 5. (t/s)]’s,.>]’,.. whenever t>s >0.
COROLLARY 6. For each n the function j’,n satisfies a uniform Lipschitz

condition of order one in any interval 0 < a <- t < o.
Proof. The proof is analogous to that of Corollary 4.
COROLLARY 7. limt_. -1.,1t,,,=1.
Proof. On pages 485 and 487 of [5] it is shown that < ]’t,1 < jt,. Between any

two consecutive zeros of Jt there is a zero of J’t (the mean value theorem). A simple
.t --1counting argument shows that f’ <jr,, so that 1 < t- It,, < t It,,, 1 as t + oot,

Acknowledgment. The author would like to thank the referees for their
comments and suggestions. In particular, I would like to thank them for bringing
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MONOTONICITY AND CONVEXITY PROPERTIES
OF ZEROS OF BESSEL FUNCTIONS*

J. T. LEWIS," AND M. E. MULDOON*

Abstract. It is shown that/vk/l] decreases as u increases, 0 < u < co, and that/2k/U and
d/k/dV increase with v for sufficiently large u, where ./vk is the kth positive zero of the
Bessel function Jv (x). In particular, ]21/v and d]21/du increase for 3 < u < co. Some related
results are proved for zeros of J’(x), of cross-product Bessel functions and of modified
Bessel functions of purely imaginary order.

1. Introduction. Putterman, Kac and Uhlenbeck [15] have proposed a purely
quantum mechanical explanation for the origin of the vortex lines which are
produced in superfluid helium when its container is rotated. It is based on the
results of Blatt and Butler [2] (see also [9]) who showed that a rotating ideal Boson
gas in a cylindrical bucket undergoes phase transitions. The total angular momen-
tum increases linearly with the angular velocity to of the bucket in between
successive critical values to1, to2, where it jumps by an amount Nob, where No
is the number of condensed particles:

l"=1/2(N-No)mR2to +Nohn, to,, <(.o <(.On+l,

whereNis the total number of particles, rn the mass of a particle, andR the radius
of the bucket. If the wave-function of a particle is assumed to satisfy Dirichlet
boundary conditions on the walls of the bucket, the nth critical velocity is given by

.2
to,, (1/2timR 2)(] -l,,_a,),

where Lk or L,k denotes the kth positive zero of the Bessel function J(x). On
physical grounds one expects that tol, tOE, is an increasing sequence and so it
was conjectured that

(1 1) .2 .2 .2
I,,+2,,- 21,,+,. +1,,, >0, n =0, 1, 2,

The results in this note were motivated by this. One of our principal results is that

(1.2) df2k/dv increases with , 3 <- < oo.

The conjecture (1.1) follows easily from this and the tables of1 for u 1, 2, 3, 4
[19, pp. 748-750]. In order to prove (1.2) we show first thatji/u decreases with u
(0 < u < oo) and that j2 x/u increases with u (3 -< u < m).

Apart from the necessity to modify the u-interval of validity we show that all
of the above results hold, not only for ill, but also for flk (k 2, 3," ").

* Received by the editors October 16, 1975.
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It is well known [3] that, for fixed k,/’k increases with v, 0 < u <. Watson
[19, pp. 507-508] proves this by using Schl/ifli’s formula

(1.3) Jo J(t) dt.2U[lkJ+(l)] - z

We show here that (1.3), together with the results on the monotonicity of irk/l,,
follow easily from a general result on the derivative of an eigenvalue with respect
to a parameter, a special case of the Hellmann-Feynman theorem of quantum
chemistry. However, in order to get (1.2) we need, in addition, another formula
given by Watson [19, p. 508, (3)] which, in the special case needed here, says

(1.4) d],k/du 2j,k Ko(2].k sinh t) e -2"’ dt,

where Ko denotes the modified Bessel function of order zero.
There is a conjecture analogous to (1.1) for the zeros j’k of fixed rank of J’(x)

which arises in the physical problem when Neumann boundary conditions replace
the Dirichlet ones. We have not been able to prove this conjecture nor the
analogue of (1.2) because the analogue of (1.4) [19, p. 510, (4)] is not amenable to
any obvious simple treatment. However, we prove analogues of our monotonicity
results for the zeros of J’(x). Some of our monotonicity results are also applied to
the zeros of cross-product Bessel functions ( 5) and to zeros of modified Bessel
functions of purely imaginary order ( 6).

2. Some preliminary results. We consider a family of boundary value prob-
lems depending on a real parameter u. They are given by a differential equation

(2.1) -(d/dx)[p(x) dy/dx]+ vEq(x)y Aq(x)y,

and by boundary conditions

(2.2) lim p(x),y(x)y’(x)=p(b)y(b)y’(b).
X’-a+

It is supposed that _-< a < b < oo, that p (x) > 0, and that p’(x), q (x) and q (x)
are continuous for a < x _<-b. We then have the following result.

LEMMA 2.1. Suppose that, ]’or each u >0, the boundary value problem (2.1),
(2.2) has a discrete set ofreal eigenvalues. LetA be an eigenvalue offixed rank and
let there be a corresponding eigenfunction p(x) satisfying the normalization
condition

b

(2.3) q(x)[p(x)]a dx 1.

Suppose also that, for each u,

(2.4) lim q(x)O. (x)O,(x) dx q(x)[O(x)] dx

and

(2.5)
b

lim o(x)O (x)O,,(x) dx q (x)[O(x )]2 dx 1.
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Suppose, also, that for each u > 0,

lim p(x)’(x)
x--a/

exists, that tO(a/)= 0 and either

(2.6) O(b) 0

Then

(2.7)

(2.8)

and

or 0’(b) 0.

b

2u q(x)[(x)]2 dx,

d A= [2q(x)- u-2Aq(x)J[(x)]2 dx
du u

(2.9)
dv u2 2v-3 p(x)[O’(x)]z dx.

Proof. To prove (2.7), we multiply the equations

-(p6k)’ +gqO. o.,
-(p6’)’ + v2q0.

by , t#, respectively, subtract and integrate between a and b to get

(A -A,) o(x),(x)(x) dx (v2-/x q(x)dA,(x)(x dx.

Dividing by v-tz, letting/x + v, and using (2.3), (2.4) and (2.5) we get (2.7).
We have

d A __1 d/v
dv v d

and this gives (2.8).
We also have

u-2A 2 q(x)[O(x)]z dx

-Au-2 o (x)[0(x)]z dx

d A
d-7 v-v= v 7V-v- 2v-daY"

If we use (2.7) and the consequence

a [PO’]’O dx + v2 q(x)[O(x)]2 dx

of (2.1) and (2.3) we get

d,, ,= 2-3 (x)O’.(x)}6(x) &.
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Integrating by parts and using the boundary conditions (2.2) we get (2.9).
This completes the proof of Lemma 2.1.
We remark that results of the type (2.7) are well known in the mathematical

literature on perturbation theory and are given with various degrees of generality
in [17, pp. 36-37], [18, pp. 233-235], [16, pp. 373-376] and [8]. In the present
simple case we have found it more convenient to prove (2.7) directly than to
deduce it from the more general results. In quantum chemistry results of this and
of a more general kind are known as the "Hellmann-Feynman theorem".
Feynman’s work is in [6]; see [13] for an account of earlier versions of this result.

3. Application to zeros of Bessel unctions. For u > 0, the boundary value
problem

(3.1)
dx \--x] + u Axy,

(3.2) y(0) y(1) 0

has eigenvalues .2
! k, k 1, 2, and corresponding eigenfunctionsJ(fkX). The

normalized eigenfunctions, in accordance with (2.3), are given by

(3.3) p(x) 21/9[Ju+1(jk)]-1J(jkX),

where we have used a formula [19, p. 135, (11)] for the indefinite integral of
xj2(x). Now,

L(x)= O[x], x-O+,

so the hypotheses of Lemma 2.1 are satisfied. Hence (2.7) gives (1.3), a result
which was proved in a different way by Watson [19, pp. 507-508].

Our principal results on Bessel function zeros are the following.
THEOREM 3.1. (I) Foreachfixed k, k/ u decreases as u increases, 0 < u < c.
(ii) For each fixed k, f2k/u increases with u for sufficiently large u; in

particular, ]2/u increases with u for 3
(iii) For each fixed k, djk/du increases with u, for sufficiently large u; in

particular, dj2a/de increases for 3 <= u <
Proof. Part (i) is an immediate consequence of the result (2.9) of Lemma 2.1.

From (2.8), we have

lk [2 .z -ZxZ]$2(x)x-X dx,

where p(x) is given by (3.3). The integrand here is positive provided that
j2k/U2 < 2; this is so for sufficiently large u since j,k/U 1 as u [14, Exer. 6.4,
p. 408]. Thus the first part of (ii) is proved.

However, we give an alternative proof which enables us to get a sharper result
in the second part of (ii). We use (1.4) to get

d .2

iOOJ ,k -1.2 -2.24 lk Ko(2/’k sinh t)e-dt-
du u- u l,k"
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This is positive provided I(v, k) > 1, where

(3.4)

We have

I(u, k) 4u K0(2/’k sinh t) e -2t dt.

I(u, k)= 2 Ko[2/’k sinh {u/(2u)}] e-" du.

From part (i), Lk/l decreases with u, 0<u<oo; so, for each u>0, does
2u sinh {u/(2u)}. Hence, so does their product 2]k sinh {u/(2u)}. Since Ko is a
decreasing function of its argument and since a decreasing function of a decreasing
function is increasing, we find that I(u, k) increases with u, 0 < <. Further-
more,

lim I(, k)= 2 Ko(u) e du 2,

[19, p. 388]. Thus, for each k, there is a unique (k) such that I((k), k)= 1 and
I(, k)> 1 for > (k). Thus we find again that ]/ increases with for
suciently large .

Next, we estimate (1). Using, [19, p. 444, (2)],

oL(z)
(4/) Ko(Zz sinh t) e-’ dt L.z.0() Y(z)

Y.(z)
Ov Ou

the formula [14, p. 244, Exer. 5.6]

[7)] 1 ()-" a()0 = Y.(z)+n [sl(n-s)]-J,(z)

and the tables of values of J(z) and Y(z) in [19, pp. 666-733] and [1, Chap. 9],
we findI(2, 1)<1 andI(3, 1)> 1. Hence 2 < u(1) < 3,I(, 1)> 1 for3v<and
so ja/ increases for these values of u. This completes the proof of part (ii).

To prove part (iii) we consider that, from (1.4),

du 4 Ko(2] sinh t) e dt 11(, k)

where I(u, k) is given by (3.4). Since I(u, k) increases with u, 0 < u <, we see that
d(f)/du increases for at least those values of u for which f/u increases, and
part (iii) follows from part (ii).

Remark 1. In view of numerical evidence it seems likely that (iii) holds for all
u > 0 at least in the case k 1. Of course part (ii) does not hold for small positive u
since f/u as u 0 +.

Remark 2. We conjecture, but have not been able to prove that df/du
decreases as increases, 0 < u <. e weaker result that d(log,)/du
decreases, 0 < <, follows easily from (1.4). In fact, for each fixed k, we get
d(log c)/du< O, 0< u <, where c is a zero of fixed rank of any solution
AJ(x) +BY(x) of the Bessel equation. This was implicit in [11, p. 389] but it was
stated there only for the first positive zero of Y(x).
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Remark 3. L. Lorch and P. Szego [12] have considered monotonicity with
respect to order of the difference (and the higher differences) of consecutive zeros
of Bessel functions. For fixed v, higher monotonicity with respect to the rank k has
also been considered; see [10] and the references contained therein.

Remark 4. The fact that irk increases with v for v > 0 was proved by BScher
[3] using the Sturm comparison theorem. Watson’s result, quoted as (1.4) above,
has the advantage that it shows ]vk to be increasing for v >- 1 and, in fact, for all
real v, when the rank of a zero is suitably construed. We remark that in case
v > 1 this follows also from the "fractional integral" formulation

Iox(V+)/2J+(xl/2)=[2r(e)]-1 (x-t)-lt/J(tl/2) dt,

v>-l, e>0.

of Sonine’s first integral [19, p. 373].

4. Zeros of derivatives of Bessel functions, If we consider the differential
equation (3.1) again but with the boundary conditions

y(0) y’(1) 0,

we get the following results: the proof is similar to that of Theorem 3.1.
THEOREM 4.1. Let ]’k denote the k-th positive zero ofJ’(x). Then

I iv
2

(4.1) djvtc: 2P[Jvk{(Jvk/ /2)2- X}J2+l(jvk)]-I Jo x- Jr(x) dx;
dv

’k/ decreases to 1 as v increases, 0 < v < oo, and
., 2(I) /v increases at least ]’or

those values of v for which 1k<
1/2

/.

The result (4.1) is not given by Watson [19]; its obvious consequencethat
f’k increases with v is proved in a different way in [19, p. 510].

5. Zeros of cross-product Bessel functions. Again we consider the differen-
tial equation (3.1) but now with the boundary conditions

y(a)=y(1)=O,

where 0 < a < 1. The eigenvalues’are the numbers t (k 1, 2, 3,. where t
is the kth positive zero of the cross product

J(ax) Y(x)- Y(ax)J(x).

These zeros are real and simple [7, p. 82, Thm. X]. The corresponding unnor-
malized eigenvalues are

$(x) J(tvk) Y(tx)- Y(t)J(tx).

Arguments like those in 3.then give the following results.
THEOREM 5.1. With the notation given above,

dt 2 Ia[O(X)]2X -x dx 0 < <(5.1) d-- x[q(x)]2 dx
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Moreover, tk/V decreases as u increases, 0 < v < oo, and t2k/u increases ]:or those
values of v ]:or which tk <- 21/2v.

Remark. In particular, it follows from (5.1) that each tk increases with v; this
was proved in a more complicated ad hoc way by D. M. Willis [20].

6. Modified Bessel functions of purely imaginary order. We consider the
modified Bessel function

Ki, (x e--x cosht
COS vt dt

which satisfies the differential equation

x2y +xy’- (x 2 v2)y O.

Ki(x) vanishes at + oo and has infinitely many positive zeros whose only point of
accumulation is x 0; see [5] for references and a good deal of further informa-
tion about these zeros. We denote the zeros in decreasing order by xl, x2, .
We find then that the boundary value problem

-(d/dx)(xdy/dx)-(v2/x)y -hxy, y(-oo) y(- 1) 0

has eigenvalues h 2k (k 1, 2,.. and corresponding eigenfunctions Ki(-
xkx). From the asymptotic behavior ofK(x) [4, p. 87, (18)] it is seen that Lemma
2.1 is applicable and gives

2dk 2v I t- K,(zkt) at
tKi(gkt) dt

d(g,/ ) -3 t[K(x*t)] dt
2v vk

Hence we have the following result.
THEOREM 6.1. For eachxed k, (the k-th positive zero in decreasing order

o[Ki(x)) increases with v, 0<v<, and x/v increases with v, 0<v<.

Aeowledgment. The authors are grateful to Professor Lee Lurch for his
interest and for his useful comments.
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GROUP REPRESENTATION THEORY
AND BRANCH POINTS OF

NONLINEAR FUNCTIONAL EQUATIONS*

D. H. SATHNGER*

Abstract. In many physical applications the equations describing a system are invariant under
some transformation group. When bifurcation problems arise in such a situation, the group invariance
may lead to multiplicities of the branch point. The main goal of the present paper is to demonstrate in a
precise way the application of group representation theory to bifurcation theory. Group representa-
tion theory is a linear one, while bifurcation theory deals with the branch points of nonlinearfunctional
equations. Nevertheless, the theory of group representations applies to those nonlinear problems in a
natural and elegant manner. The link between the two disciplines lies in the tensor character of the
bifurcation equations on the one hand, and the theory of tensor products of group representations on
the other.

1. Introduction. In a previous note [15] we pointed out, in a simple way, how
the methods of group representation theory could be used to resolve a bifurcation
problem where the dimension of the nullspace was greater than one. We wish to
continue that direction of investigation further here, and to elaborate more fully
on the possible applications of group theory to the analysis of branch points of
nonlinear functional equations in a Banach space. Ostensibly, group representa-
tion theory is a linear one, while bifurcation theory deals with the branch points of
nonlinear equations. Nevertheless, the theory of group representation applies, in
a natural and elegant way, to these nonlinear problems in bifurcation theory. The
link between these two disciplines lies in the tensor character of the bifurcation
equations on the one hand, and the elegant theory of tensor products of group
representations on the other hand.

Moreover, it is very often the case in physical applications, especially in the
area of mechanics, that the given system of equations, even though nonlinear, is
covariant with respect to a transformation group. For example, the Hamiltonian
equations of celestial mechanics, or the partial differential equations governing
the mechanics of a homogeneous continuum, are covariant under the Euclidean
group. In 2 we show that the Navier-Stokes equations governing the motion of a
viscous incompressible fluid, are covariant under the Euclidean group E(3). (See
also [5].)

The original reason for our interest in the phenomenon of group invariance
and its relation to bifurcation theory was our observation that the group
invariance may in some cases account for the multiplicity of a branch point of a
given nonlinear equation. This phenomenon is well known in quantum mechanics,
where the invariance of the Hamiltonian under a symmetry group leads to a
degeneracy of the energy levels. Group representation theory is an important tool
in quantum mechanics for analyzing the splitting of these energy levels under
symmetry-destroying perturbations (e.g., the Stark effect). It is our belief that the
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theory of group representations may also aid, and in a very elegant way, in the
resolution of the bifurcation problem at a multiple eigenvalue.

Of particular interest is the phenomenon of pattern formation, or "symmetry
breaking instabilities," analogous to the splitting of the. energy levels in quantum
mechanics (see [9], 10], 17]). For example, the appearance of convection cells in
the B6nard problem or the buckling of a spherical shell under a uniform
compression may be viewed as symmetry-breaking bifurcations. Prior to the onset
of instability, the solutions are invariant under a continuous transformation
group--E(2) in the convection problem and 0(3) in the buckling problem. The
bifurcating solution--that is, the nontrivial solution which appears at the onset of
instability--is only invariant under a subgroup of the original continuous group.
In the convection problem, the subgroup is necessarily a crystallographic group in
the plane ("rolls" or "hexagons" seem to appear in experiments); in the buckling
problem, the subgroup would be some point group of the second kind.

In such pattern formation problems, the branch point is generally of multi-
plicity greater than one. Mathematicians, not knowing how to treat bifurcation
problems at a multiple eigenvalue, have sometimes gone to some lengths to rig the
problem in such a way as to obtain a simple eigenvalue, for example, by casting the
bifurcation problem in a symmetry class in which the branch point is simple. It is
clear that this is not the mechanism employed by nature in selecting the symmetry
patterns which in fact appear. It is our conjecture that the multiplicity of the
branch point is an intrinsic aspect of the problem and that the methods of group
representation theory may ultimately provide a satisfactory and elegant explana-
tion of the mechanisms of pattern formation. In this regard, see the forthcoming
paper [ 16].

The main goal of the present paper is to demonstrate in a precise way the
application of group representation theory to bifurcation theory. To this end, we
show in 4 that the bifurcation equations are covariant under a symmetry group
if the original equation is covariant. We then demonstrate the tensor character of

the bifurcation equations. In 6 we summarize group representation theory and
the fundamentals of tensor products of group representations. Finally, as an

application of the methods, we consider a set of bifurcation equations of the form

(1.1) v+B(v, v) 0,

where v lies in a four-dimensional vector space Vand B is a bilinear mapping from
Vx V to V which is invariant under D3, the symmetry group of the equilateral
triangle. Equations (1.1) may be written in the form

(1.2) l)k at- Bijkl)il)j O, i, j, k 1," , 4,

where v l)iei, {ei} forms a basis for V, and

Bijk (B (ei, ej), ek ).

Since V is of dimension 4, there are a priori 64 possible numbers Bijk. However, if
B possesses a symmetry, for example, if

T(o-)B (v, w) B(T(o’)v, T(o-)w), cr D3,
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where T(o-) is the representation of D3 onto V given in (7.2), then the number of
independent parameters is reduced to 11. It is further reduced to 7 if we assume,
as we may, that B is symmetric. The equations (1.2) then take the simplified form
exhibited in (8.1).

We wish to call the reader’s attention to the work of Professor L. E. Scriven
and his students of the Department of Chemical Engineering at the University of
Minnesota. (See [1], [9], [10], [17]). Scriven and his students have already made
considerable progress in applying group representation theory to nonlinear
problems. The thesis of J. I. Gmitro 1] discusses the stability analysis of nonlinear
initial value problems. The "formation of patterned states" is discussed, and some
discussion is given of the interaction of the symmetry functions through the
nonlinear terms.

The tensor character of nonlinear terms is discussed in the two papers by
Othmer and Scriven [9], [10]. We hope that the present paper will clarify the
mathematical structure in question, and that it will lead, in the future, to a clearer
understanding of the role of group theory in nonlinear problems.

2. Invariance properties of partial differential equations. Let fq be a group
and V a linear vector space. We denote by (V) the class of all linear transforma-
tions mapping V onto itself in a one-to-one fashion. A representation of on V is
a homomorphism from ( onto the set (V), considered as a group. Thus g Tg in
such a way that

For example, let W be the space of continuous functions on 3 and let 0(3)
be the orthogonal group consisting of 3 3 matrices such that OO/ L Then the
family of operations defined by

(Tof)(x) f(O-1x

constitutes a group representation of 0(3) on W. We may also write this in the
following way:

where

(2.1)

(Tof)(x)=f(y, y, Y3),

Yi Ojixj.

Now suppose V consists of the space of continuous vector fields on 3, denoted by
ui (i 1, 2, 3). A representation of 3 on V is

(Tou)(x)= Ou(O-lx)
or

(Tou,)(x)= O.u(y)

where y is given by (2.1).
Given a function f f(xa, x2, x3), we denote by f. the partial derivative of f

with respect to the/’th variable. Similarly the expression ui.j denotes the partial
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derivative of the ith component of U with respect to the jth variable; and J:
denotes the second partial derivative off with respect to the ith andjth variables.

It is well known that the Laplacian is invariant under 0(3). By this is meant
that ToA ATo, or ToA5o A. Let us verify this using the above notation. Now
in Cartesian coordinates,

af(x) (x),

where the summation convention is understood. By the chain rule,

3 Oy,, O 3

3x 3x 3y,,
Oim 3y,,,"

Therefore

02 02
(ATof)(x) 3qOxiOxi(Tof)(x)= 6ioX, c3xif(y, Y2, Y31

02
t$iJc3ym O-f(yx’yn Y2, Y3)

Oym Oy,,

Ox Oxi

t$q ’"’:n’"mf(Yl’oy oy y’ y3)OimOjn t$mnfnm(Y),

while

roAf)(x) ).

If is a nonlinear operator on a linear vector space V, we say that is
covariant under a group if , commutes with all representations of on
(V) that is, if

for all u in V and any g in . A simple example of a nonlinear operation on W
which is invariant under 0(3) is (u)=f(u), where f is any continuous real-
valued function. In fact,

To{,(u)(x)} Tof(u(x))= f(u(y)) f(Tou(x)) (Tou)(x).

Consequently, any nonlinear equation of the form Au +f(u) 0 is invariant under
0(3).

Now let us turn to a more interesting examplethe Navier-Stokes equations
governing the motion of a viscous incompressible fluid. These equations are

Aui
Op Ou Ou.i--u=O, =0.
Oxi 3x/ Ox

Let us show that these equations are covariant with respect to a representation of
the Euclidean group. This has been done in [5]; we present the details here for the
sake of completeness.

The appropriate vector space in the present case is Vx W, the Cartesian
product of vector fields with scalar functions on R3. We denote an element of
Vx W by (ui, p).



GROUP REPRESENTATION THEORY 183

Associated with the Navier-Stokes equations is the nonlinear operation
given by

( Op Oui Ou,(ui, p)= Aui
Ox

(Summation of repeated indices is understood here.) The operation transforms
V W into V W. The representation of 0(3) on Vx W is

To(uu p)(x)= (Oquj(y), p(y)).

Let us check the invariance of ,. We have

0 0 Oyk
Top xp(y) Pk (Y)X OikPk (y),OX--

To Op= Top(x)= Oqp.i(y),
3x

hence

grad Top To grad p.

Now we check the nonlinear term N(ui)= uiu.i"

N(Toui) OikUk (y)
OXj

OuU, (y)

OjkUk (y)OilUl, (y)Ojm OilUm (y)Ul, (y),

whereas

Finally,

whereas

ToN(ui) Toum (X)Ui, (X) OilU (y)Ul, (y).

(TouLOx-- xOu(y) Ou,,(y)0 u,o (y),

Tou,,, (x) u,,, (y).

We leave the remaining term, Au, for the reader to check.

3. Branch points of nonlinear functional equations in a Banach space. We
consider a functional equation of the form

(3.1) L(’r)u + N(’r, u) O,

where L(-) and N(-, u) are analytic mappings of a complex Banach space C g
into -. Here C denotes the complex numbers and g’, are complex Banach
spaces, with ’ . We also assume that L is an analytic function of z with values
in ,(’, ), the Banach space of bounded transformations from g to . In that
case, L has a power series expansion

L(’r) Lo + ’I’Ll +
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which converges in(, .). We also assume that N has a power series expansion
in u and -, and that all terms in N are at least quadratic in u. We write

k=2 i+j=k
i_>2

where Nq(u) is a homogeneous operator of degree inthat is,

Nq(u) ’N(u).
The basic problem of bifurcation theory consists of constructing all solutions

of (3.1) in a neighborhood of u 0, - 0 when Lo has a nontrivial nullspace. We
shall assume, in what follows, that u 0 is a solution for all values of z and that
there are no solutions of (3.1) of the form (u, 0) for sufficiently small

Let Lo have a nullspace of dimension n, spanned by basis vectors p, ,
We suppose the range of L0 to be a closed subspace of with co-dimension n.
Since Lo" ->, the adjoint operator Lo* maps * into *. We denote the
adjoint null functions by 9*,"" ", e* and assume them to be chosen so that
(p, p’)= q. The range of Lo is characterized by

o {f:fe , (f, p*i)=O,i 1,... ,n}.

Since $
_ , * _

$* and * e $*. Denote by $o the subspace

’o {u "u , (u, p/*)- O, i= 1,-.., n}.

by
Then Lo is an isomorphism from g’o to -o. Let P be the projection in given

Pu E (u,
]=1

and let Q be the projection onto oo given byI- P. We can restrict P to g’, and then
it is the projection onto the nullspace of L0, while Q restricted to g’ is the
projection onto g’o.

We now summarize the Lyapounov-Schmidt procedure for reducing (3.1) to
a system of n algebraic equations for n unknowns. Specifically, we shall reduce the
problem to an equation of the simple form

(3.2) : +M,,() 0,

where : e C, and M,, is a homogeneous operator of degree m. If the original
equation is covariant under a symmetry group, then this covariance is inherited
by the m-linear mapping Mm in (3.2).

We write the solution u of (3.1) in the form

(3.3) u a p + /,(a, z),

where a (a,, a,,),

O (0 01q91 "["02(2"[-" -[-Oln(On,
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and b(a, z) 0. Substituting (3.3) into (3.1) and applying the projection O, we
get

(3.4) QL(7")O + Q(’L1 + 7"2L2 + )a q9 + ON(r, t q + p) O.

Equation (3.4) has a solution , analytic in - and ct, with values in ’o. This is an
immediate consequence of the implicit function theorem. In fact, setting

K(7-, a, .if) QL(’)b + Q(zL1 + ’2L2 + ...)a. q + QN(r, o q +)
we see that K is an analytic mapping of C +1 X 0 into o. The Fr6chet derivative
of K with respect to at -= a O 0 is

K(O, O, O)= OLo,

which is a linear isomorphism between o and
In order that (3.3) be a solution of (3.1), it is necessary and sufficient that

O(L(’)b +L(’)a q +N(’, a + )) L(r)(a q + #) + N(’, a. q + p),

P(L(’)+L(’)ct" +N(’, a" +b)) 0,

hence

(3.5) (L(z) +L(-)a. + N(z, a. +),) 0, j 1, , n.

Equations (3.5) are called the bifurcation equations. They consist of n equations in
the n + 1 unknowns -, Ctl,.’’, ct,. Let us write them concisely as F(a, -)= 0,
where

(3.6) F(a,-)= . Y’, F,j(a)z.
k i+j=k

A close inspection of (3.5) reveals that the lowest order term is

i=l

The second order terms are given by

and possibly by

(3.7)

i=l

(N(0, a. ), ?),

provided these are of second order and do not vanish. We assume here, as in [7],
that the matrix (Lqi, ) is nonsingular.

We now proceed to reduce (3.5) further by a device employed by Graves [2]
and Sather [ 12], namely, by constructing the Newton diagram for the bifurcation
equations (3.5).
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FIG. 3.1

Referring to the expansion (3.6) for F(a, -), we plot every point (i, ) on the
lattice of nonnegative integer points in the first quadrant of the x-y plane for
which F does not vanish. Because the term -i=1 (Llqi, qf>a appears as the
lowest order term, the point (1, 1) appears on the Newton diagram. Since we have
assumed that (0, z) is always a solution of (3.1), we have F(0, -) 0; this condition
becomes

F(0, "r) F0k (a)’rk 0.
k=l

Therefore all terms of the form Fok vanish and there are no points on the j-axis of
the Newton diagram. On the other hand, since there are no solutions of (3.1) of the
form (u, 0) for sufficiently small u, F(a, 0) can not vanish identically, and

F(a, O)= Y’. F,o(a) # O.
k=2

Let rn be the smallest integer for which Fmo(a) # O. There exists a point (m, 0) on
the/-axis of the Newton diagram.

Let lo be the line in the Newton diagram passing through (rn, 0) and (1, 1):

i+(m-1)]=m.

All other points on the Newton diagram lie above and to the right of 10. Now let lk
be the line

i+(m-1)f=m+k,

We may rewrite F in the form

k=0, 1,2,...

F(a, ’)= Y, .Y. F/(a)’(
k=O i+(m-1)j=m+k

A new scale parameter e is now introduced by setting
m--1
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where e is chosen so that e is real and positive when z is. Then the bifurcation
equations become

F(e, e ’’-) 8m(A + Fmo()) + E em+k E Mij O,
k i+(m-1)j=m+k

where A is the matrix A0 (Lli, qg?) and A: Aoi. Note that these equations
are analytic in e. If one is interested only in real solutions of (3.5), then only those
solutions are considered for which :, e, and e

m-1 are real.
Dividing by e in the above expression and letting e - 0, we get

(3.8) AsC +F,,o(sC) 0.

Here F,o(:) is a homogeneous operator of degree m which maps C" into itself.
In the next section we shall show that if the original nonlinear equation (3.1)

is covariant under a symmetry group, then the reduced bifurcation equations (3.8)
are covariant under the same symmetry group. The relationship of the reduced
bifurcation equations (3.8) to the full set of equations (3.5) requires further
comment. If the Jacobian of equations (3.8) at a solution is nonsingular, then a
solution of (3.8) can be extended to a solution of (3.5) by the implicit function
theorem (hence to a solution of the full equations (3.1)). Unfortunately, this is not
always the case in applications (see [16]), and then a deeper analysis is required.
The reader is referred to the papers by Kirchg/issner [4] and Sather [12], [13] for
further investigations of such matters.

4. Group invariance of the bifurcation equations. Let 3 be a symmetry group
and let Tg be a representation of (q on - which leaves equation (3.1) invariant.
That is,

(4.1) TeL (r) L (r) Tg
and

(4.2) TgNO’, u)= N(r, Tu)
for all u in ’. First, it is clear from (4.1) that Tg leaves the subspace r/o
{u:Lou 0} invariant. We also assume that Tg’ c ’; since g’ c o, T defines a
group representation on g as well. Since T maps g" to g’ and to , its adjoint
operator T* maps ’* to * and * to *; and, furthermore,

T*gL*=L*T*g.

T* is an anti-representation on the dual space g*; that is,

T*(glg2) T*(g2) T*(gl).

However, the mapping g- T*(g-1) defines a representation of ff on the dual
space.

When Tg is restricted to r/0, it is a finite-dimensional representation of ff and
therefore has a matrix representation. Thus

T(g), T/(g);
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and, since (0i, (# tij

(4.3)

Similarly

and

(T(g),, q7)= T,(g).

T*(g)/* *T,(g),

T.,(g) (T(g)qg,, q7)= (o,,

T(g)ik *Tq(g).

Consequently, it is easily seen that o and o are invariant under T(g), and
that the projections P and O introduced in 3 commute with T(g). In fact,

T(g)Pu T(g)(u, i )0i Ti(g)(u, p)cpj,
PT(g)u T(g)u, q*)qgi (u, T*(g)o )oi

, * ,
(u, r,(g)o)o, r),(g)(u, 7)oi
To(g)(u, *7)*’ T(g)eu.

Since Q I-P, T(g) commutes with Q as well.
It will be convenient to define an inner product on the kernel r/0 and to

identify r/o* (the kernel of the adjoint operator) with r/o, as follows. If p,, p7 denote
dual bases for 70 and T0*, we identify r/0 with 70" by the correspondence

Yiqgi <’> iq

An inner product on r/o is given by

(X, 32 (Xi(i Mj(1") XiYi"

We can further assume that T is a unitary representation on this inner product
spacemthat is, that (Tx, Ty) (x, y). If T is not unitary with respect to this inner
product, then a new inner product can always be introduced relative to which T is
unitary [8, p. 67]. In applications, however, this additional difficulty may not arise.
The original problem may possess a Hilbert space structure and T in (4.1).may a
priori be a unitary representation. The kernel r/o then has a natural inner product
inherited from the original Hilbert space and the restriction of T to r/0 will then
automatically be unitary (see [ 16]).

We are now ready to prove
THEOREM 4.1. Let equation (3.1) be covariant under a symmetry group fg.

Let To(g) be the representation of g on the n-dimensional nullspace 7qo given by
(4.3). Then the bifurcation equations (3.5) are covariant under (g. That is,

(4.4) T(g)F(a, r)= F(T(g)a, r).

In particular, each term in (3.6) is covariant under T:

T(g)Fo(a Fo(T(g)a ).
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This equation is understood in the following sense. If a Cn, a

(al, a2,""", an) and u aii, then

so

r(g)ai) Tij(g)a.

Similarly, (T(g)F)i TF. if F is a mapping with values in Cn, F (F1," , Fn).
Proof. We first show that

T(g)@(a, )= @(T(g)a, r),

where @ Qu. We use the fact that @ is a solution of equation (3.4), and that this
equation has a unique solution for small a and r. We have

0 T(g)L(r)@ + T(g)QL()a. p + T(g)QN(r, a. p +)

L(r)T(g)@ + QL(r)a T(g)p + QN(, a. T(g)p + T(g)d/)

L(r)(T(g)@)+ QL(r)(T(g)a). p + QN(r, (T(g)a). p + (T(g)@)).

Hence (T(g)@)(a, r) is a solution of (3.4) with a replaced by T(g)a. Since the
solution is unique, however,

T(g)d/)(a, ’r) (T(g)a, ’r).
Turning now to the bifurcation equations, we have

F,.(, )= (L(){. +g,}+N(, . + g,),
so

(T(g)F), TiF.(a, r) (L(r) +L(r)a p + N(r, a p + ),

(L(z) +L(z)a. +N(z, a. + ), (g))
(r(g)L(r){a. +}+ r(g)N(r, a. + ),
(L(z){r(g)a. + r(g)}
+ N(z, (r(g)a). + r(g)),

(T(g)a, z).

Finally, since F(a, ) is covariant under T(g) independently of , each term i(a)
in (3.6) is covariant under T(g). In particular, equations (3.8) are covariant under
the symmetry group .

5. Tensor chactero the burcation equations. In 3 we saw how to reduce
a bifurcation problem to one of solving an equation of the form

(5.1) A+M() 0,

where M is a homogeneous operator of degree k mapping a finite-dimensional
complex vector space V into itself, and A is a linear transformation on V. In this
section we discuss the tensor character of (5.1)in particular, the tensor character
of the transformation M.
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First, M may be derived from a k linear operator B, where B is given by

B(Vl,’’’ ,Vk)
0k

OtlOt2 Otk
M(/lVl d- t2v2 d- d- tkVk)

t -----0

(see [14, p. 67]).
IfM is covariant under a group c, then B possesses the covariance property

(5.2) T(g)B(Vl, Vk)= B(T(g)vl, T(g)vk).

Furthermore, B is linear in each variable; that is, B is a k-linear operator on
V Vx x V into V. We wish to reinterpret B as a linear transformation from
V(R) (R) V into V--that is, as a linear transformation from the tensor product
space Vk into V.

Let V, W be finite-dimensional vector spaces with bases vi, w,., 1, , n,
j 1, , m, respectively. We consider the formal tensor product space V(R) W as
the nm-dimensional vector space with basis elements {vi(R) wj}, 1 <=i <-n, 1 <-_j <=
m. Thus any x in V(R) W can be written uniquely as

The tensor product operation is to obey the following rules:

c(v(R)w) cv(R)w= v(R)w,

(u+v)w uw+vw,
v(u+w) vu+vw.

A tensor B of type (0, 2) on V is an element of (V V)*that is, it is a linear
functional on V@ V. Let, , be a basis for V and ,. , be the dual
basis for . Consider the functionals on (V@* given by

(5.3) (@)(vw) (v)/(w)
We extend these operations to all of VW by linearity. at is,

r,s

Then o*(R)o is an element of (V(R) V)*. A complete basis for (V(R) V)* is
{o* (R)}, 1 _-< i, ] _-< n, and so

(V(R) V)*- V*(R) V*.

Note that the right side of (5.3) is bilinear in v and w. Thus the unctional
Bo(v, w)= (*(R)o]’)(v(R)w) is bilinear in v and w and linear in v(R)w.

A general tensor B o type (0, 2) on V can be written in the orm

B E Boo(R)O.
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Since each term in the sum is a bilinear functional on V V, B itself is a bilinear
functional on V V. Conversely, suppose F(u, v) is any bilinear functional on
V V. Define a tensor B in V* V* by

B(i (j) F(q,, q.)

and by extending B to the entire space (V(R) V) by linearity. Then

F(u, V)--
i,j

Ei,j uiujB(i ()J) B(, uii (13JJ)
B( lii(), l.)jj) B(U(R)V).

Thus every bilinear functional may be represented as a tensor in (V(R) V)*that
is, as a linear functional on V(R) V.

The above idea carries over immediately to k-linear functionals in an obvious
way: every k-linear functional is a linear functional on Vk.

Now suppose B is a k-linear operator from VV V to V. For
convenience, take k 2. Then

B(u, v) Bi (u, v)qi

where the bilinear functionals B are given by

U,(u, v)= (U(u, v),

As we have seen above, (V(R) V)* V*(R) V*, so the functionals B are elements of
V* (R) V* and may be written in the form

The mapping B can then be represented in the form

B Bjki *

with it understood that
B(u, v)= Bi(u, ?)(v,

If we further identify V* with V as in 4, then B may be written

B B]kiy(k QOi,

where the components Bjk are given by

Bjk (B(j, 0k ), )i);

here (-, denotes the inner product on V. Thus

B(U, v) Bjki (U, Oj)(V, k)(i-

The invariance property carried by B is then expressed as

Bijk (j(tk T(g)qi Bijk T(g)(qj()qk ))Oi.
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The bifurcation equations

may be written as

v +B(v, v) 0

t)i q- Bqkt)fl)k 0,

where vi (v, qi). Corresponding to the term Bqkl).fl)k, therefore, is the tensor

B Bi, (i (R)(#,

6. Group representations and their tensor l)rotlaets. Let Tg be a representa-
tion of the group on a finite-dimensional vector space V. If (#, , (#, is a basis
for V we obtain automatically a matrix representation Tj(g) defined by (4.3).

Two matrix representations T and T’ are said to be equivalent if there exists a
nonsingular matrix S such that

T’(g) ST(g)S-’.
A subspace Wis invariant under T if T(g)w Wfor every g c and every w W.
The representation T is reducible if there is a proper subspace of V which is
invariant under T. In finite dimensions, every representation can be assumed to be
unitary, and the vector space V decomposes into a direct sum of mutually
orthogonal irreducible invariant subspaces. We write

(6.1) V= @ Vk, T= (T(k),
k=l k=l

where the representations T(k) are irreducible unitary representations on the
subspaces Vk.

Given a finite group q3, there are a finite number of irreducible representa-
tions T) of c. The dimension of each representation is denoted by n, while the
number a of nonequivalent irreducible representations is equal to the number of
conjugacy classes in c.

Given an arbitrary representation T on a vector space V, we may write

T (R)a.T’
=1

where the integer a,, is the multiplicity of the irreducible representation T) in T.
The character of a representation is the function on given by

,t’ (g) tr T(g).

The character is basis independent since the trace.of a matrix is invariant under a
change of basis. Moreover, the character X is constant on con]ugacy classes.

An inner product is defined on characters by

1 , x(g))(g_l)<x, > -ff
where N is the order of J. The multiplicities a are then given by

a <X, X(+’)>
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If V and W are vector spaces with representations T, T’ on V and W,
respectively, then the tensorproduct representation T(R) T’ on V(R) Wis defined by

(T(g)(R) T’(g))(v(R)w)- T(g)v(R) T’(g)w

and extending T(R) T’ by linearity to the entire space V(R) W. One can easily show
that the character of T(R) T’ is

O( (R)x’)(g) x(g)x’(g).

If {Tq}, 1 =</x =< a, are a complete set of nonequivalent irreducible representa-
tions, then we can expand

(6.2)
=1

That is, V(R)V splits into a direct sum of irreducible invariant subspaces under
T")(R) T), and this representation may be decomposed accordingly into a direct
sum of irreducible representations. The multiplicities ae are given by

(6.3)

An exposition of the above theory may be found in I-8, Chap. 3].
Now suppose B is a bilinear mapping from V V to V possessing the

covariance property

(6.4) T(g)B(u, v)= B(T(g)u, T(g)v).

Let the tensor F in V3 be given by

(6.5) F(u, v, w)= (B(u, v), w).

Then F is invariant under T3 if T is unitary with respect to the inner product
(-, .). In fact,

T3F(u, v, w)= F(Tu, Tv, Tw)= (B(Tu, Tv), Tw)

We have shown that

(TB(u, v), Tw) (B (u, v), w)

F(u, v, w).

(6.6) T3F= F.

The set of all tensors F satisfying (6.6) constitutes a subspace of V3. If the tensor
F= F00 (R)q (R)0 has the property (6.6), then the mapping B(u, v) F0uvq
has the co;ariance property (6.4). This gives us a convenient way to compute such
covariant bilinear mappings B.

7. Subspaces of tensors invariant under a symmetry group. As a first applica-
tion of group representation theory, let us calculate the dimension of the subspace
of tensors (6.4) which are invariant under a symmetry group. The dimension of the
tensor product space V3 in whichF lies is n 3, where n dim V. The dimension of
the subspace of tensors F invariant underT3, or equivalently, for which

(7.1) T(u, v)= (Tu, T.v),
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is in general smaller, depending on the symmetry group . A further reduction in
the dimension of the subspace of invariant tensors is achieved because the tensorF
may be assumed to be symmetric in the first two variables. In fact, from the
bifurcation equation (3.8), we see that the only term which appears is the
symmetric expression B(u,. , ). In the case k 2, we replace B(, v) by

((u, v) +(v, u));

then the bifurcation equation sc +B(:, s#) 0 is unchanged, and F is symmetric in
its first two variables.

Let us calculate the dimension of the invariant subspace when the symmetry
group c is D3 or D4. These are the symmetry groups of the equilateral triangle and
square, respectively. The group D3, of order six, is generated by two elements g, h,
with g3__ h2__ e and hgh g-1. The element g represents a counterclockwise
rotation through 120 and h represents a reflection across a median. In terms of
the diagram in Fig. 7.1, g is equivalent to the permutation (1 2 3), while h is the
permutation (1 2). The conjugacy classes of D3 are {e}, {g, g2}, and {h, gh, g2h}
[8, p. 87].

3

FIG. 7.1

There are three irreducible representations of dimensions n 1, n2, n3 respectively,
with nl 1, n2 1, n3 2. The character table for group 03 is Table 7.1. (See [8,
p. 87].)

D3

X
(I)

X
(z)

X
(3)

TABLE 7.1

{e} {g, g2} {h, gh, g2h

1 -1
2 -1 0

Suppose the dimension of the nullspace V is four and that Vdecomposes into
the irreducible invariant subspaces

v= v<>(R) v<>(R) v<3>,
where dim V(">= n,/x I, 2, 3. The representation T then can be written

(7.2) T= T(’> T(2>( T(3>.
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The character X of T is

x(g) tr T(g) gl)(g) +g2)(g) +
Thus, for X, we have Table 7.2.

TABLE 7.2

D3

X

5, 25’ 35"

4 0
16 0
10 1 2

The character of T(R) T is xe(g), but the character of T(R) T restricted to the
subspace of symmetric tensors on V(R) V is given instead by

x() (x()+x()).
When o’= e, X(tr) =4, X2 16 and X(o-2) x(e)=4. So xS(e)= 10. When tr= g,
x2(g)=l but x(g2)=l, so xS(g)=l. When tr=h, h2=e so x(h)
1/2(xE(h)+x(e))=1/2(O+4)=2. Therefore the character of (T(R) T)(R) T is Table
7.3.

TABLE 7.3

D3 5" 25" 35"2

XX 40 0

Now we write

(T(R) T) (R) T= alT(1) "+" a2T(2) + a3 T(3)

where ai is the multiplicity of the representation Ti). Since 741) is the identity
representation, that is,

T(1)a a for all tr D3,

we want to know the number a 1. This number is the dimension of the subspace of
tensors which are invariant under (T(R) T) (R) T.

From (6.4),

a(1)= (XX, ,,"(1)) (1 "Xx(e)+ 2Xx(g) + 3Xx(h))
=(1-40+2.1+3.0)=7.

In this case, the dimension of the given subspace is 7; there are 7 linearly
independent tensors B such that

TgB(u, v) B(Tgu, Tgv) and B(u, v) B(v, u)

when the group G is 03. There are therefore 7 independent tensor quantities

U]k (B (q., qk ), Oi)

to be evaluated. We shall compute the precise form of the general tensor in 8.
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8. Computation of invariant bifurcation equations: An example. In this
section we compute the general bifurcation equations (1.2) when B is invariant
under the symmetry group D3 and v lies in a four-dimensional vector space V. We
assume that the representation Ton V is given by T- T(a)0) T(2)0) T(3) as in (7.2).
We emphasize that this is only an assumption for the sake of example. In practice,
the representation T must be computed. This is done explicitly for a problem in
fluid mechanics in [16]. (See Theorem 6.1.)

The bifurcation equations v+B(v, v)- 0 may be written in the form

1)i "Jr" B ki1)l"1)k O, i,j,k-1,...,4.

The components njk comprise a set of 64 quantities. However, as we saw in the
previous section, only seven of these quantities are independent. In fact, we shall
see that these equations may be reduced to the following special form:

(8.1)

1)1 +av+ bv2 + c(v+ v) O,

v2 + 2dv v2 O,

v3 + 2evv3 + 2fv2v4 + 2gv304 0,

I)4 "4- 2evl /)4 2f1)21)3 -1- g(v v) O,

where the seven parameters a,. , g are given by

a B,1, (B(q,, Ol) 1),

b B221 (B(q2, qz), 1),

C B331 (B(3, 3), 1),

d B2 (B(I, 2), ),

e B133 (B(1, 3), 3),

f= B43 (B(2, 4), 3).,

g B343 (B(3, 4), 3),

Step 1. Choose a standard matrix representation for the two-dimensional
representation T(3. We take

(8.2) g
x/ 1
2 2

-1 0

0 1

[8, p. 87]. This is the matrix representation obtained by considering the action of
D3 as the group of rotations and reflections which preserve an equilateral triangle
in the plane. Whenever we choose a basis {w, WE} for a two-dimensional subspace
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which transforms according to the rep T(3), we choose wl and w2 so that they
transform according to the above matrices. That is,

1
T(g)wl -.w--w2,

(8.3)
T(g)w2 TW1 W2,
T(h)w w, T(h)w2 w2.

Such a basis will be called a standard basis.
Step 2. Construct a standard basis for V.
In this case, we denote a standard basis for V by {, 02, 03, oa}, where

T(g)ql =X(1)(g)ol, T(g)q2---/(2)(g)02 and {3, 4} transform according to the
standard matrix representation 3) above.

Step 3. Construct a table of tensor products of irreducible reps z>>
(Table 8.1). Such a table is readily constructed by using the character table for D3
and the formula (6.3). Some simplifications are obtained, for example, by noting
that

etc.

T(1)

T2)
T(3)

TABLE 8.1
Tensorproduct table

T(1) T(2) T(3)

Step 4. Compute T (R) T from Table 8.1 in Step 2.

T(R) T= 3 T(1) @3 T(2)t) 5 T(3).

This expansion shows that the sixteen-dimensional space V(R) Vdecomposes into
3 one-dimensional subspaces which transform according to T1), 3 one-
dimensional subspaces which transform according to T2), and 5 two-dimensional
subspaces which transform according to T3).

Step 5. Construct a standard basis for V(R) V.
First we find the 3 one-dimensional subspaces which transform according to

T1. From the tensor product table (Table 8.1), we see that Ta arises in Ta (R) Tm,
T(2)()T(2) and T(3)(R)T3). The first two subspaces are therefore given by
g1(R)1 and 02()02, while the third one is a linear combination of 3 and 04:

Y aupi (R)o.
i,j=3,4
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The vector must transform according to the identity representation, so we must
have

T(3)aq (O’)O ( 3)(O’)qi Z aiioi ()qy
i,j=3,4 i,j=3,4

for all o- D3.
By choosing tr g, h, the generators of D3, we may determine the coefficients

a0 up to a constant factor. The result is q3 (R)q3 +04(04.
Next we compute the one-dimensional subspaces which transform according

to T2), and then the 5 two-dimensional subspaces which transform according to
T3). We leave the first case to the reader and take up the second. From the Table
8.1 we see which tensor products contain T3). From the fact that T(3) is contained

1) 3) 2) 3) 3) 1) 3) 2)nT (R)T ,74 (R)74 ,74 (R)T andT (R)74 we get the subspaces

T(1)() T(3)

T(3)( T(1)

yields {1 ()I[3, 01 ()4},

yields {q3 ()1, Iq$4 ()1},

yields {q2(R)q4, q2(R)q3},

yields {qa(R)q2, q3(R)q:}.

The remaining one is more difficult. Since T(3) is contained in T3)(R) 743), we get a
two-dimensional subspace of the form

W1-- aiioi(qi, W2 buoi(R)i.
i,j=3,4 i,j-----3,4

The coefficients au and bu are to be determined so that wl and 2 transform
according to (9.4). The result is listed in Table 8.2 below.

We have now got all the invariant subspaces of V(R) V. It remains to compute
the one-dimensional invariant subspaces of V3 which transform according to the
identity representation.

Step 6. Computation of the tensors F such that T3F-F.
We begin by proving
LEMMA 8.1. LetMandNbe complex finite-dimensional innerproduct spaces

and let R and S be irreducible unitary representations onMand N, respectively. Let
R denote a complex con]ugate representation for R (defined below). Then a
necessary and sufficient condition ]’or R (R) S to contain the identity representation is
that R and S be unitarily equivalent. In that case, the identity representation is
containedprecisely once. IfR is a real representation then R (R) S contains the identity
representation once if and only if R and S are unitarily equivalent.

Proof. A quick proof may be had in the case of finite groups (or compact Lie
groups) by the use of characters. If XR and Xs are the characters of R and S, then
the character of R (R)S is 2RXS. The number of times R (R)S contains the identity
representation is given by (see (6.3))

a (RXS, 1) (Xs, XR ).

This number is either zero or one since R and S are irreducible representations. It
is one if and only if R and S are unitarily equivalent. The proof may be extended
immediately to compact Lie groups.
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The proof below makes no assumption about the group. It is based on a
suggestion made to the author by O. E. Lanford III.

The complex conjugate of a representation is defined as follows. Choose an
orthonormal basis {ql, , qn} forM and let Rij(g) be the matrix of R (g) relative
to {(01,-.. (0n}. Then Rq(g) defines a new matrix representation of the group.
The collection of such matrix representations obtained by choosing all possible
orthonormal bases forM defines a class of unitarily equivalent matrix representa-
tions. In this way, we obtain the conjugate representation.

Let M* be the space of linear functionals on M and denote by (., ) the
bilinear functional on M M* given by

(u,v*)=v*(u).

By contrast, the inner product (., is anti-linear in the second variable. Given an
operator R, denote by R* and R /, respectively, the adjoints of R relative to the
bilinear form (.,.) and the inner product (.,.). If Ri(g) is the matrix of R
relative to {ql,""", qn}, then R* has the matrix R(g) and R / has the matrix

Ri(g). The matrix of R* is that one which is obtained by choosing the dual basis
{q*, , q,*} for M*. (0(q)= (qi, q)= 6.) Let/(g) R*(g-1). The matrix of
R (g) is

/q(g) (R*(g-1))q R.ii(g-1) Rq(g),

provided R is unitary. Thus the contragradient representation is unitarily equiva-
lent to the conjugate representation if R is .unitary. It therefore suffices to prove
the lemma for the product representation R (R)S.

We identify M*(R)N with (M, N) by the isomorphism

where the expression on the right denotes the linear mapping

fromM to N. Here the {0 *} form a basis for M*, while the {j} form a basis for N.
Define a representation U on 5(M, N) by UA SAR -1. This representation is
equivalent to the tensor product representation/ (R) S on M*(R)N. In fact,

’, ai.iR*(g-1)r.p )Sd/i ->Z ai]( R*(g-1)tp )Sbi
aij(g-l(g) q.*,)Sd/.

Therefore R (R) S contains the identity representation precisely as many times as
does U. But U contains the identity representation if and only if there exist
transformations A in (M, N) such that UA A, i.e., SA AR. By Schur’s
lemma [8, Thm. 3.4, p. 64] this happens if and only if R and S are unitarily
equivalent. In that case, M andN are isomorphic since R and S are assumed to be
irreducible. We can therefore put R S and M N and apply Schur’s second
theorem [8, Thm. 3.5] to conclude that A AE, where E is the identity transfor-
mation. There is thus a one-dimensional subspace of (M, N) which is invariant
under U, so U contains the identity representation only once.
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In the present application, R is a real representation.
We are now ready to complete our task. Lemma 8.1 is to be applied to the

case whereMis an irreducible subspace of V(R) VandNis an irreducible subspace
of V. From Step 4, we saw that T(R) T could be written as a direct sum of
irreducible representations on V(R)V, and we take one of these irreducible
representations for R. Similarly, the representation S of Lemma 8.1 is taken to be
one of the irreducible representations in the composition of T. By the lemma,
these must be equivalent if their tensor product is to contain the identity
representation. Thus, from 1(R)1 and pl, we get the subspace o1(R)o1(R)q1, etc.
We take all three subspaces of V(R) V which transform according to T(1), tensor
these with ql, and get three subspaces of V3 which transform according to Tm.

2)Then we take all subspaces of V(R) V which transform according to T tensor
these with q2, and obtain three additional invariant subspaces of V3. Finally we
come to the two-dimensional subspaces of V(R) V. These must be tensored with
the two-dimensional subspaces of V in such a way as to obtain the invariant
subspaces of V3.

Exactly how this is to. be done is already given to us in our calculation of the
invariant subspaces of V(R) V, where we saw that 13()(3-l-(4()14 transforms
according to 741) More generally, we have

LEMMA 8.2. Let V, W each be two-dimensional subspaces which transform
according to T(3). Let {Wl, w2} and {$1, ’2} be standard basesfor Vand W. Then the
invariant subspace of V(R) Wwhich transforms according to the identity representa-
tion is

Wl(*1 +W2()02"
Accordingly, the subspace {ol (R)q3, ql ()14} must be tensored with {03, q4}

in the following way:

(1 @13)@(3 -}- (01@14)@104

A complete list of all subspaces of V3 which transform according to T() are
given in the third column of Table 8.2. It is then an easy matter to write down the
bifurcation equations (8.1).

v v(R)v

T(1)

T(2)

T(3)

{03, 4}

(1 ()11
(2(2
0 ()( "t- 14()(4

(1(2
02()(1

TABLE 8.2

v(R)v(R)v

2()2()1
(13()13 -I- 04()04) ()01

1()12()12
(2()i0"1 ()12
(3()4 04()3)()02
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ON THE ZEROS OF CERTAIN JACOBI POLYNOMIAL SUMS*

J. BUSTOZ?

that
Abstract. Let P’t)(x) be the Jacobi polynomial of degree k with parameters a,/3. It is known

It has been conjectured that

pt,t) (cos O)
P’/)(1) -->0 for fl-->_0.

k=O

P’) (cos 0) k

k=o --fl’)--) Z S0 if lzl<l, /3>0.

This conjecture has been verified for/3 0 and/3 1/2. Here we prove the conjecture for/3 and/3 2
and give a more general inequality valid for/3 0, 1/2, 1, 2.

1. Introduction. Let P"t3)(x) denote the Jacobi polynomial with parameters
a,/3 and set

Rt)(cos 0)= Pt’t)(cos 0)/P(3’3)(1).
It is known that if/3 -> 0 and 0 <-0 =< r, then

(1.1) Z Rkt)(cos 0)=>O-
k=0

When/3 1/2, inequality (1.1) reduces to the well-known Fejer-Jackson inequality

(1.2) E
sin (k + 1)0=>0.

=o k+l

R. Askey has conjectured [1] that the inequality (1.1) can be generalized to the
following" If/3 -> 0, 0-<_ 0 =< r and Izl< 1, then

(1.3) P,,(z; O,B)= R(kt)(cosO)z’ O.
k=O

Inequality (1.3) is known to be true for /3 =0 and /3 1/2. When /3 0, the
polynomials R)(cos 0) are the Legendre polynomials. Szeg6 proved the inequal-
ity (1.3) when/3 0 [4], and the case/3 1/2 is proved in [2]. In this note, we will
prove (1.3) for/3 1 and/3 2 and will show that a more general inequality is
valid for/3 0, 1/2, 1, 2, and is also true in the limit as/3 c. (This limiting case was
observed by R. Askey.)

2. Development. Define the functions Gt3(z; O) by

(2.1) Go(z 0) , R(kt)(cosO)z k+l
k=O

* Received by the editors August 1, 1975.
"f Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio. Now at

Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
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We will show that the partial sums S,,(z; O, fl) of (2.1) vanish in [z < 1 only when
z =0. This will prove (1.3) for these values of/3 since S,,(z; 0,/3)= zP,,(z; O, fl).
By using Gegenbauer’s integral

IoR(cos 0)=
F(/3 +1/2)F(1/2) [cos # +/sin 0 cos t] sin dt,

we can prove that the functions G for/ -1/2 satisfy the recursion relation

2(B + 1) (1-2z cos O+z)G-z(1-z cos 0)
(2.2) Gt+a 2/3 + 1 Z

2 sin2 O

R. Askey pointed out to the author that G(z; O) can be written in a
hypergeometric form by using Gegenbauer’s integral. The formula thus obtained
is

G(z;0)=l_zcos0 1-zcos0
The recursion relation (2.2) can then be obtained by applying one of the Gauss
contiguous relations satisfied by 2Fa’s. The fact that G(z; O) is a multiple of a 2F1
might be of use in proving a conjecture about G(z; O) that we will make
presently. When/3 -0, (2.1) is the generating relation for the Legendre polyno-
mials so that

G0(z; 0)= z(1-2z cos O-Jr-z2)-1/2,
and thus by applying (2.2), we can sum the series (2.1) when/3 is a natural number.
It is convenient for the moment to write A =(1-2z cos O+Z2) 1/2 and B
1-z cos 0. Then simple computations give

2z 4z(2A + B)
Gl(z; O) a +B’ Gz(z, 0)

3(a +B)2

It is possible to establish a general formula for G,, n a natural number, of the form

G,, z&, (A, B). (A + B)-",

where b, (A, B) is a poiynomial in A and B of degree n 1.
The proof of (1.3) for/3 = used the notion of univalence, and this will also

play a basic role here. A function f(z) analytic in [z[ < 1 is said to be starlike of
order if

(2.3) Re zf’(z) > 1

This class of functions will be denoted by St (1/2). If f St (1/2), then f is univalent in
[z[< 1. St. Ruscheweyh and T. Sheil-Small have proved [3] that if fSt (1/2),
f z + a2z +. , and if S, (z) is the partial sum of f, then

->- 1/2, Iz [<(2.4) Re
Sn(z)
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Since f is univalent and f(0)= 0, (2.4) implies that S,,(z)/z does not vanish in
z < 1. Thus one way to prove (1.3) is to prove that Go 6 St (1/2). We conjecture that
this is so for/3 => 0.

TI-mOM 1. Go e St (1/2) if fl 0, 1/2, 1, 2.
Proof. We will omit some computations. For convenience we set He(z)=

 GalGe.
We find easily that Ho(z) (I z cos 0)J(l 2z cos 0 + z a) and that Re Ho ->-

1/2. Hence Go,St (1/2). Computing H, we find H(z)-Go(z; O)/z, and we have
Re H => 1/2 by (2.4) with n 1 and f-- Go, so G St (1/2). For Ga we get

H,(z)
3

2(1 2z cos O + z 2) 1/2 _[_ 1 z cos O"

Now Re H2_>-1/2 for [z[ < l if and only if I(1/H=)- 11< 1, [z[< 1. This last inequality
is equivalent to

(2.5) 12(1-2z cosO+z2)1/2--2--Z COS 01 <3, IZI< 1.

Since HleSt(1/2), we have that [(1-2z cosO+z2)/2-1l<l, [z[<l, and (2.5)
follows by the triangle inequality. Thus G1 e St (1/2). A function f analytic in [z[ < 1
is convex univalent if Re zf"/f’->-1 in [zl < 1. Convex functions are starlike of
order1/2, so to show GI/2 St (1/2), we can prove convexity. Computing G’/2, we get

and then we get

G/2 (1 2z cos 0 + z2)-1,

2zG/2+I= 1-z
G/2 1 2z cos 0 + z2

and we easily find that this last quantity has a nonnegative real part in Izl < 1. This
completes the proof.

As/3-oo, the function Gt(z; O) converges to Go(z; 0)= z(1-z cos 0)-1.
An easy computation shows that Re zG/G>-1/2, and thus our conjecture
that Gt(z; 0)St(1/2) is true in the limit. We remark that the inequality
Re Gt(z; O)/S,(z; O, )>=1/2 for Izl < 1 is more than we need to conclude inequal-
ity (1.3). It would suffice to show that Re G(z; O)/S,,(z; O, ) >-0. As a matter of
fact, this is exactly what Szeg6 did in order to prove (1.3) for/3 0.

Although it is possible to find a general formula for G, when n is a natural
number, we have been unable to prove Theorem 1 for all natural numbers n. The
sums for H become very hard to handle for n > 2.

As a consequence of Theorem 1 and inequality (2.4), we may conclude that
(1.3) holds for/3 0, 1/2, 1, 2. The fact that (2.4) implies

(2.6) &(z)
f(z)

-1 <1,

gives a general inequality that includes (1.3). To see this, we observe that (2.6)
implies that S,(z)/f(z) lies in a convex region excluding zero. Hence if
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A0, A1,..., An are nonnegative numbers with at least one of them positive and
Sn (z)= zPn (z), we can conclude that

(2.7) AP(z) O, [z < 1.
k=0

In particular, (2.7) holds when we take forP (z) the polynomials (1.3). This can be
restated as

TI-IZORZM 2. If A >= 0 is a nonincreasing sequence with at least one A O,
then ]’or every n O, 1, 2,. .,

ARt)(cos0)z0, Izl<l =0,,1,2
k=0

We conjecture that Theorem 2 holds for/3 -> 0, as would be true of course if
Theorem 1 holds for/3 _-> 0.

In [2] we proved that the polynomials

n-k +a t) k

k=0 n k
R (cos O)z

do not vanish in Izl< 1 if a _-> 1 and fl _-> 1/2, and conjectured that this remains true if
a _>-0, fl >-0. It appears that more than this is true because as a special case of
Theorem 2 we have the following:

COROLLARY. If a >--O, fl O, , 1, 2 and m <--_ n, then

n-k
R (cos 0)z 0,
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MOMENT THEORY FOR WEAK CHEBYSHEV SYSTEMS WITH
APPLICATIONS TO MONOSPLINES, QUADRATURE FORMULAE

AND BEST ONE-SIDED L-APPROXIMATION BY SPLINE
FUNCTIONS WITH FIXED KNOTS*

C. A. MICCHELLI" AND ALLAN PINKUS$

Abstract. The chief purpose of this paper is to Present an alternative approach to results
concerning the existence and uniqueness of monosplines which have a maximum number of zeros (the
fundamental theorem of algebra for monosplines). In addition, we discuss the related problems of
"double precision" quadrature formulae and one-sided L 1-approximation by spline functions with
fixed knots.

1. Introduction. The chief purpose of this paper is to present an alternative
approach to the results of S. Karlin and L. Schumaker [6] and S. Karlin and C. A.
Micchelli [3] concerning the existence and uniqueness of monosplines which have
a maximum number of zeros (the fundamental theorem of algebra for mono-
splines). In addition, we discuss the related problems of "double precision"
quadrature formulae and one-sided L 1-approximation by spline functions with
fixed knots.

Our approach to these problems is based on moment theory. The relationship
of the above problems to moment theory is not surprising. In fact, I. J. Schoenberg
originally suggested this relationship in [13] and S. Karlin and W. J. Studden [7]
discuss a special case of the fundamental theorem of algebra for monosplines by
means of moment theory.

However, the method used in [6] (and later in [3], [4] and [10]) to prove
Schoenberg’s conjecture [13] does not use moment theory and is needlessly
complicated. Our proof uses Theorem 2.1; see Theorem 5.1 and Corollary 5.1.
Nevertheless, the methods of [6] are indeed valuable when the simplicity of
moment theory is not applicable, as in I-4] and [10].

A thorough treatment, with improvements, of M. G. Krein’s work [8] on
moment theory for Chebyshev systems is contained in I-7]. The basic difficulty that
we face here is to provide a suitable version of these results for weak Chebyshev
systems. In his thesis 1], H. Burchard studied the problem of interpolation of data
by generalized convex functions and was also led to the problem to extending
moment theory to weak Chebyshev systems. His extension, however, is too
restrictive for the application we have in mind. For the related problem of
determining the "envelope" of smooth functions "pinned down" on some parti-
tion, see Micchelli and Miranker [14].

In 2 we present an extension of moment theory to weak Chebyshev systems,
which improves on Burchard’s result. We also discuss the related problem of
one-sided approximation for weak Chebyshev systems. In 3 we apply the
general theory to certain classes of spline functions to obtain "double precision"
quadrature formulae. Section 4 contains our version of the fundamental theorem
of algebra for monosplines satisfying mixed boundary conditions, which subsumes
[3] and [6].

* Received by the editors September 4, 1975, and in revised form December 22, 1975.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
$ Mathematics Research Center, University of Wisconsin--Madison, Madison, Wisconsin 53706.

206



MOMENT THEORY 207

2. Moment theory for weak Chebyshev systems. We begin by recalling the
main results of moment theory for Chebyshev systems. LetMbe a linear subspace
of C[0, 1] of dimension n spanned by the functions Ul(t)," ", u,(t) and let dc(t)
be a nonnegative finite measure on [0, 1]. If da(t) is a discrete measure

Iol s
f(r) da(t)= Y ajf(t.), f e C[0, 1],

j=l

A >0,* AN >0, 0<tl <" "<tN <- 1, then the index of da, denoted by I(a), is
defined to be Y.j w(t,) where o(t) when t {0, 1}, and o(t) 1 when (0, 1).
Following [8], we call da(t) a positive measure (relative to M) provided that
1o u(t) da(t) >0 whenever u is a nontrivial nonnegative function in M. A positive
measure corresponds to an interior point of the moment space determined by the
set of functions {Ul(t),""", Un(t)} [7]. The measure dao is said to be a principal
representation of da provided that Iao u(t)deeo(t)=Iao u (t) dee (t) for all uM
and I(eeo)= n/2. If deeo has mass at one, it is referred to as an upper principal
representation; otherwise, it is called a lower principal representation. The set of
functions {ul(t)," .,u,(t)} is called a Chebyshev system on [0, 1] (M a
Chebyshev subspace) provided that

ul(tl) ul(tn)

Un(tl) u.(t.)

>0

for all 0=<tl <t2<" <t, _-<1.

The following result of Krein is proven in [7]. If M is a Chebyshev subspace
then every positive measure da(t) has exactly two principal representations,

fO fo fou(t) dee(t)= u(t) dg(t)= u(t) dYe(t), u M,

where dg is a lower principal representation and dd is an upper principal
representation.

Let us denote by K the convexity cone generated by M. Thus every f K is a
function defined on (0, 1) which satisfies the inequality

Ul(tl) Ul(tn+l)

u2(tl) u2(tn+l)

u.(t,) u.(t.+,)

f(tl)

for all 0<tl <’" (ln+ < 1. The principal representations corresponding to a
positive measure have the additional property that for f e Ko C[0, 1] fq K,

(2.1) Io f(t) dg(t)<= f(t) da(t)<= f(t) dd(t).
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This.inequality is called the Markoff-Krein inequality.
We shall now discuss the extension of the above results to a weak Chebyshev

system which contains a positive function.
A set of linearly independent continuous functions {ui(t)}i"--a form a weak

Chebyshev system (M a weak Chebyshev subspace) on [0, 1] provided that for all
points 0 -< tl <" < tn -< 1,

ul(ta) u(tn)

u2(tl) u2(t,)

u.(ta)

TI-IEORZM 2.1. Let M be a weak Chebyshev subspace of dimension 21 on
[0, 1], which contains a strictly positive function on (0, 1). Then every positive
measure relative to M has a lower principal representation.

Proof. The basic idea of the proof is to "smooth" the weak Chebyshev system
{ui(t)}=a into a Chebyshev system and then apply the previous results for
Chebyshev systems. Specifically, let 6 > 0 and define

Ui(t; )--2 e-(X-’2/2ui(x) dx.

Then {ui(t; 6)}//a is a Chebyshev system [7], and lim_0+ ui(t; 6) ui(t) uniformly
in any closed subinterval of (0, 1) and lim_,0+ ui(t; 6)= u(t)/2, for {0, 1},

1,. , 21. Thus for every positive measure da, there exists a lower principal
representation d_a such that for 1,..., 21,

(2.2) Io ui(t; () da(t)= u(t; 6) da_(t)= E Aj(6)u(tj(6); 6),
j=l

where hi(6) > O, j 1,. , l, and 0 < ta(6) <" < tl(6) < 1. (We may assume that

Io Io(2.3) lim u(t; ) da_(t)= u(t) da(t), i= 1,..., 21.
6-0

Otherwise, we construct another measure dk (t), positive relative to M, such that

fo folim u(t; ) d(t)= u(t) da(t), i= 1,..., 21,
60

and let da_(t) be the lower principal representation of dk(t). Then clearly (2.3) is
21

valid.) Construct the "polynomial" u(t; 6)=Yi= a(6,)2(/t; 6) which satisfies
u(t(6); 6)=0, i= 1,..., l, u(t; 6)>-_0 for t>=q(6), ana L=a [a(6)]2= 1. Since
{u(t; 6)}2a is a Chebyshev system on [0, 1], the above conditions uniquely
determine u(t; 6). Hence from (2.2), we conclude that I u(t; 6) da(t)= 0 for all
6 >0. Since 0<q(6)<... < t/(6) < 1, there exists a subsequence {6k}=a, 6k $ 0,
such that ti(6)t, i= 1,... ,l, where 0-<q-<.. .=<t=<l. Choosing a subse-
quence of {6}= a, if necessary, it follows that u (t; 6) u (t) as k ]’ oo, uniformly in
any closed subinterval of (0, 1). Thus I u(t) da(t)= 0, and u(ti)= O, 1,..., l,
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while u(t) >-0 for >-tl, and u(t)O. Since da is a positive measure relative to M,
tl > 0. In a similar manner, one proves that tl < 1. Furthermore, using the fact that
M contains a function which positive on (0, 1), it follows that A 1(6), , A(6) are
uniformly bounded in 6. Now we may easily pass to the limit in (2.2), perhaps
through a subsequence, and obtain a limit da_(t) for da_(t), where

u(t) d(t)= u(t) de(t), i= 1,..., 21.

The proof of Theorem 2.1 will be complete if we can show that I(da_)= I.
From the above analysis, I(da_ <= I. If strict inequality holds, then we construct by
smoothing, a nonnegative nontrivial polynomial in {u (t)}t__ which vanishes at the
points of increase of d_a. This contradicts the positivity of the measure da. Thus
I(da_)= l, and Theorem 2.1 is proven.

Under the stronger assumption thatM contains a strictly positive function on
the closed interval [0, 1], we may prove the following result.

THEOREM 2.2. LetMbe a weak Chebyshev subspace on [0, 1] which contains
a function which is strictly positive in [0, 1]. Then every measure which is positive
relative to M has an upper and lower representation.

Remark 2.1. Theorem 2.2 was proven in [1] under the stronger hypothesis
that M is a weak Chebyshev subspace on some closed interval strictly containing
[0, 1].

Remark 2.2. Theorems 2.1 and 2.2 are not valid if there does not exist a
positive function within the weak Chebyshev subspace. For example, consider the
two-dimensional weak Chebyshev subspace composed of cubic polynomials
which have a double zero at 1/2. On [0, 1] the positive measure dt has no lower
principal representation relative to this subspace.

LEMMA 2.1. LetM be a weak Chebyshev subspace of dimension n on [0, 1]
and letf Ko-M. Ifda_ is a lowerprincipal representation ofsome measure which is
positive relative to M, then there exists a nontrivial nonnegative function g(t)=
cof(t)+i= ciui(t) such that 1o g(t) da_ (t)= 0, and]or any g(t) of the above form,
Co > O. Ifwe replace da_ (t) by an upperprincipal representation dd (t), then the above
holds with Co < O.

Proof. If M is a Chebyshev subspace, then the proof of Lemma 2.1 may be
found in [7]. For M as above, the existence of a g(t) as indicated in the statement
of the lemma follows by smoothing as in the proof of Theorem 2.1. Thus for da_ (t),
Co--> 0, and for dd(t), Co <= O. However, if in either case Co 0, then we contradict
the positivity of d_a, or dd relative to M.

COROLLARY 2.1. Let M be a weak Chebyshev subspace of dimension n on
[0, 1]. If da_ (t) and dd(t) are lower and upper principal representations of a positive
measure da(t) relative to M, then

f(t) d_ (t) <= f(t) da (t) <= f(t) da (t),

for any f Ko.
Proof. We may assume without loss of generality that f 6 Ko-M. Then from

Lemma 2.1 we conclude that there exists a nontrivial nonnegative function
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g(t)=Cof(t)+Ej=l cju(t)with c0>0 such that og(t)dg(t)= 0. Hence

io io io0 <- g(t) da(t)= g(t) da(t)- g(t) dg(t)

Co f(t) da(t)- f(t) d_(t)

This proves the lower inequality. The upper inequality is similarly proven.
Remark 2.3. When da(t) satisfies the hypothesis of Corollary 2.1 and is also

a positive measure relative to the subspace Mt which is spanned by the functions
{f, u1," ", u,}, then strict inequality holds in the above inequality whenever
fKo-M.

We will denote the smallest linear subspace containing K0 by [K0].
The following useful corollary appears in 1] in a weaker form.
COrOLLArY 2.2. Let M be a weak Chebyshev subspace of dimension n. I[

[Ko] contains an n-dimensional Chebyshev system on [0, 1], then every positive
measure relative toMhas atmostone upper and one lowerprincipal representation.

Proof. Suppose ddl and rid: are two upper principal representations for
da(t). Then according to Corollary 2.1, 0 [(t) d(t)= of(t) d:(t)for all [ K0.
Since [Ko] contains a Chebyshev system of dimension n, and I(dd)= I(dd:)=
n/2, we conclude that dd rid:.

Chebyshev systems have the property that for any points 0 x <. <x 1
and any data y, y.,. ., y there exists a unique u M satisfying

(2.4) U(Xi) Yi, 1, 2,. , n.

For a weak Chebyshev system, the determinant of the linear system (2.4) may be
zero. However there does exist at least one set of points in [0, 1] for which (2.4) has
a unique solution. We will show that the support of the principal representations
of positive measures has this property under the assumptions of Corollary 2.2.
To explain this further.let us suppose for the moment thatn 21, M__ C[0, 1],
and da is a positive measure with lower principal representation d_a. Then

f(t) da(t)= E Af(t), feM,
1=1

where A1 >0, A2 2>0, A >0, 0</1 <" "<tl < 1.
We associate with d_a the interpolation problem

u(ti)= y, i=1,2,...,/,

u’(ti) yi, i=l, 2,"’,l.

This set of equations has a unique solution for all real data {y}, 1,..., l,
j 0, 1, provided that the homogeneous set of equations

u(ti) 0, i=l,...,l,
(2.5)

u’(ti) O, i=1,...,1,

has only the trivial solution in M. We will denote (2.5) simply by u(da_)= 0. In
general, for any discrete measure, we interpret u(dB)= 0 as the interpolation
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problem which sets u(t) and its first derivative equal to zero at an interior point of
the support of dfl while at an endpoint of [0, 1] only the value of u(t) is set equal to
zero.

COROLLARY 2.3. Suppose M is a weak Chebyshev system contained in
C1[0, 1], and [Ko]f’)C1[0, 1] contains an n-dimensional Chebyshev system on
[0, 1 ]. If]or allf Ko, d is a positive measure for the subspace M, then u(d) 0
has only the zero solution in M, ifd is a principal representation for da.

Proof. Let us again restrict ourselves to the case when n 2l and to the
interpolation problem corresponding to the lower principal representation. Thus
we are required to show that the only solution to the system of equations

(2.6)

21

Y aiui t. O, 1, 2,..., l,
i=1

2l

Z aiu(t) O, f 1, 2,’"., l,
i=1

is the zero solution. Suppose to the contrary that (2.6) has a nontrivial solution.
Then we conclude that there exist constants c o

i, c, i= 1, 2,..., l, not all zero,
such that

F(u)=- E cu(t) + E cu’(ti) =0,
i=1 i=1

for all u e M. From our hypothesis, there exists an fo e K f3 C1[0, 1] such that
F(fo) 0. Choose a constant c such that

v da v da_ + cF(v), v Mto.

We arrive at a contradiction, as before, by constructing a nontrivial nonnegative
Vo Mo which vanishes on the support of d_a and necessarily has the property that
F(vo) 0. Thus we have contradicted the fact that da is a positive measure for Mo.

Remark 2.4. Let w(t)>0, t[0, 1]. Then the measure da(t)= w(t)dt is a
positive measure for all subspaces Ms, f Ko.

Corollary 2.3 enables us to treat the question of one-sided approximation by
weak Chebyshev systems. Let us consider the minimum problem

(2.7) min (f(t)- u(t)) da(t).
<=1:
uM

COROLLARY 2.4. Let the hypothesis of Corollary 2.3 hold and suppose da_ is a
lower principal representation for d. Then every f K f) Cl[0, 1] has a unique best
one-sided approximation from below. The best approximation Uo to f is determined
uniquely by the interpolation conditions (Uo-f)(d_ )= O.
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Proo[. Let Uo be uniquely determined by the conditions (Uo-f)(da_)= O.
From Lemma 2.1 and Corollary 2.3, we conclude that Uo-<-fi Now let u be any
element in M such that u =<f. Then

(2.8)
u(t) da(t)= u(t) da_ (t)<= f(t) da_ (t)

Uo(t) dg(t)= Uo(t) da(t).

Thus Uo is a best one-sided approximation to f from below. Furthermore, if u is
any other best one-sided approximation to f from below, then according to (2.8)
we have a0 (f(t)-u(t)) da_(t)= 0. Thus (f-u)(da_)= 0, and from Corollary 2.3
we conclude that u o =_ Uo.

Remark 2.5. The unique one-sided approximation from above for f e
K fq C1[0, 1] is determined by the interpolation conditions (f- u0)(dff) 0, if dff
exists.

We end this section with some remarks concerning weak Chebyshev systems
which satisfy linear constraints. This will enable us to conveniently apply the
above results to certain classes of spline functions.

Given linear functionals Ll(U),’’’, Lk(u) defined on the linear subspace M
spanned by the functions ,n/r

’tUi’i= 1, we denote by M(L) the subspace of functions in
Mwhich satisfy the linear constraints Li (u) 0, 1, 2, , k. We may construct
a basis for M(L) in the following way. We define the (k + s)th order determinants

ik, ik+l, lk+sI
L1, Lk, X ,’Xs !

L(ui) L(ui) ui,(x,) Uil(Xs)

gl(/gik+s)""" Lk(Uik+s) Uik+s(Xl) Uik+s(Xs)

< n + r and 0 < x <" < xs < 1 If the set of linear function-for 1 -< il <" "< ik +s
/r

als {Li}= is independent over M, that is, rank IIL (u )IIL k, then there exists
exist <"" < ik such that

and the functions

il,’’’,ik )d
\LI,.. ,Lk

#0,

U( il,’’’,iki )V(t) La, Lk, t
l= 1, 2," , n +r-k,

where {i’ i’1, n+r-k} are the set of complementary ordered indices to
{il," ", ik} in {1, 2,..., n + r}, form a basis for M(L). Furthermore, employing
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Sylvester’s determinant identity, see Karlin [2], we have for some

v,(x) v(x,+,_)

/)i(Xl) I)i(Xn+r_k)

Oi’n+r_k (X 1) Vi’n+r--k (Xn +r-k

=o.d,,+r_k_U(1, 2,..., k, k + l, n +r]
El, Lk, Xl, Xn+r_k ]"

Thus if M(L) has dimension n + r-k, rank IIL,(u)ll k and

U(1,"’,k,k+l,"’,n+r) >-_0,(2.9) cr
L1, Lk, Xl, Xn+r-k

for all 0 < Xl <" < Xn+r-k < 1, then the ,set of functions "tvtlt=l
.n+r-k form a weak

Chebyshev system on [0, 1].
Furthermore, let us note that if there exists a set of points for which strict

inequality holds in (2.9), then it follows that the rank II(Li(u)ll-k and the
dimension of M(L) is n + r- k.

Let f be a function defined on [0, 1] such that

LI(ua) Ll(un+r)

L(u) Lk(Un+r)
(2.10) O"

u(xl) u.+(x)

u,(x.+_+)

Ll(f)

Lk(f)

f(x,)

Un+r(Xn+r-k+l) f(Xn+r-k+l)
for 0_<-xl <. <X,+r-k+l <- 1. Then according to Sylvester’s determinant iden-
tity, we may express the determinant in (2.10) as

dn+r-k

where

(2.11)

Ll(Ui,) Ll(Ui,) L(f)

f(t) Lk’(f)Lk(Uix Lk(Uik

Uil(t uik (t) f(t)

Thus f is in the convexity cone of M(L) and Li(f)= O, 1,..., k. Among all
functions which satisfy these relations, (2.11) gives us a correspondence between
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the elements in the cone of M(L) and functions for which (2.10) is valid.
Finally, observe that we may expand the determinant in (2.11) by the last

column and express f(t) in the form

k

f(t) dr(t) + . aj(t)Lj(f),
j=l

where al(t),’’’, ak(t) are elements of M.
We now consider some application of our previous results.

3. Quadrature formulae [or spline unctions with boundary conditions. Let
Ar denote the partition 0 0 < s1 <" < r < :+1 1 of the unit interval [0, 1].
The class of spline functions on [0, 1] of degree n- 1 with simple knots at A is
defined by

0- 0._(Ar) {S" S C"-[0, ], SI,+, 1-I.-,, 0, ,..., r},

where II,_l denotes all polynomials of degree _-<n 1. Every element S 6 0 has a
representation of the form

S(t) Z at + c(t-)-,
i=0 i=1

where t+ max {0, t} (we shall always assume n _-> 2).
We are interested in the subclass of ow which satisfies boundary conditions of

the following form.
Let n + r k + m, and define

n--1 n--1

(3.1) C/(f)= Ad(i)(0)+ Bd((1), i= 1,... ,k.
=0 =0

Denote by 5e(ck) the subset of ow satisfying C/(S)= 0, i= 1,..., k, and let
c IIc;ll;\ " where

(.2) G
,(-/+"+’+ k, o,, n

i.2,-1-i, i=l,’",k, ]=n,...,2n-1.

The following conditions on the matrix C are assumed to prevail throughout this
paper.

(i) 0 N k N min {2n, n + r}.
(ii) There exist {i,. ., i, ]1," ", ]k-s} {0, 1," ", 2n 1}, 0 N i <. <

iNn--l<]<...<]k_N2n--1, satisfying M-l+mu, =m+l,...,n,
where M counts the number o[ terms in {il," is, 2n 1 -]1," ", 2n 1 -jk-}
less than or equal to , and

1, ..., k)0.(3.3) C
i, is, jl, fl_s

(iii) For all {il, , is, jl, jk-s} satisfying (ii),

is of one fixed sign.
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Remark 3.1. Note that we make no assumptions on the k k minors of C for
which My_ + m >= u, u m + 1, , n does not hold.

The main theorem of this section is the following result.
THEOREM 3.1. Given a positive weight function w(t) > 0 and nonnegative

integers n, r, k, with n >= 2, and n + r k + 21, then there exists a quadratureformula
of the form

k

(3.4) f(t)w(t) dt= 2 ciC(f)+ Y Aif(ti),
j=l i=1

which is exactfor all s 5f, where A > O, j 1,. ., 1, and 0 < <" < t < 1.
We remark that the formula appearing above is of "double precision" since

the dimension of 0 is n + r while the number of "free" parameters appearing on
the right hand side of (3.4) is k + 21.

In general, the above quadrature formula is not unique as the following
example demonstrates.

Example 3.1. Let n 2 and r 3 with the knots chosen at :1 3, :2 1/2,
:3 , and 2 and k 1 where the boundary condition is S(0) + S(1) 0. This
boundary condition satisfies (3.3) and the following two quadrature formulae hold

(t-’forf{1 t,(t -1 )+, (t

f(t) dt -(f(O)+f(1))+xf(5)+ f

f(t) dt=-(f(O)+f(1))+ f - 4 f -Whether uniqueness persists for all n >-3 remains unresolved. However, we
will later give some partial results on the uniqueness of (3.4).

The main idea in the proof of Theorem 3.1 is simply to show that the subspace
0(cgk) has a lower principal representation. The remainder of the section is
devoted to the details of the proof of this fact.

Let us write

ui(t) i-l, i= 1,’’’, n,

and

u.+,(t)=(t-)-1, i= 1,. ,r.

Then in the notation of 2, Melkman [9] (see also [5]) proved.
THEOREM 3.2. If n + r k + m and (3.3) is valid, then

", n+t)o’_->0,(3 5)
CI, ", Ck, X l, ", Xm

where tr + 1 or 1 fixed, for all choices of 0 < x " Xm < 1 (where at most n of
the xi’s coincide), and (3.5) is strictly positive iff there exists an {s, k-s} for which
(ii) of (3.3) is satisfied and

(3.6) :,+s-,, <x, < :,+s,
(whenever the inequalities are meaningful).
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Thus according to the discussion at the end of 2, we conclude that 6e(ck) is a
weak Chebyshev subspace of dimension rn on [0, 1].

We list. below some examples of boundary conditions which satisfy (3.3).
Example 3.2.

S(")(0) 0, /.t 1,. , p,

s(1) 0, 1,. , q,

wherep+q k, Oia <. <ip n- l, 0j <. <jq n-l, andM’_a+m
u, u=m+l,...,n, where M’ counts the number of terms in
{ia,..., ip, j,..., "1} less than or equal to u.

")(0) S((1 k 1 ifk+n+risodd.Exampte 3.3. ), i=O, 1,. ,
Example 3.4. S((O) -S()(1), O, 1, , k 1, if k + n + r is even.
Example 3.5. Separated boundary conditions. Let

n--1

A,(f)= E AJ(i)(0) =0, 1,.--,p,
j=0

n-1

B,(f)= E Bg(i(1)=0, 1,...,q,
j=O

where p + q k. It may be easily seen (see [5]) that these boundary conditions
satisfy (3.3) provided that

(i) Op, qn;
(ii) there exist {i, iv}, {j,, jq} {O, 1,..., n-l} satisfying

-l + m > u, u m + l, n, where M’ counts the number of terms in

{il,. ", ip, j1," "’, jq} less than or equal to u and

(3.7)

where IlAi(-1)llf= n--1 n--1.

(iii) for all {i, ip}, {jl,""", jq} satisfying (ii),

i, ],
is of one fixed sign.

Note that Example 3.5 includes Example 3.2.
Returning to the general case (3.1), let T denote the set of integers s for which

(ii) of (3.3) is satisfied. Then we have the following interesting corollary
eorem 3.2.
Cooa 3.1. I there exists an s e T or which min {s, k s} r, then

(% has a basis o m uncons which orm a Chebyshev system on (0, 1).
It may also be shown that if s e T is such that min{s, k-s}Nr, then

M_ +m , m + 1,. , n for all {i, , i, ]," , ]_} satisfying 0 N i <
< i N n 1 <] <. <]_ N 2n 1. Note that when the boundary conditions

are separated (Example 3.5), then T= {p}.
In the discussion which follows, we set m 21. Since we wish to prove the

existence of a lower principal representation for any positive measure d(t)
relative to (%), we shall assume > 0 (i.e., k < n + r). If 0, Theorem 3.1 is
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easily proven. To apply Theorem 2.1, we must show that there exists a function in
0(c,) which is positive on (0, 1). However, this is not always possible. To
circumvent this difficulty, we introduce the following notion of a zero of degree a
for the subspace 0(c,).

DEFINITION 3.1. If S E,.(qk) implies S(0)=S’(0) S(a-1)(0)--0,
while there exists an S E (,) for which S()(0) 0, then we say that 6e(,) has a
zero of degree a at 0. If there exists no such a, i.e., S()(0) 0, 0, 1,. , n 1,
then we say that 6(,) has a zero of degree n at 0. Similarly we define the degree
of the zero of 6e(c,) at 1.

The following result in the case of separated boundary conditions is to be
found in [12]. The proof of the general case below is essentially the same as the
proof in [12]. We include it here for completeness.

PROPOSITION 3.1. For k < n + r, f]P(fk has a zero of degree a at 0 ifffor all
{il,"" ", is, j1,""" ,jk-s} satisfying (ii) of (3.3), i1=0, i2 1,’.., i =a--1. A
similar result holds at 1.

Proof. Assume 5(k) has a zero of degree a at zero, a > 0. Assume, as well,
that for all {il,""", i, ]1,"’, ]k-} satisfying (ii) of (3.3), il 0,.-., v y--1,
but that there exists an {il,""", i, ]1,"’, ]k-} satisfying (ii) of (3.3) for which

iv+l Y, 0 < y < a. Consider the matrix [[rn,..,,ijlli=ln-llk+ 1, where

(Cq, i=l,...,k;
CiJ=

6v, i=k+l;,

j=O, 1,. , 2n-l,

j=O, 1,..., 2n- 1.

It is easily shown, since il 0,. , v 3’- 1 for all {il," , is, jl," ,
satisfying (ii) of (3.3), that C satisfies (3.3) unless k 2n. However, if k 2n, then
the proposition is immediate. Let 5(,+1) denote the subset of 5 satisfying the
boundary conditions associated with the matrix C. Since (,+1) satisfies (3.3),
5(,+1) is a weak Chebyshev subspace of dimension 21- 1 on (0, 1) (recall that
n + r k + 2/). However, every S 6 5(,) satisfies S()(0) 0 since y < a, and thus
()(+a). () is a subspace of dimension 2l, and a contradiction
follows.

Now let us assume that () has a zero of degree a at 0, and for all
{il," , i, ja,. , j_} satisfying (ii) of (3.3), we have il 0,. ., i a 1, and
t+l a. Construct C as above with y a. en (ii) of (3.3) is not satisfied, and
from the analysis of Theorem 3.2 (see [5]) the determinant associated with the
conditions S (+a), S(x) 0, 1, , 21-1, is singular for every choice of
{Xi}q in (0, 1).

Now (k+l) (k) and there exists an S(k) for which S(")(0)0.
(X)}]=us(+1) has dimension at most 21 1. Since we may choose a basis {Si 21

for () such that S(0) 0, ] 1,..., 21-1, (+1) has dimension 21-1.
e {S(x)li= are linearly independent functions and thus there exist points
{y}]l, 0<y<’"<y2_a<l, such that any S(,+1), i.e., S(x)=- aiS(x) satisfying S(y)=0, i= 1 2l-1 implies S(x)O. This con-=1

tradicts the fact that the determinant associated with the conditions S (k+1),
S(x) 0, 1 2l 1 is singular for every choice of Xii=l The proposition
is proven by applying the same analysis at 1.
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From Proposition 3.1, we have
COROLLARY 3.2. For all S 5(Ck), S(t)=--O in [0, :1] ifand only if s n for

alls T, andS(t)--O on [,, 1]forallS 5(Ck) i[andonly i[k-s nforalls T.
Now, let da(t) be any positive measure relative to 5(k), and construct, as in

the proof of Theorem 2.1, the points {ti}_-1, 0 < tl =<" =< te < 1 for the subspace
5e(ck). Corollary 3.2 shows that we cannot, in general, expect 5e(k) to contain a
positive function. However, in the proof of Theorem 2.1, we see that we only
require the existence of a function which is positive on the set {6}i=1 to conclude
that da has a lower principal representation. In our next proposition we will
explore the relationship between the {6}l=a and the {sci}= 1.

Let us note that from the proof of Theorem 2.1, there exists a nontrivial
(t) oW(k) such that

S(t,) 0, i=1,...,l,

(t) >= O, t >= tl,

and

dee(t)= O.(t)

Therefore, since d(t) is.a positive measure with respect to 5e(Ck), (t)< 0 for
some t < tl. On the basis of this observation, we have

PROPOSITION 3.2. If (qk) has a zero of degree n at O, then tl > 2, while if
(Ck) has a zero of degree n at 1, then

Proof. If (Ck) has a zero of degree n at zero, then S 5(k) implies
S(t)=O, t[O, :1]. Since S")(1)=0, i=0, 1,..., n-2, and S[(,,2)II,_1, if
S(tl) 0 for tl <= :2, then S(t) 0 for =< tl. However, (t) < 0 for some t < tl, and
thus we conclude that ta >:2. By an analogous argument we obtain the corre-
sponding result at one.

PROPOSIWION 3.3. If k < n + r, then there exists an S 6(Ck) which is strictly
positive on an open interval containing [tl, tl].

Proof. If k 2n, then r n + 2/, and we may easily construct, by the use of
B-splines (see [2] or 5), a spline S 6e(Ck) such that $(t)>0, (:a, :). The
result then emanates from Proposition 3.2.

In what follows, we shall assume n -> 3. For the case n 2, the required spline
may be explicitly constructed.

Define, for e, 6 (0, 1),

Sl(t)

I I’U(1’ "’’’ n+r)r dya dye-l,
Ca,’", Ck, e, Yl, Yl, ", Ye-1, Ye-1,

eyl<...<=yt_l <=l

S2(t)

; f U(1, ".., n+r
C, , C yl, Yl, ",

O__<yl =<...=<y___< 1-$
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and

S(t) S(t) + S2(t).

From (3.5), Sl(t)>=O for t6(e, 1), while S2(t)->0 for t(0, 1-6).
Case I. There exists an s T such that s, k-s < n. Let e, 6 > 0 be chosen

arbitrarily small. By (3.6), if s<n-1, $1(/) 2>0 for t6(e, 1), while if s-n-1.
Sl(t) >0 for t (:1, 1). Similarly, if k-s <n 1, Sz(t) >0 for t (0, 1-6), and if
k-s n- 1, S2(t) >0 for t (0, Cr). Thus it follows that S(t) >0 for (e, 1-6)
for all e, 6 positive and small. Since tl > 0, tl < 1, the result follows.

Case II. 5(k) has a zero of degree n at 0 or 1. Assume 5(k) has a zero of
degree n at 1. Thus for s T, k -s n. Since we have already considered the case
k 2n, we assume k <2n, implying s <=n-1. Choose e, 6 >0, e small and
r_l< 1-6 <. If s<n-1, then Sl(t)>0 for t(e,r), while if s=n-1, then
Sl(t) >0, for t E (:1, ). However, S2(t)>0 for t(0, r-1), and the result then
follows from Proposition 3.2.

Case III. (k) has no zero of degree n at 0 or 1, but for all s T, either s n
or k-s=n.

From Corollary 3.2, it follows that since (k) has no zero of degree n at 0 or
1, there exist sl, sz T such that sl n, k Sl n, and sz < n, k sz n. Obvi-
ously, k -Sl

If k Sl sz < n 1, let , 6 > 0 be chosen small. Since s < n 1, Sl(t) > 0 for
t6(e,,), and since k-Sl<n-1, S2(t)>0 for tG(:l, 1-6). Thus S(t)>0 for
t(e, 1-6).

Assume k s sz n 1. By the above construction, S(t) 0 for (SOl, :).
We shall show that tl > : and t < s% proving the proposition.

LEMMA 3.1. Assume, as above, that k 2n 1 and n, n 1
andtl <.

Proof. Let ’ denote the subset of 5 satisfying S((O)=S(i(1)=O,
0, 1,. , n- 1. Since k 2n- 1, ’ is a subset of (k) Of dimension 21- 1 and
every S ’ vanishes identically on [0, Sl] U [s, 1]. For <e <s2, Sl(t) <0 for
t<e and Sl(t)>0 for t>e where S(t) is defined above. Thus S5(Ck) and
Sl(t) 0 for all (0, Sl] (.J [s, 1). Therefore the subset of 5(Ck) which vanishes at
some point x (0, :] (3 [s. 1) has dimension 21 1. However, since this subset still
contains ’, it must equal ’. Let (t) be as constructed in Theorem 2.1. If t :1,
then by the above analysis, ’ and thus (t) -= 0 for t _-< tl. This contradicts the
properties of and therefore tl > 1- Similarly, t/< s% The lemma is proven.

We are now ready to prove
THEOREM 3.3. Assume n + r k + 21 and da(t) is a positive measure with.

respect to the weak Chebyshev subspace 5(Ck) Of dimension 2l. Then da(t) has a
lower principal representation.

Proof. The proof of Theorem 3.3 follows Theorem 2.1 and Proposition 3.3.
Remark 3.2. If there exists an s T such that min {s, k- s}_-> r, then from

Corollary 3.1, (Ck) is a Chebyshev subspace on (0, 1). The existence and
uniqueness of the lower principal representation for 3(Ck) is immediate in this
case.
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We may now prove Theorem 3.1.
Proofo[ Theorem 3.1. From Theorem 3.3, there exists a quadrature formula

of the form

(3.8) f(t) dt= Y. A.0f(ti),
i=1

which is exact for all S 6 O(Cgk), where ai > 0, 1, , and 0 < tl <" < tt < 1.
From (2.10) and the subsequent analysis, any S ,9 may be expressed in the

form

[_ k

S(t) d- S(t)- Z ci(t)C,.(S)
=1

where d 0 and S 6e(Cgk). Substituting this relation with f= S into (3.8), we
obtain (3.4). The theorem is proven.

If the boundary conditions under consideration are separated (see Example
3.5), then the quadrature formula (3.8) and (3.4) are unique. The proof of this fact
is based upon Corollary 2.2 and the following proposition.

PROPOSITION 3.4. Assume n + r =p + q + 21, and that the boundary condi-
tions (3.1) are separated and satisfy (3.7). If f 6 C"[0, 1] and C(f)=0, i=
1,. , p + q k, then f [K], where [K] is the smallest linear subspace containing
K, the convexity cone generated by 51’(Cgk).

Proof. Anyf6 Cn[0, 1]maybe written asf=fl-f2, wheref)")(t)(-1) 0for
t(sq-l, sq), i= 1,...,r+l; /’= 1,2, and f.c"-l[0, 1], fC"(:_l, SC), i=
1,..-,r+l. Let gl(t)=fl(t)+S(t), where SSt’, such that C(ga)=0, i=
1,. ., k. Since Ci (f) 0, 1,. ., p + q, and f (fl + S) (f2 + S), we conclude
that C(f2 + S)= 0, 1,..., k. Let g2(/)= f2(t)+ S(t).

We shall prove that for any function g(t) which has the form

1 Io )+1(3.9) g(t)= S(t)+
(n1)- (t-x g")(x) dx,

where S 6 , and which satisfies gn(t)(--1)i >=0, (i-1, :i), 1," , r + 1, and
Ci(g) O, 1,..., k, then either g or -g lie in K. By Taylor’s theorem, both
g(t) and g2(t) are of the requisite form. From the properties of g(t), (3.9) may be
rewritten in the form

r,l (__1)
g(t) S(t)+ (t-x)7+llg<")(x) dx.

i= (n- 1)!

Let u,+r+l(t)= (t-b)-1, An application of Theorem 3.2 and (3.7) yields

(3.10)
C1, Ck,

n + r + 1] (_1)ir, =>0,
X21+1]
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for E (i_1, :i), 1,..’, r+ 1, where o-= +1 or -1, fixed. Now from (3.9),

Cl(Ul) Cl(Un+r) Cl(g)

c(u) C(U.+r) C (g)

Ul(X,) u.+(Xl) g(x,)

Ul(X21+l) Un+r(X21+l) g(x21+l)

i= (n- 1)! Ca,’" ", Ck, Xl, X2/+l’

From (3.10) it follows that the above determinant is nonnegative (or nonpositive)
for all 0<Xl_-<’"-<x2t+a < 1. Thus by (2.11), g (or -g) is in K. Since, by
assumption C(g)= 0, 1,..-, k, it follows that g g, and the proposition is
proven.

Thus we have also proven
THEOREM 3.4. For separated boundary conditions which satisfy (3.7), the

quadrature formula (3.4) is unique.
Remark 3.3. In the case of separated boundary conditions, it follows from

Corollary 2.3 and Theorem 3.2 that

2i+p--n < ti < :2i-1+p, 1,""", 1,

where the {t}=a are the nodes ofthe unique quadrature formula (3.4).
Remark 3.4. The analysis of this section also holds for spline functions with

knots of multiplicity at most n- 2 and for Chebyshevian spline functions (see [3]
and [6]).

4. Monosplines satisfying boundary conditions. In this section, we shall
study the Peano kernel of the quadrature formula of Theorem 3.1 and state our
version of the fundamental theorem of algebra for monosplines.

A monospline of degree n with knots {xi}=a, 0 < xl <" "< x < 1, is a
function of the form

xn
(4.1) M(x) --[. + aixi+ bi(x-xi)_-1

i=0 i=1

Let C(f), 1,. , k, be boundary conditions of the form (3.1) such that the
k 2n matrix C satisfies (3.3). Let

k

(4.2) O(f) Z ciCi(f)+ E Aif(ti),
i=1 i=1

be the quadrature formula constructed in Theorem 3.1, i.e., Iof(X) dx O(f) for
all f E 5. Recall that n + r k + 21. Every f e C"[0, 1] has the representation

n-1 t 1 (f(t) E f(i)(0)+Jo (t--X)_-lf(n)(X) dx.
i=0 (n- 1)t
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Define R (f) f(x) dx O(f). Then for f e C"[O, 1],

R(f) R,((t-x)_-l)f(")(x) dx.

This, of course, is the Peano representation of the remainder R (f). We define

(-1)--" Rt((t-x)_-l) M*(x),

and note that M*(x) is a monospline of degree n with the knots {t}=l. Thus for
all f C"[0, 1],

i=1 i=1

Since R((t-i)2-) 0, we conclude that M*(i) 0, 1,. ., r.
Let M(x) be any monospline of the form (4.1), and e C[0, 1]. Then

integration by parts yields

n-1

1)i+f(x) dx Y, (- f(i)(O)M(n-l-i)(o)
i=0

n-1

(4.4) + Y (-1)if")(1)M("-l-i)(1)
i=0

i=l(H--1)!bif(xi)+(--])nIO M(x)[(")(x) dx.

Thus from (4.3) and (4.4) we obtain
LEMMA 4.1. The monospline M*(x) defined above satisfies

k n-1

E iCi(f) E (-1)i+lf(i)(O)(M*)(n-l-i)(O)
i=1 i=O

(4.5)
n--1

+ E (-1)i[(i)(1)(M*)("-’-i)(1),
i=0

for all f e C" [0, 1 ].
Since the k 2n matrix C has rank k, we may construct a 2n 2n nonsingular

matrix whose first k rows agree with C. We shall also denote this enlarged matrix
by C. Define D (Cr)-1, and let

= ((--1)n+r+lg(O), (--1)n+r+2g’(O), (--1)rg(n-a)(O), g(n-1)(1),""", g(1))
and

((--1)"+rg("-l)(0),..., (--1)"+rg(0), (--1)"-1g(1), (--1)"-2g’(1),-’’, g{"-l)(1)).
Thus (, ) (the inner product of the vectors and lI) represents the right-hand
side of (4.5), and (Ci) C(f), i= 1,..., k.

LEMMA 4.2. For M*(x) as above,

(DM)i =0, =k+l,. ., 2n.
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Proof. The proof follows from Lemma 4.1 and the equation
2/,1

([, ll*)= (C[, DII*)= E (C-)i(Dl/I)i.
i=1

THEOREM 4.1. If n + r k + 2l and D (Cr)-1, where the matrix composed
of the first k rows of C satisfies (3.3), then given {sci}7=, 0<sc <...< , < 1, there
exists a monospline M(x) of degree n with knots such that

M(i)=0, 1,..., r,
(4.6)

(DII), 0, i= k + 1,..., 2n.

Furthermore, the knots of the monospline M(x are the nodes of the quadrature
formula (3.4), and M(x) is unique if and only if the corresponding quadrature
formula is unique.

Proof. From the above analysis, every quadrature formula of the form (3.4)
gives rise to a monospline M(x) satisfying (4.6).

If M(x) satisfies (4.6), then (4.5) holds for f 9. Let

and

k

O(f) E ciCi(f)-E (n-1)!b,f(xi)
i=1 i=1

R(f) f(x) dx O(f).

From (4.4), R(f) =.0 for f 6 {1, t, , t"-l}, and since R((t-x)-1) M(x), the
theorem is proven.

The following two theorems represent a partial converse to Theorem 4.1. To
prove these theorems, we demand an additional assumption on the k x 2n matrix
C (see Remark 3.1).

(4.7) Assume the k x 2n matrix C satisfies (3.3) and all nonzero k x k minors
of C are of one sign.

THEOREM 4.2. If D is as above, where C satisfies (4.7), and if M(x) is a
monospline of degree n with ! knots for which (DM)i O, k + 1,. , 2n, then
M(x has at most r + 1 distinct zeros in (0, 1).

"l.r+2Proof. Assume M(x) has r + 2 distinct zeros {:j= in (0, 1). Then there exists
a quadrature formula

k

f(t) dt= cC(f)+ Y. Aif(ti)
i=1 i=1

which is exact for fe 6e* {1, t, n-1 (t n--:1)/ "’,(t-/2)/ }.Thek
2n matrix C satisfies (3.3) with respect to n, k, 21 and r. Since r and r + 2 are of the
same parity and C satisfies (4.7), it follows that 9*(k) is a weak Chebyshev
subspace of dimension 21 + 2, and

.f(t) dt= Y’. A.0f(ti),
i=1

for all f e 5*(Ck). This is impossible since we may construct, by smoothing (see
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Theorem 2.1), a nonnegative nontrivial S 6*(Ck) which vanishes at the nodes
{ti}=l. The theorem is proven.

TIaEOREM 4.3. Under the assumptions of Theorem 4.2, if the boundary
conditions represented by C are separated, then M(x) has at most r distinct zeros in
(o,

Proof. The proof is the same as that of Theorem 4.2, where we use (3.7) and
note that for separated boundary conditions, the parity of r plays no role. Thus the
addition of one more knot to 6(c) gives rise to a weak Chebyshev subspace of
dimension 21 + 1.

Remark 4.1. The bound given in Theorem 4.2 is sharp as the following
example indicates. Consider the case n 2 and r 1 with the knot : 1/2. Let 1
and k 1, with the boundary condition S(O)+S(1)=O which satisfies (4.7). The
quadrature formula

f(t) dt (f(O) +f(1))+f
)/. The associated monosplinex)/} and f(t)= (tholds for f e { 1 t, (t

M(x)=X2 x 2(2 6 3
x-

satisfies M(0)= M(1)= M’(0)+M’(1)= 0, and M()= M(])= 0.
Remark 4.2. As previously commented upon in Remark 3.4, Theorem 3.1

extends to spline functions with knots of multiplicity =<n-2. Thus Theorems
4.1-4.3 extend to the case of multiple zeros of order at most n- 2 for M(x).

Let 2,-k denote the set of boundary conditions (Dll)i=0,
k + 1,.-., 2n, where D (C’)-1, and the first k rows of C satisfy (3.3). Our
present goal is to present a more workable definition of 2,-k. To this end, define

n--1 n--1

(4.8) Gi(f) Eiif(i)(O)+ For(i)(1), i= 1,’.. ,2n-k,
1=0 i=o

and let G IIGOIl,-k"__- 1, where

evi(-1)+"+1, i=l,...,2n-k;]=0,1,..’,n-1,
(4.9) Gii

-E’,2n-]--l, 1," , 2n k; ] n,. ., 2n 1.

Let 2,,-k denote the set of boundary conditions G(M)= O, 1,. ., 2n- k,
where G satisfies (3.3) with m -r; i.e.,

(i) max {0, n r} _-< 2n k -<_ 2n,
(ii) there exist {il," ", i,]l,.-’,]2,_k_} -{0, 1,..., 2n-- 1}, satisfying

M_+ r >-_ , ,=r+l,..., n, and

(4 10) G(1’ "’" 2n-k) 0,
i,’" ", i,, jl,’" ", J2---,

(iii) for all {il, ",i, ]1,’", ]2,-a-} satisfying (ii),

(1, ..., 2n-k)G
il,"" ", i,,j,’’"

is of one sign.
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Then we have
PROPOSITION 4.1. 2n-k (-2n-k"
Proof.

n--1 n--1

(DII), Z D,flV/("-->(0)(-I)+’+ E D,a+,(-II"-J-M(>(11
=0 =0

n-1

Di,n__(-1)r+j+l[M(J)(O)(-l)n+j+]

n-1

+ E D,,2--(-ll[M(-i-X)(l)],
j=0

Let

i=k+l,...,2n.

fDi+k,n_i_l(--1)r+i+l 1 2n-k’j 0, 1 n- 1

D,+k,3,,_1_I(--1)"+i, 1,’’’, 2n-k; ]= n, 2n- 1.

]ll]= satisfies (4 10)Then Proposition 4.1 is valid if we can prove thatH ’2n-k2n-1
if and only if C satisfies (3.3).

Let ""VMm=a denote the complementary set of indices to {n-i- I} in
{0, I ,n i}, and," lt=a denote the complementary set of indices to

2n-k-s{3n-j-I= in {n, ,2n- I}.
e following two lemmas prove Proposition 4. I.
LEMMA 4.3. With the abooe definitions,

i, , ], ]__ "tn-s, jl, ,jk+s-n

Proof.

41 ..., 2n-k)i, ", is, j," ",

-i-l,".,n-i-l, 3n-]-l,..., 3n-]__- 1
(-1)

=D
-i-l,...,n-i-l,3n-]__-l,...,3n-]-I

(-1)’+

-1 EI+E2+E3
ln-sjl +s

where

81=(rW1)s+n(2n-k-s)+ im +
m=l

s(s- 1) (2n-k-s)(2n-k-s- 1)
E2---T4 2

and

2n(2n + 1) k(k+l) + s(n 1) + (3n 1)(2n k s)- . i,,
m=l

2n-k-s



226 c.A. MICCHELLI AND ALLAN PINKUS

Utilizing the fact that n + r-k 21, it follows that (--1.)el+e2+e3- 1. The lemma is
proven.

LEMMA 4.4. {il, ", is, jl, j2n-k-s} satisfies M_ + r >= u, u
r + l ...,n, if and only if {i’1, ", ln--s, ]1, ", j,+s-n} satisfies M-I + 21 >- u,
u=21+l,...,n.

Proof. Due to the symmetry of the analysis we prove only one direction.
Assume {i,. -, is, j1," ",/’2,-k-s} is such that M, +r-</z for some /
r,..., n-1. Note that since M,-l=2n-k, and 2n-k+r=n +21>-n, tx <
n 1. Let iv, 2n -ft 1 =< tz < i+1, 2n -f-i 1. Thus M, + r
3‘+(2n-k-s-+l)+r<=l, i.e., 3‘-s-+l+n+2l-tx<=O. Now n-iv-l,
jt-n >=n-tz- 1 > n-i+- 1, j-l-n, and therefore

2n 1 "’tn--s+,, 1,1, In-t_s+3,_l, 2n- 1- "--]+k+s_2n+tz>n-- -2 > Jfl +k +s-2n+t+

and for {i’1 ,i-,,, ,j,/-/,

M._._2 + 21 21 +(n -/z -s + 3’- 1)+(n -/3 -/x)
=(3‘-s-fl + l +n +21-tx)+(n-1-2)<--n-1-2,

since 3‘-s-/3 + 1 + n + 21-/x =< 0. The lemma is proven.
Utilizing Proposition 4.1, Theorems 4.1-4.3 may be restated in terms of the

boundary conditions (4.8), where G satisfies (4.10).
Remark 4.3. Note that from the proof of Proposition 4.1, it is easily seen that

the boundary forms (4.8) are separated if and only if the corresponding boundary
forms (3.1) are also separated. Thus Theorem 4.1 in conjunction with Proposition
4.1 extends the results in [3].

5. An example and a further application of moment theory. In this section
we discuss an interesting example of Theorem 4.1, as well as present another
application of Theorem 2.1.

We begin by recalling that the nth Bernoulli polynomial, B, (x), is determined
by the relations

Bo(x) 1, B’(x) nB_(x),

B(x)=(-1)Bn(1-x)

Bn(O) 0

n=l,2,...,

n=3,5,....

The periodic extension of period one of the Bernoulli polynomial which we
denote by B, is, according to (5.1), a monospline of degree n with knots at the
integers. B, (x) is the Peano kernel for the Euler-Maclaurin quadrature formula

(5.2)

n 1 1
f(x dx f(O) +f(1) +’’’ +f(N- l) + f(N)

B2,(O) (f(z,_l)(o)_f(z,_l)(N))+ Z (2v)0<2un

(-1)" Iou+----. B,, (x )f(’ (x dx.
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When n is even, n 2m, we may rewrite (5.2) in the form

fo 1 1
f(x) dx - f(O) +f(1) +... +f(N- 1) +-f(N)

B.(0)[/(:_1)(0)_f(:._,(1)](5.3) +
v=i (2R)

+
(m

M(xIm(x ax,

where M(x)=B(x)-B(0). M has a double zero at every integer. Further-
more, it satisfies the boundary conditions

--(0) --(N) 0, i {0, 1, 3,..., 2m 3},

which are adjoint to the boundary terms appearing in (5.3). us we see that the
Euler-Maclaurin quadrature formula (5.3) is exact for all spline functions of
degree 2m 1 with double knots at 1, 2, , N- 1. us it is of double precision.
In the notation of orem 4.1, n 2m, N- 1, k 2m and r 2(N- 1).

Similarly, the odd degree Bernoulli monospline M(x)=B_(x) is the
Peano kernel of the (odd degree) Euler-Maclaurin quadrature formula

(x) dx (0) +(1) +... +(N- 1) + (N)

m-(0[(-(0--(](5.4) +vZ1 (2V)’

-(m- M(x[(m-(xl x.

In this case, Mhas a simple zero at each integer and half integer. Also,Msatisfies

am--(0) m--0(N) 0, i {0, 1, 3,..., 2m 3}.

us (5.4) is of double precision and corresponds to Theorem 4.1 with n 2m 1,
l=N-1, k =2m and r=2N-1.
efollowing theorem was suggested to us by A. A. Melkman who indicated

a method of proof similar to that used in [6].
THEOREM 5.1. Letdata y,..., y++ andpointsx <x <.-. <x++ be

given. Suppose that the divided differences [y, , y+ othe data over the points
&, , x+, 1, , 2r + 1, strictly alternates in sign and n 2. en there exists
a monospline M(x) o degree n with r knots and a nonzero constant such that

M(& ly, 1, , n + 2r + 1.

Furthermore, i 2r n, then M(x) is unique.
Pro@ Assume without loss of generality that x 0 and x++ 1. Con-

sider the space o of spline functions of the form

2r+l

s(t) cB(x, x+; O,
i=1
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-,2r+lwhere i=1 ci[yi, , yi+,] 0, and B(x,. , x+n; t) is (the B-spline) defined to
be the nth divided difference of (x t)_-1 at x x, , xi+,,. It is well known that
any subset of B-splines form a weak Chebyshev system (cf. [2]). Since the divided
difference of the data strictly alternates, we conclude that 6Co is a weak Chebyshev
subspace of dimension 2r. To prove this fact, let us set B(x, , xi/,; t) ui(t),

1, , 2r + 1, and [y, , y/,] z, 1, , 2r + 1, and consider the func-
tions vi(t)= Ui(t)--(Zi/Z2r+l)U2r+l(O i= 1,’.., 2r. Note that

., 2r)Z2r+l
tl, t2r

u(t) Ul(t2r)

u2r+(ta) u2,+(t2) z2+1

2r+l 41,...,i_1, i+1,...,2r+1)Z (-1)’+2+z
i= tl t2r.

Now

+1)1,..., i-1, i+1,...,2r
t, t2r

=> 0,

and z(-1)r>0, 0
-2.-- 1, fixed. Thus {v(t)}Zrl is a weak Chebyshev system of

dimension 2r on (0, 1) which spans the set 9o
Since z(-1)0- >0, 1,..., 2r+ 1, we may always find positive numbers

c, , c+1 such that V2+1 czi 2r+1 c[yi, , y+, 0. Thus the functionz-i /4=1

S(t) =1 cB(x,..., x/,,; t) is strictly positive on (0, 1), and from Theorem
2.1, there exist points 0<SOl <. < < 1, and/x >0, 1, , r, such that

(5.5) f(t) dt=
i=1

for all f 50. It easily follows that there is a constant , for which

B(xj, xj+,; t) dt iB(xi, xi+,; i) + A[yi, ., yi+,,],
i=1

for j= 1, , 2r+l.
Let

M(x) nl IOajx +
j=0

(x t)?+-1 dt- tzi(x sci)--1,
i=1

where ao, al," , a,-1 are chosen so that M(xi) Ayi, j 1, , n. Now

M(xp X]+n)-- B(x], x]+ t) dt- p.iB(xi,’’’, xi+, :)
i=1

/’= 1,. .,2r+1.
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Since M(xj)=Ayj, ]=l,...,n, it then follows that M(xj)=Ayi, ]=
1, , n + 2r + 1. Note that if A 0, then M(x) has n + 2r + 1 zeros, an impossibil-
ity (Theorem 4.3). Thus A # 0 and M(x) is the desired monospline.

In [11], it is proven that the functions 1, t, , tn-i are each contained in the
smallest linear subspace containing the convexity cone generated by 0. Since
uniqueness of the monospline M(x) is equivalent to the uniqueness of the
quadrature formula (5.5), we conclude from Corollary 2.2 that M is unique when
2r _-< n. This completes the proof of the theorem.

Remark 5.1. In the statement of Theorem 5.1, we assumed zi(-1)ir>0,
1, , 2r + 1. This was done to insure that 6’0 is a weak Chebyshev subspace of

dimension 2r which contains a positive function. In order that 6e0 be a weak
Chebyshev subspace of dimension 2r, it is sufficient that zi(-1)r=>0, i=
1, , 2r + 1, and at least one of the zi is nonzero. Assuming that this is the case
and if the sets {i" z > 0} and {i" z < 0} are both nonempty, then we may constrluct,
as in the proof of Theorem 5.1, an element of 00 which is strictly positive on (0, 1).
If one of the above two sets is empty, but the other does not contain either 1 or
2r + 1, and if n => 3, then we may still construct a positive function in 6e0. These
conditions suffice for Theorem 5.1 to hold.

In particular, if we choose y 6.,+2r, 1, , n + 2r + 1, we obtain
COROLLARY 5.1. Given any points sl <" < s,,+2r, there exists a monospline

M(x) of degree n with r knots such that

M(si) O, i=l,...,n+2r.

This is the fundamental theorem of algebra for monosplines as it appears in
[6] and [13]. This result is also a special case of Theorem 4.1 with k 2n. The
uniqueness as well as the converse, i.e., M(x) has no more than n + 2r zeros, are
also results of Theorems 4.1 and 4.3.
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ELLIPTIC INTEGRALS OF THE FIRST KIND*

B. C. CARLSON

Abstract. The reciprocal square root of any real polynomial with known zeros and degree not
exceeding four is integrated in terms of a standard integral by a new quadratic transformation which
preserves symmetry in the zeros. If at least one zero is real, this method, unlike earlier methods, leads
to a single standard integral instead of a difference of two standard integrals even when neither limit of
integration is a zero. If no zero is real, a particular point on the real line has special significance.
Formulas listed in integral tables are unified and generalized.

1. The case of real zeros. The general elliptic integral of the first kind is

(1)
(a + at)(b + t)(c + yt)(d + 6t)] 1/2"

The quartic polynomial is assumed to be real-valued, although linear factors
might be conjugate complex. The zeros of the polynomial are -a/a,. , -d/6,
and if d 0 and 6 0 the last zero tends to infinity. The quartic then becomes a
cubic polynomial, which we regard as a quartic with one zero at infinity, and
similarly for polynomials of lower degree. To make the integral well-defined, we
assume that the integrand is strictly positive on the open interval of integration,
which cannot contain a zero. If both limits of integration are zeros, the integral is
called complete; otherwise it is incomplete.

In this section we assume the finite zeros are real, deferring discussion of
complex zeros to 3 and 4. Therefore we may suppose that a + et, , d + 6t
are strictly positive on the open interval of integration. The cubic and quartic cases
occur frequently in many parts of applied mathematics but, aside from a few
technical exceptions, they are listed in present integra.i tables only if one limit of
integration is a zero. If neither limit is a zero, the integral must be split in two, each
part having a zero as one limit. In most tables sixteen cases are distinguished
according to whether the polynomial is cubic or quartic and whether the upper or
lower limit of integration is each in turn of the four zeros arranged in order on the
real line (extended real line in the cubic case). A typical one of the sixteen
formulas is [2, 252.00]

Ia [(a d)]-1/2 dt d)]-l/2F(qg,t)(b t)(c t)(t- 2[(a k),

(2)

[(-c)(x-d)] 1/2 (a-b)(c-d)
sin o d)(a x)

k2
(a -c)(b -d)’

where F(q, k) is Legendre’s standard integral of the first kind,

(3) F(q, k)= (1-k sin 0)-1/ dO.

* Received by the editors September 4, 1975.

a >b >c_->x>d,

5" Ames Laboratory-ERDA and Departments of Mathematics and Physics, Iowa State Univer-
sity, Ames Iowa 50011.
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The formal symmetry of (1) in the zeros has of course been impaired by choosing
one zero as the lower limit of integration in (2), but even the symmetry in the
remaining zeros has been concealed on the right side of (2) by adopting
Legendre’s notation. The integral is complete if x c, which implies 0 r/2.

Nellis and Carlson [6, Table I] likewise require one limit of integration to be a
zero but preserve formal symmetry in all other finite zeros, thereby reducing the
sixteen cases to four:

Ia [(a + + + d)]-/2 dtat)(b t)(c yt)(t

(4)

(a+ax b+flx c+yx)2[(a + ad)(b + fld)(c + yd)]-l/2(x d)1/2RF
a + ad’ b + fld’ c + yd

d[(a + + + t)]-1/2 dtat)(b t)(c yt)(d

(5)

(a+cey b+/3y c+yy)2[(a +ced)(b +Bd)(c +yd)]-l/2(d-y)I/eR
a +ad’ b +Bd’ c +yd

f_ [(a + cet)(b + t)(c + yt)]-/ dt

(6)
2RF[(a + ax)/3y, (b +/3x)ya, (c + yx)cq3],

Iy [(a + + + yt)]-/ dtctl)(b Bt)(c
(7)

2Re[(a + cey)/33", (b +/3y)3’a, (c + 3’Y)Cq3 ],

where Re is the standard symmetric integral of the first kind [3],

(8) RF(U, v, W) [(t -- u)(t -- 1))(t ql_ W)]--l/2 dt.

The factor 1/2 makes Re(l, 1, 1)= 1. The standard integral is symmetric and
homogeneous of degree -1/2 in u, v, w. It is related to Legendre’s integral by

(9)
RE(U, I), W)= (W u)-a/2F arccos W 5_

F(q, k) (sin qg)RF(COS2 q, 1 k 2 sin2 q, 1).

The linear transformations of Legendre’s integral are equivalent to the permuta-
tion symmetry of Re, which makes it unnecessary to order the zeros in equations
(4) to (7). In (4) and (5) the cubic case is the case 3’ 0. All four integrals are
complete if a + ax a + ay 0, which implies that one argument of Re is 0. To
deduce (2) from (4), put a =/3 3, 1 and use (9) with u (c-x)/(c-d),
v (b x)/(b d), w (a x)/(a d) so that u < v < w under the conditions
stated in (2). However, there is no advantage in returning to (2) since algorithms
for computing RF are given in [4] and a FORTRAN program is available on request.
The fifteen companions of (2) can be obtained similarly.
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To evaluate (1) if neither x nor y is a zero, we may split the integral into two
parts. For example, if no zero lies in the interval d < <x, we can use (4) to
evaluate

(10) [(a + t)(b + t)(c + yt)(t- d)]-/ dt

as a difference of two standard integrals, each symmetric in all zeros but d. The
point of this paper is to observe that explicit symmetry in all four zeros is restored
if the two standard integrals are combined into one by the addition theorem. We
do this in a special case of (1) to obtain a fundamental quadratic transformation
(13) which is then applied to the general case of (1). The result is

fyX[(a +at)(b + flt)(c + yt)(d + tt)]-1/2 dt= 2RF(U2, V2, wE),

(x y)U= [(a + ax)(b + Bx)(c + yy)(d + 6y)]1/2

+[(a + ay)(b + fly)(c + yx)(d + 6x)] 1/2,

x>y,

(11) (x-y)V=[(a+ax)(b+y)(c+yx)(d+6y)]1/2

+[(a + ay)(b +x)(c + yy)(d + 6x)] 1/z,
(x y) W= [(a + ax)(b + fly)(c + yy)(d + 6x)] /:z

+[(a + ay)(b + x)(c + yx)(d + 6y)]/2,
V2 W2 (a ba)(c6 dy), W2 U2 (aT ca)(d b6),

U2 V2 (a6 da)(by cfl).
Since U, V, W have finite limits as x --> oo or y -> -co, (11) has an unambiguous
meaning if x or y is infinite. They cannot both be infinite because a +at,. ,
d + 6t are assumed to be strictly positive on the open interval of integration.

The variables U, V, W correspond to the three ways of pairing the four zeros,
and permutations of the zeros induce permutations of U, V, W, leaving RF
unchanged. Most methods of reducing (1) (see [5, 13.5] and [1, 17.8]) intro-
duce asymmetry through transformed limits of integration if not through the
transformed integrand. The right side of each of the equations defining U, V, W is
the sum of two nonnegative terms which differ by interchange of x and y. One of
the terms in each equation vanishes if either x or y is a zero, and one of the
variables U, V, W vanishes if both x and y are zeros, the integral being then
complete. To recover (5) put x d and 6 1, whence d + 6x 0 and d + 6y
d y, and use the homogeneity of RF. A similar procedure leads to (4) except that
the sign of d must first be changed throughout (11) to adapt the notation to (4).
Equations (6) and (7) are recovered by putting 6 0 and d 1 and taking the
limits of U, V, W as x -> co or y -> -oo. (In both cases the assumption of positivity
requires a,/3, 3/to have the same sign as the quantity which tends to infinity.)
Therefore (11) reproduces all sixteen formulas in which one limit of integration is
a zero.

The case in which the quartic in (possibly with conjugate imaginary zeros) is
a quadratic in with real zeros occurs often in practice and is widely used as a
canonical form. Unless the limits of integration have opposite signs, the integral
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can first be transformed to the cubic case by putting t s
using (11). The result is

1/2 and then evaluated by

’[(at
2 + c)(ct2 + y)]-a/2 dt Rv(U2, V2, W2), 0 =< < x =<Y

(x2- y2)U= x(ay 2 + c)/2(ay 2 + 3,)1/2 + y(ax 2 + c)a/2(ax2 + )1/2,
(12) (x2-y2)V=x(ax2+c)l/2(y2+.y)l/2+y(ay2+c)/2(x2+/)/z,

(x 2 y2) W= x(ay 2 + c)/2(x2 + y)a/2 + y(ax 2 + c)/2(y2 + )1/2,
V2-W2=a-c, W2-U2=c, U2-V2=-aT.

We assume that at2+ c and at2+ are strictly positive on the open interval of
integration. The variables U, V, W have finite limits as x m. Twelve special
cases in which one limit of integration corresponds to a zero of the cubic
polynomial in s t2 are listed in integral tables (see for example [1, p. 596]).

Formulas analogous to (11) and (12) can be obtained for integrals of the
second and third kinds but will not be discussed here.

2. e fundamental transformation. Equation (11) will be deduced after
proving the special case,

fo [(t + A)(t + B)(t + C)(t + D)]-/2 at [(t + X2)(t + Y2)(t + Z2)]-1/2 dt,
(3)

X=(AB)a/2+(CD)/2 y=(AC)I/2+(BD)/2

Z= (AD)t/+(BC)/z, A, B, C, D >0.
This fundamental quadratic transformation from the quartic to the cubic case is
new. The upper limit of integration is a zero of the cubic but not of the quartic.

By symmetry we may suppose that A is not greater than B, C, or D. Since
each integral is jointly continuous if A, B, C, D are strictly positive, it suffices to
prove (13) when A is strictly less than B, C and D. By (4) and the homogeneity of
Rv, the integral on the left side is

[(t +A )(t + B)(t + C)(t + D)]-1/z dr- [(t +A )(t + B)(t + C)(t + D)]-/2 at
A A

2[(B A)(C-A)(D A)]-1/2
1 1 1 -n 1/2RF B-A C-A D-Av B-A’ C-A’D-A

2RF[(C-A)(D-A), (D-A)(B-A), (B-A)(C-A)]

-2R (C-A)(D-A), (D-A)(B-A), x(-a(C-A
e two standard integrals can be combined by the addition theorem [7, 8],

Rv(x, y, z) Rv(x +, y +, z + + Rv(x +, y +, z + ),

(15) (AN-xy-yz-zx)Z=4xyz(A++x+y+z),
A-l(xy + yz + zx) + 2A-Zxyz + 2A-Z[xyz(x + A)(y + A)(z + A)]1/2.

(14)
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Putting x=(C-A)(D-A), y=(D-A)(B-A), z=(B-A)(C-A) and A
(B-A)(C-A)(D-A)/A, we find

(16)
tz =A(B +C+D-A)+2(ABCD)/2,

X2 y2x3rld, y3r-id, zr-l, ---Z2,
where X, Y, Z were defined above. Hence the left side of (13) equals 2RF(X2, Y,
Z2), which by (8) equals the right side. It is not known whether (13) can be proved
more directly by a change of integration variable. See the note added in proof..
Evaluating the left side by [6, (T.2)], we can put (13) in the alternative form,

R-l(1/2, 12, 1/2, ; A, B, C, D)= 2RF(X2, y2, Z2), A, B, C, D >0,

(17) X=(AB)I/2+(CD)I/2, Y=(AC)I/)+(BD)I/2,
Z (AD)1/2 + (BC)1/2,

y2-Z2=(A-B)(C-D), Z2-X2=(A-C)(D-B),
X2 y2 (a D)(B C).

In place of the notation R(I"-X 1 1
2, 2, 2, 1/2) in [6], we us R-l(1/2, 1/2, 1/2, 1/2) here, the

subscript being the degree of homogeneity.
By [6, (T.1)] (with one more linear factor inserted),

y[(a

+ at)(b + flt)(c + yt)(d + 6t)]-1/2 at

(18) (x y)[(a + y)(b +y)(c + yy)(d + ay)]-1/2

( 1 1 1. a+ax b+flx c+7x d+
R-1 ’2’2’2’a+ay b+y c+yy d+

Transformation by (1 7) and use of homogeneity prove (1 1).
Since an R-function is holomorphic in each of its variables on the plane cut

along the nonpositive real axis, the permanence of functional relations implies
that (17) holds if A, B, C, D lie in the cut plane and are such that X, Y, Z lie in the
open right half-plane. In calculating X, Y, Z from A, B, C, D we take the square
root of a product to be the product of the principal square roots of the factors.
Therefore a sufficient but not necessary condition is that A, B, C, D lie in the open
right half-plane, since (AB)I/2,.. ", (CD)1/2 also lie in this half-plane.

In 3 some of the variables will indeed be complex, and we shall arrive at real
variables by using Landen’s transformation [4, (2.3)],

RF(X2, y2, Z2) 2RF(L 2, M2, N2),
M= Y+Z, N+L 2(X+ Y)I/2(X+Z) 1/2,

(19) N-L 2(X- Y)I/2(X-Z)1/2,

N2 M2 [(X2 y2)1/2 _[_ (X2 Z2) 1/212,
L2-M2--[(X2- y2)l/2-(X2-Z2)l/212, LN= 2MX.

The transformation is valid if X, Y, Z, L, M, N are in the open right hal’f-plane. If
X>0, Z-- Y, and Re Y>0, where a bar signifies complex conjugation, then
0<L <-M<-N. If X->0, then L-0 by the last equation of (19). Since each
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function Rv is continuous in this limit, equality still holds between the two
complete integrals. Both functions become infinite if Re Y 0.

Applying (19) to (17) we find

(20)

R_I(1/2, 1- -, , 1/2; A, B, C, D)= 4RF(L2, M, Nz),
M (A 1/2 / B1/2)(C1/2 + D1/2),
N+L 2[(A 1/2 + C1/2)(A 1/2 +D 1/2)(B 1/2 + C1/2)(B 1/2 +D 1/2)]1/2,
N-L 2[(A 1/2 C1/2)(A 1/2 D 1/2)(B 1/2 C1/2)(B 1/2 D 1/2)]1/2,
N2 M2 [(A C)1/2(B D)1/2 + (A D)I/2(B C)1/212,
L 2 M2 [(a C)1/2(B D)1/2 (a D)1/2(B C)1/212.

The transformation is valid if A, B, C, D are in the plane cut along the nonpositive
real axis and L, M, N are in the open right half-plane. If A > 0, B > 0, D C, and
C is in the cut plane, (17) implies X> 0, Z Y, and Re Y> 0, whence 0 < L -<
M-< N. If A - 0 or B 0, the equations still hold by continuity and L remains
strictly positive. If both A and B tend to zero, so do L and M, and the functions
become infinite.

An alternative way of reaching real variables is to apply the inverse of
Landen’s transformation to the right side of (17). The result is

R_,(1/2, -, , 1/2; A, B, C, D)= 2RF(L2, M2, N),
(21)

M,
(AB)I/2(C+D)+ (CD)I/e(A + B)

(AB)I/2/(CD)I/2
N-Mi N2-M2, Li-Mi=L2-M2,

where N2-M2 and L2_M2 are specified in (20). The transformation is valid if A,
B, C, D are in the cut plane and L, M, N are in the open right-half plane. If
A >0, B>0, D C, and C is in the cut plane, then Ma YZ/X>O and

22 y2L1 <-M1 <-N1. However, since XL1 -I -X21, L1 is positive if and only if

IA CI1/21B CI 1/2 < (AB)1/2 + ICI, an inequality which fails, for example, if A is
small and B large compared to CI. Even when the inequality holds, it seems
preferable to use (20), which is related to (21) by the duplication theorem [7, (8.7),
(8.13)],

(22)
RF(L, M], N2) 2RF(L 2, M2, N2),
L2=L2+A, M2=M2+A, N=N2+Z, A MIN +NiL1 +LIM1.

This means that the fractional differences of L, M, N are less than those of
L1, M1, N1, and hence (20) is a little better for numerical calculation.

3. Two conjugate complex zeros. In (18) we suppose that x, y, a + at, b + fit
are real, while c+yt and d/St are complex conjugates. Putting A
(a + ax)/(a / ay), ., D (d + 8x)/(d / By), we assume for the moment that
neither x nor y is a zero of the quartic, so that A > 0, B > 0, D if, and ]ph C
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Then (20) can be applied to the R-function on the right side of (18) to obtain

iyx [(a + at)(b + t)(c + yt)(d + 6t)]-1/2 dt 4RF(L2, M2, N2),

(x y)M= [(a + cex)l/2(b + fly),/2 + (a + ay)’/2(b + fix) ’12]
(23) [(c + yx)l/2(d + 6y) 1/2 +(c + yy)l/Z(d + 6x)1/2],

N2 m2 [(aT cot)l/2(b dfl )1/2 "l- (a6 da 1/2(b’y cfl) 1/2]2,

L2 M2 [(aT ca 1/2(bt d)1/2 (a6 da 1/2(b’}/- )1/212.

The discussion following (20) shows that 0 <L _-<M_-<N. By continuity we may
now allow x and y to be zeros of the quartic, which means that L may possibly be
0.

In order to rewrite (23) in terms of real quantities, we put

(c + yt)(d + at) pt2 + qt + r,
j2 (c + yx)(d + 6x) px 2 + qx q- r,
2 (C -" )(d + 6y) + r,rl yy py 2 qy.+

(24)
2p (aT ca)(a6 da) pa 2 qaee + ra 2,
2

0- =(by-c)(b6-dB) =pb2 qb +rfl 2,
2 (a b)2 (a b)(a /3) + (a -/3)2r =p -q r

Then

[(c + yx)l/Z(d + 6y) 1/2 + (c + yy)l/Z(d + 6x)1/2]2 2pxy + q(x + y)+ 2r + 2rt
=(+rl)2--p(x--y)2,

2N2-M2 2pab-q(a +ba)+2ra +2p0-=(p+0-)2 r

The final result is

IrX[(a +at)(b+flt)(pt2+qt+r)]-1/2 dt=4RF(L2 M2, N2), q2<4pr,

(x y)M= [(a + oex) l/2(b -b fly)l -b (a + ay) l/2(b +X)1/2]
[(sc + r/)2 p(x y)211/2,

M2_L2 7.2 N2 2(25) N2_M2 (p + 0.)2 T2, (p 0.)2, -L 4p0.,

2 px 2 + qx + r, ,02 py2 + qy + r,
2 2 2 2 2p =pa -qaa+ree 0. =pb -qbfl+rfl2,
2_.r p(a-b)2-q(a-b)(a -)+r(a -/3)2.

All quantities are real, all square roots are nonnegative, and 0-<L =<M=< N. The
integrand is assumed to be strictly positive on the open interval of integration. As
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x or y becomes infinite, M has a finite limit:

(26)
M-[al/(b+y)l/2+(a+cey)l/2l/2](2pl/2rl+2py+q)l/2, xoo,
M-> [(a + olx)l/2(-) 1/2 + (-ce)l/2(b + X)1/2](2p1/2 2px _q)I/2,

As an example consider [2, 242.00],

(27)
foo t3- 1)-1/2 dt 3-1/4F(qg, k), cos

y 1-4
y y- 1 +’f3’

k2- y=>l.
4

If l=<y<l+/-, then 7r/2<qg_-<Tr and F(q,k)=2K(k)-F(,r-q,k). If the
interval of integration is 2 <= t-<_ 3, we need the values of one complete and two
incomplete integrals"

(t3 1 dt 3-1/412K(k)-F(ql, k)]-3-1/4F(q92, k)

=0.2697,

cos 01 2-ff, cos q2 (2-’)2, k sin 15.
Alternatively, since t3- 1 (t-1)(t2+ t+ 1), we put a =-1,/3 =0, a b =p=
q r 1 in (25) to find

Ir (t3- 1)-/2 dt= 4Rv(M2- 3 2,/-j, M2, M2- 3 + 24),

(28) (x-y)2M2=[(x 1)1/2+ (y 1)a/212[(+Yl)2--(X--y)2],
(X 2 "+- X -1- 1) 1/2 2rt=(y +y+l)1/2 l<y<x<oo

Choosing y 2 and x 3 we calculate 4Rv(215.5, 221.9, 222.4) 0.2697. Since
the ratios of the arguments are close to unity, the computation is quick even by
expansion in power series. For comparison with (27) we find in the limit as x --> oo
that M2= 1 + 2y + 2r/and

Iy (t 1)-1/2 dt= 23/2Rv(z- 1-’f, z +1/2, z- 1 +’f),

z=y+(yZ+y+l)1/2, y>=l

If y _-> 1 + application of (21) instead of (20) to the right side of (18) gives

fy (t 1)-1/2 dt= 2(y- 1)I/2RF[(y- 1- x/-)2, y2+ y.+ 1, (y- 1 + )2],
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which by (9) agrees with (27). The inequality discussed after (21) fails in the
interval 1 -< y < 1 + x/-, where q > 7r/2 in (27). By contrast the variables of RF in
(29) are strictly positive for y > 1.

4. Two pairs of conjugate complex zeros. This is the only case in which the
integral (1) sometimes cannot be reduced to a single standard integral, but we
consider first the circumstances in which it can. We may suppose that a + at and
b +/3t are complex conjugates, and likewise c + yt and d + t. In (11) we take each
square root of a product to be the product of the square roots of the factors. The
square root of each linear factor such as a + at is continuous in t, and conjugate
factors have conjugate square roots. Then U, V, W are real and U> 0, but (11) is
not valid if either V or W is negative (see 2). Their sum is given by

(x-y)(V+ W) [(a +ax)/2(b +y)/Zw(a +ay)a/2(b --- x) 1/2]
(30)

[(c

The quantity

(a+ax) 1/2

(a+ax)l/2(b+[3y)l/2= a+a (a+aY)’/2(b+flY)l/2
(31)

1/2(a+ax)a+ay
lies in the open right half-plane, and so does (c + yx)l/2(d + 6y) 1/2. Therefore both
quantities in square brackets are positive, and V+ W> 0. It follows that (11) is
valid if and only if VW=> 0, which is equivalent to

[(a + ax)(b + fly) + (a + ay)(b + flx)][(c + yx)(d + 6x)(c + yy)(d + 6y)]1/2

(32) +[(c + yx)(d + 6y) + (c + yy)(d + 6x)]
[(a + ax)(b + Bx)(a + ay)(b +/3y)]1/2 _-> 0.

We now eliminate all complex quantities by a change of notation, replacing
(a + at)(b + Bt) by at2 + bt + c and (c + yt)(d + 6t) by at2 +/3t + y and subsequently
defining d (4ac- b 2)1/2 and 6 (4aT-/32) 1/2. Thus a, c, a, y, d, 6 are hence-
forth strictly positive. The validity condition (32) becomes

[axy +1/2b(x + y)+ c](ax 2 +/3x + y)l/2(ay 2 +BY + y)1/2
(33)

+[axy +1/2B(x + y) + y](ax2 + bx + c)a/2(ay2 + by + c)1/2_-> 0,
while (11) becomes

X(at2 + bt + c)-I/2(cet2 + + y)-a/2 dt 2RF(U2, V2, W2),Bt

(x y)U= (ax 2 + bx + c) 1/2(ay 2 +BY + T) 1/2

(34) +(ay2+by +c)l/2(ax2+x + y)1/2,

V2- W2-- d6, W2- U2-- -ay-ca +1/2bf1-1/2d6,
U2- V2 ay + ca -1/2b -1/2d&

d=(4ac-b2)/, 6=(4ay-/32) a/2, a,c,d,a,y, 6>O.
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Although (34) is satisfactory for numerical purposes when (33) is satisfied, it
is enlightening to use the notation shown in Figs. 1 and 2. The four complex zeros
are the vertices of a quadrilateral with sides of length L, d/a, 6/o and diagonals of
length D. The distances of the zeros from x are r and p, the distances from y are s
and o-, and the angles subtended by the interval of integration are f and q. By
simple analytic geometry,

aoLe a,y + co 1/2bfl 1/2d&

(35)
ar2 ax 2 + bx + c,

as2 ay2 + by + c,

ars cos f axy + 1/2b (x + y) + c,

aceD2
aT + ca -1/2bfl +d6,

Op 2
OlX

2 _1_ fiX -Jr" T,
2 2

ceo" ay +y + y,

aOo" cos o axy + 1/2/ (x + y) + y.
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The validity condition (33) reduces to cos f+cos q->0 or equivalently

(36) f+
while (34) becomes

irx (at2 + bt + C)-1/2(0t2 +t+ ,y)-/2 dt 2(aa)-/2Rv(T2, T2-L2, T2 D),

(37)
(x y)T= rr + sp.

Consider the intersection z of the diagonals of the quadrilateral and the real
axis (Fig. 1). If we choose y z, the line segments of length s and r in Fig. 2 lie on a
diagonal (with s + r D), andf and q are two angles of a triangle. Then, as x
f+ q increases monotonically to the limiting value r. We conclude that (36) is
satisfied if z =< y < x -< c, and likewise if- -< y < x -< z. In summary, the validity
condition (33) or (36) is satisfied if the open interval of integration does not
contain z. If it does contain z, the condition will be satisfied only if the interval of
integration is finite and sufficiently short. This conclusion can of course be verified
algebraically by using (33) and the formula

(38) z
(b6 + fld)

2(a6 + ced)

which results from considering similar triangles in Fig. 1.
If (33) is not satisfied, we can split the integral into two parts,

(39) + y<z<x,

and evaluate each part by (34) or (37). In the second part the value z of the lower
limit implies s + o- D and s/cr= ad/a6, whence

adD a6D a6r + adp
(40) s

a6 + ad
tr

a6 + ad (x z T
aS + ad

D.

In the first part the value z of the upper limit implies

adD a6D a6s + adtr
(41) r=a6+ad P a6+ad’ (z y)T-

a6+ced
D.

Since r/x 1 and p/x 1 as x c, it is clear from (40) that T D as x c in the
second part, and likewise TD as y -c in the first part. Therefore,

(42)

+ + +fit + 3,)-1/2 dt(at2 bt C)-I/2(ot2

(at2 + bt + c)-1/2(t2 +t+ y)-1/2 dt

2(aa)-l/2RF(O, D2-L2, D2)

2RF(0, d6, ay + ca-1/2b + 1/2d6).



242 B.c. CARLSON

The point z, which does not figure in previous treatments of this problem, divides
the real line so that the integrals over the two half-lines are equal. The value of the
integral over the whole real line can easily be checked by closing the contour with
a large semicircle in the upper half-plane, deforming the contour so that it follows
the edges of a cut joining the two zeros in the upper half-plane, and evaluating the
integral along an edge of the cut by [6, (T.1), (3.6)].

Note added in proof. A direct proof of (13) by change of integration variable is
given in [8].
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THE NUMERICAL-VALUED FOURIER TRANSFORM
IN THE TWO-SIDED OPERATIONAL CALCULUS*

RAIMOND A. STRUBLE"

Abstract. The classical and distributional Fourier transform is extended to the ultimate setting in
which it can be considered to be numerical-valued. It is extended as a ring isomorphism onto the ring of
all measurable and finite almost everywhere functions under ordinary (pointwise) addition and
multiplication of functions. The essential technique needed for this extension is the familiar algebraic
procedure (first applied by Mikusifiski to the operational calculus in the late 40’s) of imbedding a given
ring in a larger ring of fractions, the denominators being nondivisors of zero. Where Mikusifiski’s
application resulted in a field of one-sided operators, the present application results in a ring of
two-sided operators. Beyond this, only classical Fourier analysis is needed, though the extension of the
latter to distributions is very useful in identifying many of the operators.

A descriptive subtitle for this paper would be Basic definitions and theorems, with applications to
be considered later. For reasons of motivation and practical emphasis, the operational calculus is
developed in a slightly more restrictive setting where the Fourier transforms are continuous almost
everywhere.

1. Introduction. As is well-known, Mikusifiski obtained [2] certain
generalized functions by considering an algebraic field of fractions for the
convolution ring of continuous functions on the half-line [0, oo). The elements of
the field are called operators and provide for a one-sided operational calculus
which possesses all of the advantages of rigor supplied by the Laplace transform
method and none of the limitations imposed by the underlying analysis of the
latter.

Recently [7], [8], the writer has constructed a two-sided operational calculus
using the same algebraic technique, but in a setting for which the field of operators
(called exponential operators) becomes isomorphic to a field of functions. These
functions turn out to be meromorphic in (various) neighborhoods of the real axis

of the complex plain C, and one can use the classical analytic function theory
and arithmetic in their study. The isomorphism introduced is an extension of the
classical Fourier transform and agrees with the distributional Fourier transform of
Schwartz [4] on a certain subclass of operators which are tempered distributions.
The setting allows for all of the distributional Laplace transform theory associated
with analytic functions, such as in [3-1, [9], [10], and considerably more.

In this paper we exploit the Fourier transform technique of Schwartz and the
algebraic technique of Mikusifiski even more fully and construct a large ring of
two-sided operators which includes the field of exponential operators, the ring of
integrable distributions, and considerably more. We are able to further extend the
Fourier transform so that it becomes a ring isomorphism onto the ring of all
ordinary functions which are continuous almost everywhere. In fact, we can just as
easily extend the Fourier transform as a ring isomorphism onto the ring of all
functions which are measurable and finite-valued almost everywhere, which we
illustrate in the final section of this paper. The latter extension is done here mainly
for the sake of generalization. However, this last ring (notably) does contain all

* Received by the editors September 4, 1975, and in revised form January 2, 1976.
5" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.
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regular ultradistributions and appears to represent the ultimate setting in which the
Fourier transformation can be used to exploit the arithmetic of ordinary functions.
This aspect of the work may be the most interesting development at this time. The
increased utility of the ring F of operators constructed here (or of its extension
constructed in 5), say in comparison with other two-sided operator calculi, has
yet to be assessed, and here we only undertake to establish the framework for such
an assessment and to provide for (hopefully) new applications. The development
is presented in the one-dimensional case, but applies equally well in the higher-
dimensional cases.

In 2, we review some standard notation and terminology concerning
distributions. Here, and throughout the paper, the readers are assumed to be
familiar with elementary aspects of distributions and their Fourier transforms
(such as given in [1], [9]). In 3, we consider some preliminary results which come
principally from recent work in references [3] and [6]. This section is used mainly
for motivation, but includes important definitions of rings of distributions and
related functions. The two-sided operational calculus is developed mostly in 4.
Important definitions of the rings of operators and related functions and of the
extended Fourier transform between them are given. A few, perhaps noteworthy,
theorems and corollaries are proved. Here the emphasis is mostly on the ring of
functions - and what it means to the operational calculus. Some topological and
convergence concepts are considered in 4. Finally in 5, the present develop-
ment is extended to the ring of all measurable and finite almost everywhere
functions. This final section also shows that distributions can be avoided entirely
and that the final ring of operators, as well as that of their Fourier transforms, is
isomorphic with a ring of quotients of ordinary functions under addition and
convolution. Thus, only the Mikusifiski (algebraic) technique is really needed in
all of this. However, it is very convenient to be able to interpret many of the
operators (fractions) as distributions.

2. Notation and terminology. Much of the notation to be used in this paper is
standard; some of it is not. Throughout the paper we let R denote the real line, C
denote the complex plane and denote the real C-axis; the latter to be
distinguished from R. We let @ @(R) denote the space of infinitely differenti-
able test functions (t)= of the real variable t R, with compact supports,
together with the standard topology given by Schwartz [4]. We let Z(C)= Z
denote the space of entire functions p(z) O of the complex variable z to + ip
C, which are the Fourier transforms of the elements of @, together with the
standard topology for which the Fourier transform from @ onto Z, (see [7], [8]),

(1) (t) ->(z)= e-iZt(t) dr,

and the inverse Fourier transform from Z onto

(2) (Z)V"’> (t)"-" =const.

1
e ioat(to) do),e iZtc z dz -become topological vector space isomorphisms. We recall that Z is the collection
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of entire functions b which satisfy families of inequalities of the form

ea’llmzl k 1 2,(3) Iz  ;(z)l
for positive constants Cqb,k and a (depending upon 4, k and b respectively).

The topological duals of these spaces are denoted, as usual, by ’(R)= ’and Z’(C)=Z’, and an element f(t)=f6’ is called a distribution, and an
element g(to)=g Z’ is called an ultradistribution. The value at b6 of the
distribution f ’ is denoted by (f, b) (f(t), b (t)), and the value at p Z of the
ultradistribution g 6Z’ is denoted by (g, if)= (g(to), p(to)). Observe that each
entire function t# 6 Z is determined by its restriction to the real C-axis t -oo <
to < oo, and so we may (and shall) consider an ultradistribution g as a generalized
function on .

We shall make use of the well-known subspaces of tempered distributions
’(R and 6’(), (on the two real lines R and ), as well as the not so well-known
subspace of integrable distributions (R) [3]. We recall that a distribution f
is tempered iff (if and only if) there exist positive integers M and N such that

(4) I(f, b)l --<M sup I(1 + t2v)b(t)l, R,

holds for all b N, and is integrable iff there exists a positive integerK such that

(5) I(, )l-<Kmaxsupl(t)l, tR, O<-]<=K,

holds for all b @ (see [3]). Here denotes the ordinary ]th order derivative of. Clearly, ’, and we shall see (Prop. 7) that if f ’, then f(t)/(1 + TM)
for some integer N 0.
If f(t) f is a distribution, then f) will denote its Fourier transform (as

.an ultradistribution) which satisfies the Parseval relation

for all e a where (t) (-t). With this definition, the Fourier transformf[
becomes a vector space topological isomorphism from ’ onto Z’ (with respect to
their weak topologies, say), and satisfies

(7) f * = (with & as a multiplier on Z’)

for all [ ’ and [ , where denotes, as usual, convolution. We recall that
f ’(R) iff ’().

Finally, if n is a positive integer, then U, will denote the dilatation transfor-
mation on ’ defined by U,f(t) nf(nt), where (nf(nt), (t)) (f(t), O(t/n)), and
a function will be said to be slowly increasing if it is bounded by a polynomial. All
algebraic rings in this paper are commutative, and are complex vector spaces as
well.

3. Preliminary results and definitions. We shall need several results from
references [3] and [6].
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PROPOSITION 1. Iff ’, and if its Fourier transform f is a regular ultradis-
tribution which is slowly increasing and is continuous at a point tOo , then

(8) lim U e-iOtf(t)=(tOo) t(t),

where the convergence is in ’ and 6(t) is the delta function, of course.
This proposition was stated in [6] for everywhere continuous 1 but the proof

applies equally well to the above case.
PROPOSITION 2. Iff ’0, thenis continuous on and is slowly increasing.
This proposition was only stated in [6], but follows readily from the work in

[3]. It appears to be unknown whether or not the converse holds. Propositions 1
and 2 have the following obvious corollary.

COROLLARY 1. If f ’o, then lim,,_oo U, e-i’tf(t) =]7(tO) 6(t), for every

The following was proved in [3].
PROPOSITION 3. Iffl, 1:2 Y3’o, then the convolutionf * f2 exists andbelongs to

’o.
And finally, the following was provedin [6].
PROPOSITION 4. Iffl, f2 Y3’o, then f f2 =far2, with fuxtaposition denoting

the ordinary multiplication of the two functions on the right.
From these results we are led rather naturally to consider the collection 3- of

all functions g which are defined, are continuous and are slowly increasing a.e.
(almost everywhere) on . The latter, of course, means that such a g is defined, is
continuous and is bounded by a polynomial on except for possibly a subset of
measure zero. As usual, two such functions which agree a.e. will be identified.
Each of these functions may be (and shall be) considered as a regular ultradistribu-
tion (in fact, a regular tempered ultradistribution in 0’(Y)). Moreover, by
Proposition 1, each of these functions is the Fourier transform of a distribution
which satisfies the limit condition in (8) for almost every tOo of . Also by
Proposition 2, if f, then ire 3-. Let us, therefore, introduce the following
definition for functions on .

DEFINITION 1. A function g, defined a.e. on =-c< tO < c, is called a
tempered function if it is continuous and slowly increasing a.e. on . Two such
functions will be identified if they agree a.e. on . The collection of all tempered
functions will be denoted by , and will be considered a ring under ordinary
addition and multiplication of functions. The subcollection of 3- consisting of
those functions which are nonzero a.e. on will be denoted by 3-0.

It is easy to see that the subcollection 3-0 is closed under multiplication and,
moreover, constitutes a subcollection of the nondivisors of zero in the ring 3-. This
means that glg:z 0 for ga 0 and g 3-, implies that g2 0. The divisors of zero
in 3- are precisely those functions which vanish on some open interval. Since there
are (even) continuous functions which vanish on sets of positive measure but do
not vanish on any open intervals (consider a function which vanishes on d Cantor
set with positive measure and is nonzero on its compliment, for example), 0 does
not contain all of the nondivisors of zero in 3-. It will become apparent later why
we are not interested in the collection of all nondivisors of zero in 3-.

The following is the companion definition for distributions on R.
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DEFINITION 2. A distribution f. on R =-oo < t < oo is called a W-tempered
distribution if its Fourier transform f is a tempered function. The collection of all
W-tempered distributions will be denoted by T, and will be considered a ring
under ordinary addition of distributions and extended convolution of distributions
defined by

(9) f3 fl : f2, whenever f3 f2.
The subcollection of T consisting of those distributions f for which f 6 3-o will be
denoted by To.

By Proposition 2, we have @ T, and by Proposition 4, it follows that the
operation is an extension to all of T of ordinary convolution of distributions in
@. It is unknown whether or not is ordinary convolution in T. In any case, To
consists of a subcollection of nondivisors of zero in Twith respect to the operation. It contains all the distributions with compact supports and, more generally, all
the distributions whose Fourier transforms are analytic on and are slowly
increasing. These include (suitable shifts of) all the Laplace transformable dis-
tributions of Schwartz [5].

By these definitions, the Fourier transform becomes a ring isomorphism from
Tonto 3-, and henceforth, we shall usually denote an element (function) of -byf,
meaning that it is the Fourier transform of an element (distribution) f of T. The
Fourier transform can be defined directly on T using (8).

PROPOSITION 5. Iff T, then for any with (0) 0,

/(o) b(0),l.lim (U, e-i’tf(t), ok(t)) for a.e. o .
(Here a.e. reads, almost every.)

Proof. Since f T, is continuous a.e. on and so (8) holds for a.e. o0 e .
Applying these distributions to the test function yields Proposition 5.

The following is a well-known result [4].
PROPOSITION 6. If , ’(), then there exists an integer N>-O and an f

such that f(2), where the latter is the (ultra) distributional 2N.th derivativeof
Thus every tempered distribution on is a finite order derivative of a

tempered function. Through the Fourier transform (for which we have
_/(2)), it follows that every tempered distribution h on R can be expressed in the
form h(t)= t2Nf(t) for some integer N>_-0 and some 3--tempered distribution f.
This means that h(t)/(1 + t2N)=f(t)-f(t)/(1 + t2u)e T. We can improve upon
this last result as follows.

PROPOSITION 7. Ifh Y’(R), thenh(t)/(1 + t2N)6 forsomeintegerNO.
Proof. Because h 6 ’(R), it satisfies (4) for suitable integersMand N. Hence

for any b ,
[(h(t)/(1 + t2N), b(t))[ [(h (t), b(t)/(1 + t2u))[

_-<M sup I(1 + t2u)[ck(t)/(1 + t2u)](u)[
N

=<M E M. sup [(N-J)(t) _-<L max sup [6(J)(t)l,
j=o
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where M- =supt ()(1 + t2)[1/(1 + t2)](j) and L (N+ 1)M maxM.. Thus if K
is any integer greater than L and N, we have

I(h(t)/(1 + t), b (t))[ _<-K max sup

tR, O<=j<=K,

which means (see (5)) that h(t)/(1 + 2N) o.
This proposition applies, in particular, to --tempered distributions. Hence

we have the following corollary.
COROLLARY 2. Iflf E T (alternatively, iff -), then there exists an integrable

distribution g and an integerN >- 0 such thatf(t) (1 + tE1V)g(t) (alternatively, such
thatf’(to) g(to)-

Thus the elements of T are obtainable from the elements of through
multiplication by powers of t, and the elements of 3- are obtainable from the
continuous members of - by (generalized) differentiations. It seems likely that
one differentiation should suffice since one (ordinary) integration of an element of
3- results in a continuous function which is differentiable a.e. Such would be the
case if the converse of Proposition 2 were to be true.

Examples. The distribution p.v. 1/t is defined by

p.v. -, b (t li/ + dt.
e-,0

It belongs to T (in fact, To), but it does not belong to . Its Fourier transform is
the step function -ir sign to. The generalized derivative of the latter is -2iTr6(to),
which belongs to 6e’(), but does not belong to 3-. The (ordinary) integral of it,
-i1,01 is continuous and is the Fourier transform of the finite part Fp-i/t2 (see
[9]) which belongs to . The Fourier transforms of the delta function 8(t), the
differentiation operator s (equivalently, 6(1(t)) and the translation operator exs

(equivalently, 6(t-A)) are, respectively, the functions 1, ito and e ix.

4. Construction of the two-sided operator calculus. We shall now consider
the collection F of (formal) fractions g/f with g T and f To, where as usual,
gill1 g2/f2 iff gl f2 g2 fl. Because To is closed under and consists of
nondivisors of zero in T, these fractions can be added and multiplied, just as
ordinary numerical fractions can be, but where multiplication becomes extended
convolution. Under these operations, F becomes a ring; its elements are called
operators, following Mikusifiski’s example. The ring T itself may (and shall) be
considered as a subring of F by identifying each g T with the fraction (g
for any f To. Thus all -tempered distributions are operators.

Similarly, we shall also consider the collection of functions of the form/
with E 3- andf 3"0. Since the denominatorsf can vanish only on sets of measure
zero, such functions are defined and are continuous a.e. on . becomes a ring
under ordinary addition and multiplication of functions and contains 3- as a
subring, since the function which is identically 1 belongs to 3-0.

It is clear that the two rings of fractions F and are isomorphic via the
mapping which sends g/f F to ,/f . This. mapping is an extension to F of the
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distributional Fourier transform on T. We shall formalize these important
considerations with our principal definition and our first theorem.

DEFINrrION 3. The ring of all fractions x g/f with g T and f To is
denoted by F and its elements are called operators. The fractions are identified,
added and multiplied, as ordinary numerical fractions are, with the operations
corresponding to addition and extended convolution (Def. 2) in T. The ring of all
functions //r with 3- and/r -0, under ordinary addition and multiplica-
tion of functions is denoted by . These functions are defined and are continuous
a.e. on , and are identified if they agree a.e. on . The mapping x g/f ,/f
from F onto is called the Fourier transform.

TI-IEOREM 1. The Fourier transform, as defined in Definition 3, is an exten-
sion to F of the distributional Fourier transform on the subspace T of W-tempered
distributions. It is a ring isomorphism from the ring F onto the ring .

We can now explain why we do not work with the ring of all nondivisors of
zero in 3"-, as might be expected. For to do so would require that we treat the
fractions ,/[formally (as we must do in any case with the distributions), rather
than numerically as functions. For example, if ivwere to vanish on a set of positive
measure, where ff does also, then as a function, the fraction /] would be
indeterminant on a set of positive measure and the formal ring operations would
not correspond to the ordinary arithmetical ones. We have selected, as
denominators, precisely those elements in 3- for which the arithmetical operations
are preserved.

It is, of course, easier to examine the arithmetical properties of the ring of
functions than it is the convolution properties of the ring F of operators. This is
why we introduce the Fourier transform in the first place. However, the operators
are the objects of primary concern in the operational calculus and we shall
consider them more fully in (hopefully) subsequent papers. The following
theorem dispenses with the need for our fractional notation in .

THEOREM 2. Afunction belongs to the ringiff is continuous a.e. on.
Proof. We need only establish the "if" part of this theorem. So suppose (o)

is continuous a.e. on . Then the function/’(w)= 1/(l+[(w)[)is also, and
moreover, jr(w) is bounded and nonzero a.e. on 9. Furthermore, the product
2(o)jr(w) is continuous and bounded a.e. on . Thus 2(w)= (o)f’(o)ff(w) ,
since (w)f(w) . 3- and f(o) 3-0.

Two immediate corollaries oI this theorem are themselves of some interest.
COROLLARY 3. The ring contains all regular ultradistributions defined by

locally (Riemann integrable functions.
Of course, many of these ultradistributions are not tempered, so we have

certainly enlarged the collection of ultradistributions at our disposal. We shall, of
course, identify those distributions with the corresponding operators whose
Fourier transforms are regular ultradistributions in o. These distributions are
given by (f, 4)= (1/(27r))

_
(o)4(w)&o, whenever iv is a regular ultradistribu-

tion.
It is always of interest to identify those elements of a ring which are invertible.

Such elements are usually called units, and because of Theorem 2, are easily
identified in .

COROLLARY 4. Afunction in the ringisa unit iff is nonzero a.e. on.



250 RAIMOND A. STRUBLE

Though this last corollary appears to be rather mundane here, it is of
considerable importance for the ring F of operators. Therefore we introduce an
appropriate definition.

DEFINITION 4. The subset of all functions in which are nonzero a.e. on
is denoted by 0?/. The elements of are called units. The subset of all operators

x in F for which 6 0?/is denoted by U. The elements of U are called unitary
operators.

.Examples. Suppose that H(z) is a function which for some b>0 is
meromorphic in the neighborhood No {z "[Im z[ < b} of the real C-axis . Then
for any real p with [p[ < b, the function oo--H(oo + ip) (all w ) is an element of. Moreover, every such element is a unit. In particular, if H(z) O(z)/P(z) is a
rational function with P and O polynomials, then for any real p the function
o-O(oo+ip)/P(o+ip) is an element of ; in fact, it is an element of 3-,
whenever p is chosen so that the poles of H(z) are avoided, since it is then slowly
increasing. If this is the case for p 0, then H(w) is the Fourier transform of a
distributional solution f(t) of the differential equation P(-id/dt)f(t)=
O(-id/dt) 6(t), since the Fourier transform of this equation is P(o)lr(w)= O(o),
and P(w) is a unit. For other values of p, H(oo + ip) is the Fourier transform of the
shift ePtf(t) of the distribution f(t). Thus, H(z) is the Laplace transform of f(t)
(rotated 90, of course), where f(t) is a solution of this differential equation in T. A
two-sided operational calculus was developed recently [7] in which the Fourier
transforms of the operators (called exponential operators) are meromorphic
functions in various neighborhoods No. Hence these operators all belong to the
ring F and form a subfield in the subset U of unitary operators.

The first example above can be generalized immediately to the following.
COROLLARY 5. Let P(s) be any polynomial in the differentiation operator s

with complex coefficients. Then P(s) is a unitary operator andfor any operator y F,
the fraction x y/P(s) is the unique solution of the equation P(s) x y in F. If
y T, and ifP(z) has no pure imaginar,q..yzeros, then x T.

Proof. The proof is trivial, since P(s) P(iw) is a unit in o% and (oo)/P(iw) is
slowly increasing, if y 6 T and P(ioo) 0 for all o.

The second part of this corollary, of course, yields a distributional solution x
of the differential equation P(d/dt)x(t)= y(t). The arithmetic (operator method)
is overwhelmingly simpler than the corresponding analysis, but we obtain less
information. However, we can use this simple arithmetic just as readily to treat
differential equations of infinite order.

THEOREM 3. Let be a function which is analytic on the imaginary C-axis.
Then the operator (s), defined as the Fourier inverse of the function (ito), is
unitary, andfor any operator y F, the fraction x y/(s) is the unique solution of
the equation (s) , x y in F.

The operator (s) in this theorem is, of course, an infinite order differential
operator unless is a polynomial. For example, if is an entire function with
power series Y,io cizi, then (s)= Y’,io cisi. If y is a distribution in T and if
1/(ito) is an ultradistribution in 3- (as in the above example), then x is a
distribution and satisfies Y,io cx(i)= Y. Consider the interesting example, (z)=
e- We note in passing that s : x g()/f, whenever x g/f with g 6 T, f To,
and it is appropriate to define the fraction g(1)/f as the derivative x (1) of the
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operator x. Then )= io(to) holds for a.e. to and we can write P(s) . x
P(d/dt)x =y in Corollary 5.

It would be of interest to consider some topological and convergence notions
in o. One possible topology for is a metric one defined by the family of chordal
pseudo-metrics

(10) Pk (, 37) ess. sup
-k<-_o,<-k x/1 / [(0)]2x/1 / Ip( ,)l=’

We recall that the ess. sup f is the infinimum of the positive numbersM for which
the set has measure zero. If there are no such numbers, then
ess. sup f o. For functions which are essentially bounded on compact sets, this is
the topology of uniform convergence a.e. on compact sets.

The following appears to be a rather rouine result. Its corollary shows
differently.

THEOREM 4. Let . Then with respect to the metric topology (10),

(11) ,,-,olim:(+t)=7(t)fora.e. too:.
In particular, this holds at every point too of continuity of.

Proof. The proof is immediate from (10), since for every k, it is clear that

lim pk(.(/O)o), )(t00)) 0

if to0 is a point of continuity of .
The following is the analogue for operators of Proposition 1.
COROLLARY 6. Let x be an operator in F. Then with respect to the metric

topology induced on F,

(12) lim U.e-itx(t)=(tOo)a(t) fora.e, tooe:.

Here we need to explain the notation and the terminology used. For each
x F, we define

(13) e-i’x(t)

and

e-iO’otg(t)
e-iotf(t)

(14) U,x(t)
Ug(t)
Unf(t)

where x g/f, with g T and f To. It is then easy to verify that these definitions
extend the multipliers e -i’t and the dilatations Un to automorphisms on the ring
F. Since the Fourier transform is one-to-one from F onto , we can transform the
metric topology of o to a metric topology for F simply by defining the pseudo-
metrics Pk (X, y) Ok (), ) in F. This topology is then said to be induced on F. The

proofrof Corollary 6 is simply the observation that (13) and (14) imply that
Un e-’ tx(t)(to)=((to/n)+tOo) holds for every x F.
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We also have an analogue of the numerical result in Proposition 5.
COROLLARY 7. If X F, then for any ck with 4 (0) 0,

1
o)((eOo)

qb( lrn U,e-’otx(t), b(t)) for a.e. OOo.

Proof. This follows immediately from Corollary 6, where the limit is a
distribution.

The next theorem gives a useful criteria for convergence in 0% with respect to
the metric topology. The main difficulty associated with this topology is that the
space contains (essentially) unbounded functions. It would seem, therefore,
that if, for example, the limit of a sequence is (essentially) bounded, then the
nature of the convergence should be more readily understood than if is
unbounded. This is part of the message conveyed by the following theorem. It
says that a sequence converges if it can be represented in fractional form so that
its numerator and denominator sequences converge nicely to a fraction which is
(essentially) nowhere indeterminant (see (15)). In such a case, the limit could be
unbounded, but if it is bounded, then the denominator is (essentially) bounded
away from zero.

THEOREM 5. Suppose that a sequence {.} of functions in is such that
n ,/[ with , ,f Rfor all n, and that lim_oo n , and lim_oo jr jr
tl, with respect to the topology oj’ uniform convergence (a.e.) on compact sets oj: Y.
Then lim,_oo , g/j with respect to the metric topology (10), provided

(15) ess. inf 4[j(to)l: + I(t)i: > 0 for every k.
-k _--<to <-k

Proof. Condition (15) means that for every k, there exists a positive M such
that the set {w:lt0[-< k, 4If((.0)[2 -[" [((.O)12 _-<M} is of measure zero. Now foreach k
we have

p (,,, ) eSS._k<_-,sup_--<k 41), (tO)]: + Io (<o)1 ,/I [(<o)1 + I(<o )1
+ IL(<o)<- ess. sup

_,<__.<__, I (<o)1
Hence it follows from (15) that lim,_oo Pk (-n, -) 0, Since the sequences {g,, } and
{j,} converge to and j uniformly on [-k, k]. Since this holds for every k, the
conclusion of the theorem holds.

Examples. Let {4,} be a delta function sequence in . This means that the
supports of all the members of the sequence are contained in some fixed compact
subset of R and that lim,_, tb * b b with respect to the topology of uniform
convergence on compact subsets of R, for every b e @. Then lim,,_,_..(t)
in N’, hence the name for such a sequence. On the other hand, since b, b b,b,
the first limit statement means that lim,_,oo 4,b 4 with respect to the topology of
uniform conver.gence on compact subsets of , for every b e Z. But this can be so
only if limn_,oo b, also exists with respect to the latter topology. Thus it exists with
respect to the metric topology of - and is, in fact, 1. Suppose that the members of
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the sequence {Pn} are continuous functions on R, which are all bounded by e -I’1,
and converge uniformly on compact subsets of R to ft. Then these, belong to Yd,.
and by essentially the same arguments, their Fourier transforms Pn converge to p
with respect to the topology of uniform convergence on compact subsets of .
Thus by Theorem 5, limn_,oo (,/b,,) 0- in T with respect to the metric topology,
since (15) is certainly satisfied in this case.

The inverse Fourier transform does not materialize nearly so easily as the
Fourier transform did in Corollary 6; it must be obtained as a "fractionalized"
limit in . Let and ffwith -,/r -o. Then if is a nonzero member
of Z, the convolution integral

lI_ it ( )dI(g, to, t, n) f- e (:)(sc)d to--
exists, and for fixed values of t and n, is an infinitely ditterentiable function of to

which (it can be verified) belongs to -. For fixed values of to and n, it is an infinitely
differentiable function of t. Since

(tr * g) (U. e’(-t))(s) (sc)(sx) to
n

by (2) this integral equals (tr g) U,, e ’ttr(-t).
It can be verified that for each fixed value of t,

lim I(, to, t, n)= (tr g)(t)t(to),

uniformly in to on compact subsets of , and hence by Theorem 5, with respect to
the metric topology of . On the other hand, for each fixed value of to, this limit
also exists with respect to the metric topology of F. This gives us the following,

COROLLARY 8. Let be a function in . Then with respect to the metric
topology in (or in F),

x lim I(, to, t, n)/lim I to, t, n),

where ,/with , -, -o, and the limits are evaluated for some to satisfying
6,(to) O. (Here / denotes the formal fraction in F.)

Proof. The formal fraction (o- g)(t)(to)/(r * f)(t)(to)= (r * g)(t)/
(or *. f)(t) g(t)/f(t) x in F, provided (to) # 0. Thus the conclusion follows
from the above discussion. Note that the result does not depend upon the
particular choice of c nor o, so long as the number (to)# 0.

In connection with differentiability in , we have the following consistency
theorem.

THEOREM 6. Suppose that the function is continuously differentiable
everywhere on and that (1)= 37. Then

(16) lim
-,

)7
g--,O

with respect to the metric topology in . Here e(to) (to + ).
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Proof. Because each of and )7 is continuous, we have

Pk "(i ;)
k <=
Up

’(t + so)-(t)-)7(to):
for all 0 and k. Since is continuously differentiable with derivative , it
follows that

lim O 0
0

for every k. For operators, the corresponding result is as follows.
THEOREM 7. ff he opera,or x F is such hat its Fourier transform is

continuously dieremiable eerywhere on , then the limit

(17) lim Dx

exists with respect to the metric topology of F.
Proof. Equation (17) follows from (16) since e-’%(t)() ( +).
e limit in (17) defines the infinitesimal generator D of the one parameter

group of exponential shifts (automorphisms of F) e -it. By this theorem, the
domain of the generator D includes the space (subring) of all operators x for
which is continuously differentiable on . If f is a distribution such that
g(t) =-i(t) , then by Proposition 2, is continuous on and ()= ff (see
[6]). Hence, f is in the domain of D and Dr(t)= g(t), i.e., Dr(t)=-itf(t). The
infinitesimal generatorD of the group of exponential shifts, therefore, is simply an
extension of the familiar algebraic derivative [2]. By Corollary 2, we see that if

f then f= (1 + (-1)nDan)g for some g and some integer N0.
ese last two theorems are of considerable practical importance since every

linear operator differential equation on R with polynomial coecients in
transforms to an ordinary differential equation on with polynomial coecients
in (and conversely). ese theorems then show that every continuously
differentiable (classical) solution of the latter on transforms back to an operator
solution of the former on R. If the solution on is an ultradistribution (for
example, if it is slowl increasing), then the solution on R is a.distribution.

Examples. Let f, e , and suppose that the function f satisfies the -differential equation a(g)() () for a.e. e, where the a are
complex numbers and the sum is over finitely many nonnegative integers j and k.
en the corresponding distribution f T satisfies the R-differential equation
(-i)+a(tf(t))(i)=g(t). Now suppose that () is a continuous almost
periodic function of m . en it is the uniform limit on of a sequence of
trigonometric polynomials ft, () a e",o. The corresponding operator x(t) is,
therefore, the limit in , with respect to the metric topology, of the sequence of

itmdistributions p,(t) a,fi(t- t,) in Z since 8(t- t,)() e

5. Extension of the operator calculus. Let denote the collection of all
(Lebesque) measurable functions which are finite a.e. on . [ becomes a ring
under ordinary addition and multiplication of functions, and is a unit (is
invertible) in iff is nonzero a.e. on .
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A simple preliminary lemma is all that is really needed to obtain our
extension. It is the counterpart here of Theorem 2, and the proof is essentially the
same.

LEMMA. Let 7{. Then there exists a unit 77{ such that both and the
product are bounded.

Proof. Since is measurable and finite a.e., the function 37 (to) 1 /(1 + [(to
is measurable, bounded and nonzero a.e., i.e., 7 is a bounded unit in YL The
product ;(to)37(to) is measurable and bounded.

The following theorem tells us that we may identify the elements of the ring
with fractions composed of ultradistributions, all of which are elements of Yd.

THEOREM 8. If 27{, then may be expressed in theform; v/ with v
and 7{ both regular ultradistributions and a unit. If is a regular ultradistribu-
tion, then

Proof. The first conclusion follows directly from the lemma with ff )7. The
second conclusion follows from the definition of a regular ultradistribution, which
cannot be infinite on a set of positive measure.

We now let K denote the collection of all (formal) fractions g/f with
andjr yC both regular ultradistributions and jra unit in ff{. Thus, g andf are always
distributions. As before, such fractions are identified, added and multiplied, just
as ordinary numerical fractions are, with the operations corresponding to addition
for distributions and extended convolution for distributions defined byfl # f2 f3
iff f3 flf2.

The mapping which sends the fraction x g/f K to the function ,/f
will be called the Fourier transform. Our next theorem is by now allegory and .is a
direct result of the above definitions.

TIaEOREM 9. The rings Fandare subrings, respectively, ofthe ringsKand
The Fourier transform defined above from K onto ?7{ is a ring isomorphism which
extends the Fourier transform defined (in Definition 3) on F. In particular, the
inverse Fourier transform from ?7{ onto K is a one-to-one, ring isomorphic, extension

of the distributional inverse Fourier transform on the subspace of all regular
ultradistributions.

It is clear from the proof of the lemma that if Y Y{, then it can be further
expressed as a fraction if/)7 with ff Y{ and 37 yr both regular ultradistribu-
tions which are, in fact, absolutely integrable. (Just divide the numerator and the
denominator in Theorem 8 by 1 +to2.) In such a case, the inverse Fourier
transforms w and y are the ordinary continuous functions given by (2). Thus
distributions can be avoided altogether and we now state the final, rather startling
result of this paper.

THEOREM 10. The ring K of operators is isomorphic with the (extended)
convolution ring of fractions of continuous functions on R, each of which is the
classical inverse Fourier transform ofafunction on 5, which is absolutely integrable.

Examples. Suppose that the function H(z) is analytic for -b < Im z < 0, and
that limp_,0-H(to +it9) exists (and is finite) for a.e. to 5. Then, of course,
(to) limp_0- H(to + ip) belongs to YL Further, suppose that for each p(-b <p <
0), the function to -H(to + ip) is slowly increasing, and thus belongs to -. Then, as
before, there exists a distribution f such that for each p (-b <p <0), the
distribution eOtf(t) belongs to T and satisfies e’)(to)= H(to + ip); f itself need
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not belong to T. None-the-less, the distribution f may be identified with the
operator x determined by :(co). For the distributional Fourier transform 1 of f is
that ultradistribution defined by

for any p (-b <p < 0), and the function H satisfies limp_0-H(co + ip)=(co) in
Z’(C), since

lim_ H(co + ip)(co) dco lim_ H(co + ip + ipo) (co + ipo) dco
p O p O

H(co + ipo)6(co + ipo) dco

for any po (-b <Po< 0) and any 6 Z. In this situation, the limit function (co) is
defined as the Fourier transform in of f. It need not be a regular ultradistribu-
tion. For the case of a rational function H(z) Q(z)/P(z), which may have poles
on , x =f is always a distributional solution of the differential equation
P(-id/dt)f(t)- O(-id/dt)6(t), but need not belong to T. This extends the result
in an earlier example. Of course, if it happened that limo_0-H(co + ip)= (co)
with respect to the metric topology of o, then we would again identify that
distribution f, for which e)(co) H(co + ip), with the operator x determined by
(co). However, metric convergence does not transpire in the above case if H(z)
actually has poles on t. The Fourier transforms in .Y{ of the operators identified in
this way with the Heaviside function H(t)= (1 +sgn t)/2, tnI-I(t) and eo*I-I(t)
are, respectively, -i/co, (-i)’‘+ln!n+l and (--/)"+In !(co + ipo)n+l for Po < 0.

On the other hand, if H(z) is analytic for 0 < Im z < b and limo_o+ H(co + ip)
exists a.e. on , then we let (co) limp_0+ H(co + ip), and identify the operator x
with the distribution f (if any) for which e-f-(t)(co) H(co + ip) holds for 0 <p < b.
The Fourier transforms in { of H(-t), tnH(-t), t ePtlt(-t) become, respec-
tively, i/co, -(-i)"+ln!/co+1 and -(-i)n+ln!/(co + ipo)n+l for 0<p0, by virtue of
this latter identification. Thus different distributions can have the same Fourier
transforms in { and are equivalent as operators. In particular, H(t) and -H(-t)
become equivalent as operators in K, though they are distinct as distributions,
since their common Fourier transform in Y{ is the function -i/oo. (This should be
expected since their Laplace transform is the analytic function l/z, restricted to
the two half-planes Re z > 0 and Re z < 0.) On the other hand, the distributional
Fourier transform of H(t) is p.v. (-i/co)+zr6(co), which is singular and cannot
belong to 3’/’. We note that the function -i/co is also the arithmetical inverse in 3’/" of
the function ico, and so H(t) (as well as -H(-t)) is identified with the operator
inverse in K of the differentiation operator s. Therefore, it is appropriate here to
call H(t) the integration operator and to write H(t)= 1/s. Now let 3’[ be
absolutely continuous (on every finite -interval). Then

lim
(+co)-(co) 3,(1)(0)

for a.e. co . Therefore, lime_o (e-iax x)/( Dx exists in K with respect to the
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topology induced from a.e. convergence on . This topology, of course, is coarser
than the metric topology of F used in Theorem 7 and extends the domain of the
algebraic derivative D. More generally, if the function )7 Y{ satisfies the nonlinear
differential equation Y jk(O))((k)(w)) ((.0) for a.e. to , where jk, ffff and
the summation is over finitely many positive integers ] and k, then the correspond-
ing operator y.K satisfies the extended convolution eauation

factors

E a, (Oy) (Ogy)= b.
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LINEAR TRANSFORMATIONS IN THE OPERATIONAL
CALCULUS*

RAIMOND A. STRUBLEf

Abstract. A new development of linear transformations in the one-sided operational calculus is
presented. The setting for this is a (noncommutative) ring of continuous linear transformations on a
familiar test function space from distribution theory. Included in , both algebraically and topologi-
cally, are all the right-sided distributions, all the traditional transformations of the operational
calculus, such as the exponential shifts, the dilatations and the algebraic derivative, all translations and
multiplications by infinitely differentiable functions, and many other new transformations. The
development parallels.that given by E. Gesztelyi for linear transformations of the Mikusifiski operator
field, but is cast in a simpler and more flexible setting. The main tool of the investigation is a
representation theorem of the type introduced by V. Dolezal and the results are primarily theorems
concerning commutativity properties in . It is shown that a linear transformation (i) commutes with
all translations iff it is a distribution (ii) commutes with differentiation iff it is a distribution (iii)
commutes with the algebraic derivative iff it is a multiplier and (iv) is a distribution and commutes with
every dilatation iff it is a number. Because of the latter, it becomes reasonable to define a Laplace
transform in which encompasses (for right-sided distributions) that givenby D. Price. Some results
on inversion in are given and a number of unsettled problems, perhaps amenable to solutions in this
setting, are mentioned.

1. Introduction. In an earlier paper [4], E. Gesztelyi has studied continuous
linear transformations on the field At of Mikusifiski operators [6]. The familiar
examples of such transformations are (see 3) (a) the field elements themselves
(including complex numbers) acting under multiplication, (b) the dilatations (c)
the exponential shifts, (d) the algebraic derivative, and (e) the various combina-
tions of those in (a), (b), (c) or (d). It remains an open question whether there are
any others. Nonetheless, he has given a rather thorough treatment of the
(noncommutative) ring 3- (under addition and composition) of all such transfor-
mations of including the proofs of numerous commutativity theorems and a
generalization of the Laplace transform for operators. Gesztelyi’s definition of
continuity, though nontopological, is a reasonable one in the Mikusifiski operator
case and allows for an interesting and useful representation theorem in 3-
analogous to the spectral theorem of self-adjoint operators in Hilbert space. His
representation theorem is the main tool used in the study of the transformations in
3-.

Because of the uncertainty of the existence of interesting continuous linear
transformations on (other than those listed above) and of the technical
complications accompanying analytical work with the Mikusifiski field, it seems
appropriate to look for a more flexible setting in which numerous linear transfor-
mations in the operational calculus can be studied with relative analytical ease. It
is felt that such a setting is presented in this paper; a setting in which all
(right-sided) distributions and all transformations listed above are included
together with their usual algebraic and analytical properties. Moreover, many
more familiar and not so familiar transformations are included and all are
continuous in a strictly topological sense, which is equivalent to that associated
with distributions. Furthermore, instead of following the traditional procedure of

* Received by the editors June 16, 1975, and in revised form October 29, 1975.
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first introducing operators or distributions, say at one level, and then certain
transformations of them (such as (b), (c), (d) and (e) above) at a second level, in the
setting adopted in this paper, we work at one single level with a ring (under
addition and composition) of continuous linear transformations, called operator
transformations (Definition 1). These transformations act on a familiar space of
test functions cg, with a familiar topology, and include at one and the same time all
the (right-sided) distributions (as convolutors) and the linear transformations
traditionally associated with them and, moreover, other, nontraditional, continu-
ous linear transformathons.

The main tool used here in the study of the operator transformations of is
also a representation theorem (Theorem 1) which is different from Gesztelyi’s, but
is used in much the same fashion as Gesztelyi used his. Our representation
theorem is merely another example of the type of representation theorems
obtained recently by Dolezal [ 1], [2]. The proof for our case is not given since the
arguments used are essentially the same as those used by Dolezal which need only
be modified so as to take into account the fact that we deal here with right-sided
test functions (infinitely differentiable functions with supports bounded on the
left).

We first list some traditional linear transformations, (a), (b), (c), (d), (f); (g) in
3 and then characterize distributions (Theorem 2 and Definition 2) with respect

to our representation theorem in 4. We use the latter to construct and study
some examples of nonstandard operator transformations. This leads to a
"generalized" convolution between certain pairs of elements of which relates
to the traditional approach (mentioned above) of applying linear transformations
from a second level to distributions on a first level. For this purpose, we introduce
a special notation (square brackets) designating the transformations of distribu-
tions, which is reserved for this special situation throughout the remainder of the
paper, In 5 we prove the main commutativity results (Theorems 3, 4, 8, 9 and
Corollaries 1 and 3) for operator transformations which cover the same situations
Geztelyi covered. These include the statements that an operator transformation
F commutes with the algebraic derivative D iff it is a multiplier or commutes with
the differentiation operator s iff it is a distribution. Multiplicative operator
transformations, such as the exponential shifts Tp and the dilatations U, are
introduced in Definition 3 and are shown to form a multiplicative semigroup in .
Moreover, it is found that among the multipliers, only the exponential shifts are
multiplicative. Special commutativity results for distributions include the fact that
only the numerical operators commute with D or with all dilatations U. Also
some analytical concepts in are introduced so that, for example, an analogue
(Theorem 5) of Gesztelyi’s representation (spectral) theorem can be established
and that the differentiation of a one-parameter famil9 of operator transformations
(i.e., an operator transformation-valued function of a real variable) can be
effected. Other analytical topics concern some sequential limits in where it is
shown (Corollary 4) that if lim,_, UnFU1/n L in exists for some distribution
F, then L is a numerical operator transformation and (6) that
lim_,oo U,,T-PFTPU/,, L(p) is an appropriate definition in for the Laplace
transform of F; a definition which for (right-sided) distributions encompasses the
Schwartz-Laplace transform theory as has been developed recently in [7] by D.
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Price. Finally in 7 some results concerning inversion in are obtained. These
include the facts (Theorem 10) that a distribution which corresponds to a bijection
on c is invertible and (Theorem 11) that the commutator equation [D, F] G is
solvable in t for Fwhenever G is a distribution. Mikusifiski operators are used to
invert all right-sided distributions. Numerous unsettled problems are mentioned
at various points throughout the paper.

2. Preliminary considerations. Let denote the vector space of all infinitely
differentiable complex-valued functions on the real line -o<t <=(-, c)
with supports bounded on the left, i.e., right-sided infinitely smooth functions. If, p , then the convolution b. is the function

r(t) &(u)O(t- u) du

and belongs to % Under addition and convolution, becomes a commutative
ring and, according to Titchmarsh’s theorem on convolution [12], it is devoid of
zero divisors.

We shall adopt the usual convergence notion in c, which is that of compact
convergence of all derivatives together with uniformly left bounded supports, so
that becomes the familiar space of test functions for distributions with right
bounded supports [8], [14]. Thus for example, a sequence {bn} of elements of
converges in (as n ) iff for each natural number j and each compact set
K(-, ), the function sequence {bj)} of ordinary jth derivatives converges
uniformly on K and there exists a real number to such that the support of b,, is
contained in the right half-line (to, o) for every n. Clearly, such a sequence
converges to an element of c, and so is complete with respect to this
convergence notion. We remark that convergence in c is topological in the sense
that there is a (locally convex) topology with respect to which convergence in c is
topological convergence, but it is not necessary for our purposes to specify such a
topology.

The above space of distributions with right bounded supports (left-sided
distributions) will be denoted by . If f and if b cg, then we denote by
(f, rk) (f(t), rk(t)) the value of the distribution f for the test function b. Similarly,
the space of distributions with left bounded supports (right-sided distributions)
will be denoted by. If f and if b cg, then f and b may be "convoluted",
and we denote their convolution by f b , where (f b)(-) (fO- t), (t)),
and observe that p . Moreover, the mapping b-p f, b from cg into cg is
continuous (in the sense of convergence in rg) and is linear. An extension of
Titchmarsh’s theorem says that f & 0 iff f 0 or O O. Here and throughout
this paper "0" always denotes the zeros (relative to addition) of the various vector
spaces, rings and fields employed.

3. Operator transformations.
DEFINITION 1. A continuous and linear mapping F: --> (from c6’ into )

will be called an operator transformation and the image , of b under F will be
denoted by F(b) or, with variables indicated, by F(b (t))0-) 009 with t and -real numbers.
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The collection of all such mappings will be denoted by, and under the usual
addition and composition of mappings, becomes a ring. (It will also be
considered a vector space over the complex field.) Composition in 9 will be
denoted by juxtaposition FG, or by F G, and addition in will be denoted, as
usual, by a plus sign, F+ G. In general, composition in is not commutative.

We list below a number of familiar types of operator transformations
together with their (more or less) traditional symbols and names.

(a)

(b)

(c)

(d)

Operator transformation F

numerical

differentiation

integration

translations

dilatations

exponential shifts
algebraic derivative

Distributional representationf(t)

a: (t) -->a(t),
s: (t) ---> ’(t),

h" (t)-> (u) du,

eXS:(t)(t+A),
Uk: (t) ---> kck(kt),

TP: (t)-->ept(t),

D: (t)->-t(),

a6 (- t), (complex a),

’(-t),

H(’-t),

t(" + A t), (real A),

kS(kr-t), (k >0),

em(z t), (complex p),

-zS(z- t),

The linearity and continuity in all of these types.is readily verified. The latter two
cases illustrate a large class of operator transformations called multipliers.

(f) multipliers Ix: (t)->(t)(.t), tz(’) 8(--t).

Here is any infinitely differentiable function including, of course, any member
of or number (numerical operator transformation). Each member of the test
function space also induces an operator transformation through convolution.
More generally, each right-sided distribution f e@ induces an operator transfor-
mation through convolution.

(g) convolutors f: >f * , f(’-t).

A right-sided distribution is uniquely characterized (in @) by the induced
(convolution) mapping. We observe that these latter mappings commute with
convolution in rg, that is,

(1)

holds for all f e, and , p e cC In a slightly different setting [10], 11], these have
been referred to as operator homomorphisms because of this special property.
Thus the ring includes (isomorphic images of) all right-sided distributions,
where composition becomes convolution in ’ The numerical, differentiationR"

integration and translation operator transformations above correspond to dis-
tributions (under convolution) while the dilatations,, exponential shifts, algebraic
derivative and (nonnumerical, i.e., nonconstant) multipliers do not. However,
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there is a sense in which all operator transformations can be expressed in terms of
distributions, and we now consider this important concept.

4. Distributional representations oi operator transformations. With almost
identical arguments as those used in 1], [2] (especially those used in the proofs of
Theorems 1.2 and 1.3 of [1]), one can prove the following.

THEOREM 1. A mapping F: - q is linear and continuous iff there exists a
one-parameter family {f} of left-sided distributions (in ’) such that

(2) F(b(t))(r) (f(t), b (t)),

holds ]’or every qb ( and real z. (Proof omitted).
With this theorem, then, we can conveniently express every operator trans-

formation in terms of left-sided distributions. This is illustrated for each of the
above types where 6(t) and H(t) are, respectively, the Heaviside delta function
and step function. Conversely, with every one-parameter family {f} of left-sided
distributions such that q(z) (f(t), qb(t)) defines a member q % for every 4’ ,
we can obtain an operator transformation F using (2). In particular, if f(t) is a
right-sided distribution in ,, then for each fixed -, f(r-t)= f(t) is a left-sided
distribution and the operator transformation F associated withf through convolu-
tion satisfies F(b(/))(-) (f(-- t), b (t))= (f(t), b (t)) for every b ( and real -.
In general, operator transformations F can be considered to be represented by a
modified type of convolution through (2). Actually, (2) constitutes ordinary
convolution exactly when the mapping F commutes with convolution and f(t)
f(--t) for some right-sided distribution f. In fact, this special property is
expressed more simply as follows.

THEOREM 2. An operator transformation F commutes with all translation
operators exs iff there exists a right-sided distribution [ (in @’R) such that f(t)=
f(r- t) holds for all t and -, where L(t) is defined by (2).

Proof. We need only prove the "only if" part since the translation operators
all commute with convolution. Assume F commutes with all translation operators
eXS. This means that

F(6(t-A))(-) F(b(t))(’- A)

holds for all b c and real t, - and A. Using (2) this, in turn, means that

(f(t), &(t-,))= (f_ (t), b(t))

holds for all b 6 c and t, - and A (for a suitable family {f(t)} of left-sided
distributions). In particular, for A =-, we have

(f(t), b(t-r))= (fo(t), b(t))= (fo(t-r), qb(t-r)),

for all b6c and -. Hence f(t)=fo(t-z)=f(-t), where f(t)=fo(-t) is a
right-sided distribution, and the proof is completed.

We may express this last theorem conveniently by saying F satisfies
eXSF Fe for all real A iff F is defined by a single right-sided distribution through
convolution. It would seem appropriate hereafter to say that such an F is a
distribution, and so to be concise we shall. However, we shall often distinguish
notationally between F considered as an operator transformation and the corre-
sponding distribution f as a linear functional.
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DEFINITION 2. An operator transformation F which satisfies eSF FeAS for
all real A will be called a distribution. It will be identified with the right-sided
distribution f for which F() f holds for all $ , according to Theorem 2.

Using (2) we now construct two examples of nontraditional operator trans-
formations. Let g and have support in (-co,- 1). Then $ implies that
k , where

b(-) (g(t/(1 + z2)), (t))= (g(t), (1 + -2) ((1 +z2)t))
(g(t), r(t)(1 + ’2)((1 + -2)t)),

and o- is infinitely differentiable with o-(t) 1 for < -1/2 and r(t) 0 for t> -1/4.
Indeed, , is clearly infinitely differentiable and (1 + -)(-1/4)->-oo as oo so
that r(t)(1 +’2)((1 +-2)t)=0 for all t provided is sufficiently large. Thus
(-) (g(t), 0)= 0 for all 1’1 sufficiently large and q has, in fact, compact support.
By Theorem 1, the one-parameter family g,(t)= g(t/(1 +.2)) of left-sided dis-
tributions defines an operator transformation J through the representation (2),
i.e., J()(r)=(g(t/(l+-2)), (t)) for all e and real -. For our second
nontraditional example let o- , g e S0[ and f(t) r(’)g(t). Then implies
that e c, where

k(’) (f.(t), (t))= trO’)(g, ),

since (g, ) is simply a complex number and r e % In this case, the corresponding
operator transformation is the mapping GI: -->r(g, )= p for all e . Note
that for a fixed , either 0 or $ has the same support as does r. If the support of

is "sufficiently far to the right", then GI() 0 and the support of $ can be
considered to have "moved off" to +.

As in this last example, operator transformations Finvariably seem to have
the property that the support of F() tends to +c as the support of 4’ tends to
+oo. It is conjectured that this is indeed always the case. In any event, if G is an
operator transformation with this support property, then the mapping F defined
by

(3) (t)(f(-u), G((t+r))(u))=(f(-u), Ge*()(u))=$(r)=F((t))(z),

withf is an operator transformation. Indeed, $ is infinitely differentiable and
the support of (t +-) tends to +oo as -tends to -oo. Thus by the support
property, the support of o-(u) G(ck(t + -))(u) tends to +oo as -tends to -oo. But
the support of f(-u) is bounded on the right and so (-) 0 for all sufficiently
negative and thus , . If G and e commute for all reall -, i.e., G is a
distribution, then

(f(-u), Ge*()(u)) (f(-u), e*G()(u))

(e-f(-u), G()(u))= (f(r- u), G()(u))

(f , G())(’r)= ((f * g) * ())(’r),

where g is the right-sided distribution corresponding to G. Thus (3) gives
F f g, where the latter denotes ordinary convolution in . When G and e
do not commute for all real -, then the operator transformation F defined by (3)
may be considered as a type of "generalized" convolution of an element f of S0
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with an operator transformation G, i.e., F f G. Hence if the above conjecture
is correct, we can extend convolution to all pairs of operator transformations
provided one of them is a distribution.

For the particular nondistributional operator transformations in 3, we
obtain from (3) f Uk =-kU1/k[f], f * T

p =-T-"[f], f * D D[f] and f /z
-/.7.f, where kU/[f(t)]=f(t/k), T-"If(t)]= e-ptf(t), D[f(t)]=-tf(t) and/2(t)
Ix(-t) as distributions. Here the bracket notation designates the transformations
of the distributions indicated. For the above nonstandard operator transforma-
tions, we obtain from (3) (f * J)(t) (-f(-u), g(-t/(1 + u2))) and f G (j, tr)
as distributions. It is rather interesting to observe that all of these generalized
convolutions result in distributions and that the first four amount to symbolic
extensions of the corresponding mappings from functions to distributions in the
traditional manner. Moreover, if f and g are both right-sided distributions and if F
is an operator transformation with the above support property, then the compo-
site mapping g (f F), which is the product in of g and f F, turns out to be
the same as the iterated generalized convolutions g.(f.F). Indeed,
(go (f. F))(&)(r) (g(r- v), (f(-u), F(&(t +v))(u)))=(g(-v), (f(-u),
F(O(t+v+r))(u)))=(g* (f*F))(b)(r). This further suggests that the
generalized convolution f F always results in a distribution.

We note in passing that if f e and if f corresponds to the operator
transformation F, then the three distributions D[f], TP[f] and Uk[f] correspond
to the operator transformations DF-FD, TPFT-p and UkFU1/k, respectively.
These expressions are readily verified by applying the bracket distributions as
convolutors. Also it is easily verified that UkTp TPUk, UkD kDUk, UkUl
Ukt, TPTq Tp+q, kUks SUk and Ds 1 + sD.

5. Commutativity properties. According to Definition 2, all operator trans-
formations which are distributions commute with all translation operators. Of
course, all distributions commute with all other distributions and all multipliers
commute with all other multipliers.

Perhaps the most significant commutativity properties of operator transfor-
mations are given in the following two theorems.

THEOREM 3. An operator transformation F commutes with the algebraic
derivative D, i.e., DF FD iffF is a multiplier Ix.

Proof. Clearly, if F is a multiplier Ix, then F commutes with D. On the other
hand, if F commutes with D, then F(-tch(t))(r) -rF(qb(t))(r) holds for every b, t
and r. Let fl(t) be defined by (2) for this F, and then

(f(t),-tqb(t)) =-r(f(t), &(t)),

or, what is the same,

(tf(t), b(t))= (rf(t), qb(t))

holds for every b, and r. Thus for a fixed r, (t-r)f(t)= 0 in ,, which implies
[14] that fl(t)=Ix(r)8(r-t) for some number Ix(r). Hence F(b(t))(r)=
(Ix(z) 8(r-t), .b(t))=ix(r)b(r) holds for every & and r. Clearly, Ix must be
infinitely ditterentiable, since p(r) Ix (r)b(r) is so for every b e , and thus F is
the multiplier Ix, which completes the proof.
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THEOREM 4. An operator transformation Fcommutes with the differentiation
operator s, i.e., sF Fs iffF is a distribution.

Before giving the proof of this theorem it is convenient to introduce some
analytical concepts in . For example, if we have a one-parameter family
{F } F of operator transformations, then any limits, continuity or differentiabil-
ity or integrability properties of this family with respect to , will be understood in
the usual weak sense; i.e., for every 4 , F, (b) is to possess the corresponding
analytical property where, of course, convergence always means in g. With this
understanding it is easy to verify that most of the standard theorems of elementary
calculus hold for -valued functions of a real variable ,.

Proofof Theorem 4. The one-parameter family of translations e is differen-
tiable with respect to h and satisfies deW’IdA seal Now suppose an operator
transformation F commutes with s and let Gx -e-Fe. Then Gx is differenti-
able with respect to h and satisfies dGffdh =-se-Fe + e-XFsea 0, since s,
e -x and s, F commute with each other. This implies that Gx is, in fact, indepen-
dent of A; i.e., there exists a fixed operator transformation G such that G-
e-XFe holds for all A. For h 0, this implies that necessarily G F and so F
commutes with all translation operators and is, therefore by Definition 2, a
distribution. This completes the proof of Theorem 4.

In [4] Gesztelyi obtained an integral representation of Mikusifiski operator
transformations reminiscent of the spectral representation for self-adjoint
operators in Hilbert space. The following theorem gives the counterpart in of
Gesztelyi’s representation theorem.

THEOREM 5. For any F and qb qff we have

(4) F ch qb(A)Fe- dA,

where F qb Fck is the product (composition) in of F and qb, with the latter
interpreted as a convolutor.

Proof. As a convolutor, b satisfies b(t)=I_oo b(h)e -xs dA, since for any
e we have
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for all t. This is essentially Mikusifiski’s formula [6]. Thus (by the continuity of F)

f 4’ F 4’ (A) e-’ dA

dX,

which proves the theorem.
Since the collection 4 * cg ={4 * P: g cg} is dense in cg [3] if 4 0, the

mappingF b in (4) completely characterizes F as an operator transformation (on
) provided only that b 0. Gesztelyi found the representation (4) very useful in
studying Mikusifiski operator transformations; however, in it seems to be
mainly a notational device and the representation (2) is the one of primary
importance.

We now introduce a further algebraic concept in .
DEFINITION 3. An operator transformation F is said to be multiplicative if

(5) F(b )= F(b) F(q)

holds for every 4 and q in %
If F and G are multiplicative, then their product FG satisfies

FG(ck * p) F(G(ck) * G())= F(G(cp)) F(G()) FG(ck) FG(p)

for all b and p of cg, and thus is also multiplicative. This establishes the following
theorem.

THEOREM 6. The subcollection * of all multiplicative operator transforma-
tions form a multiplicative semigroup in .

The principal types of multiplicative operator transformations are the dilata-
tions Uk and the exponential shifts Tp. It is unknown whether or not the group
generated by these two types constitute all of *-{0} in this, or in the Mikusifiski
setting [13]. The next theorem tells us that the exponential shifts are the only
(nonzero) multipliers in which are multiplicative operator transformations.

THEOREM 7. Iftx is a (nonzero) multiplier in and is a multiplicative operator
transformation, then tz Tp for some complex number p.

Proof. If/z is multiplicative, then/z (b p) (/zth) * (/xp) holds for all b and
of . Let {ft,} be a delta function sequence [5] in c; i.e., p, c and ft, 6 as

no in . Then for any b % we have

/x (tb * ’n) (/zb) * (/z,,,) for all n,

while/z (b ,,,)./zb and (/xb) (/zq,,,)/zb/x (0) as n -. Hence/z(O) 1 since
gis not identically zero. Now if in the above argument we translate each 4’, by a
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fixed amount -, then we conclude that

tz(t)dp(t +’)= tz(t +r)(t + -)/z (--)

holds for all 05, t and r. Thus /x satisfies the functional equation z(t)=
/z(t + -)/x(-r); i.e.,/z(t +r)= I(t)lz(r) for all and -. The only nonzero continu-
ous (infinitely differentiable) solutions of this functional equation are the
exponential functions. Hence there exists a complex number p such that/z (t) ept

holds for all t; i.e.,/z Tp, and the proof is complete.
In view of Theorem 3, we have immediately the following corollary.
COROLLARY 1. If F is a multiplicative operator transformation and ifFD

DF, then there exists a complex number p such that F Tp.
By similar arguments, we can show that if F is multiplicative and satisfies

FD kDF for some positive k, then there exists a complex number p such that
F=UkTp.

Next we consider a special result for distributions.
THZOREM 8. IfF f is a distribution and ifFD DF, then F is a numerical

operator transformation.
Proof. For every 4 e , we have

FD(qb) DF(c)= D(f qb)= (D[f]) 4) +f * D(b)

(D[f]) b + FD(qb) (since D acts as a derivation),

and so (D[f]) b 0 for every 4 6 . This implies that (D[f])(t) --tf(t) 0 in
so that f(t)= a6(t) for some complex number a. Hence F is the numerical

operator "a" and this proves the theorem.
Again in view of Theorem 3, we have immediately the following corollary.
COROLLARY 2. Numerical operator transformations are the only multipliers

which are distributions.
This may be seen directly also by noting that if/x(-)b(-) (f(t), b(--t))

holds for all b, t and -, then/z(- + 0)b (- + 0) (f(t), c(- + 0 t)) I()qb(" + O)
holds for all b, t, - and 0, so that/z(- + 0) =/z(r) holds for all - and 0.

Another special result for distributions is the following.
THEOREM 9. IfF f is a distribution and if UkF FU holds for all positive

numbers k, then F is a numerical operator transformation.
Proof. For every b and k, we have U,F(cb)= U(f qb)= U[f] Uk(qb)

(since Uk is multiplicative), while FUk(qb) =f U,(qb). Hence U[f] =f for every
k. In [7] it is shown that if U,[f]=f for every k, then necessarily f(t)=
clp.v.(1/t)+c26(t) for suitable constants cl and c2. Since p.v. (i/t) is not a
right-sided distribution, it must be that c2 0 and so f(t)= c2 6(t). Thus F is the
numerical operator transformation "c2", and this proves the theorem.

By using the multiplicative property of the dilatations, i.e., U UUI, we
can prove the following two corollaries.

COROLLARY 3. If F=f is a distribution and if UnF= FUn holds for n
1, 2, , then F is a numerical operator transformation.

Proof. For any natural number m, we have F Ua/,,U,,F U/,,FU,,, so that
FUa/,, U1/,,F. Hence for any positive rational number r=n/m, we have
U U/,,UnF UI/,,FUn FU/,,Un FUr. Clearly then UF FUk holds
for all positive real numbers k and the result follows directly from Theorem 9.



268 RAIMOND A. STRUBLE

COROLLARY 4. IfF f is a distribution and if lim,,_,oo UnFU1/n L exists in, (or, equivalently if lim,,_,o U,[f] exists in ’), then the limitL is a numerical
operator transformation (or, equivalently is a multiple of 6).

Proof. It is easy to show that if the limit L exists, then UmL LU,, holds for
m 1, 2,. , and the result then follows from Corollary 3.

In connection with Theorem 9, it would be of interest to give examples of
nondistributional operator transformations which commute with all dilatations.
Such an F must satisfy F(ck(t))(kr) F(ck(kt))(r) for all b c, real z and k > 0. If
r>0 and k= l/r, then F(ck(t))(1)=F(ck(t/r))(r), where the mapping 4(t)-
F(4(t))(1) defines a left-sided distribution, say f. Then F(4(t/’))(’)= (f(t),
holds for all b c and z >0, or what is the same, F(4(t))(r)=(f(t), ck(rt)) holds
for all b c and - > 0. If this holds also for z =< 0 as well, then it is necessary forf(t)
to vanish for =<0, since ,(z)= ([(t), ck(rt)) must be right-sided for each right-
sided b. Thusf must have compact support in the open half-line t > 0. Conversely,
if f is such a distribution, then the mapping 4 -(f(t), ck(rt)) defines an operator
transformation F which satisfies UF FU for all k > 0, as is readily verified.
Note that such an F is represented (according to Theorem 1) by the family of
distributions U/[f] (1/z)f(t/z) for - 0 and (f, 1) B(t) for - 0. In particular,
if f(t) al+ (])(t l) for > 0, then F aUDs, and Theorem 9 corresponds to
the case 1, /"-0. Using other distributions with compact support in the
half-line t > 0, we obtain interesting examples of nonstandard operator transfor-
mations in this fashion.

6. Laplace transforms. Corollary 4 is the basis for a development of the
Schwartz-Laplace transform theory for (not necessarily right-sided) distributions
in [7]. In [4] an analogous development of a Laplace transform theory for
Mikusifiski operators has been given. Both of these developments hinge mainly on
the facts that for any complex number p, if a limit like lim,_,oo UnT-PFTPU1/n
L(p) exists, then L(p) is necessarily a number (numerical operator) and that if F is
a function f with a Laplace transform, then UnT-Pb-TPU1/n UnT-P[f]
ne-P"tf(nt) formally passes over to the Laplace transform of f as n - o% i.e.,

lim (ne-Pf(nt), 4(z- t)} lim ne-’f(nt)d(r t) dt

lim e-P"f(u) r- du

e-eT(u) du 4(r)= L(p)4(r)

(p(

for any test function 4 and real z. Thus the Laplace transform L(p) of F is defined
more generally here as lim_,o UnT-PFTPU/n L(p) if this limit exists in
(equivalently for distributions, as L(p)=(1/4(O))lim,_,o(UT-’[f], 4} with
4(0) 0 if this limit exists in ). Under this definition, the relevant (rather
complete) results in [7] carry over immediately to the distributions in (which, of
course, here, are right-sided). In particular, if f is a right-sided distribution whose
Laplace transform L(p) exists for Re (p) > c, in the sense defined by Schwartz [8],
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then L(p) is an analytic function for Re (p) > c and is also given by the above limit
for Re (p) > c. This is easily verified directly for each of the distributions (a) listed
in 3. All of the Laplace transform theory or right-sided distributions can be
developed directly from this limit definition.

On the other hand, with one exceptional case, the limit does not exist for any
of the nondistributional operator transformations encountered in this paper. The
exceptional case occurs for those F which commute with all Uk and for p 0,
where then UnT-PFTPU1/n F holds for all n, so that the limit is just F.

7. Inversion in and in t. It is easy to see that (a) the nonzero numerical
operators, the differentiation, integration and translation operators, (b) the
dilatations, (c) the exponential shifts and more generally, (f) the nonvanishing
multipliers are all invertible in the ring t. Of course, as in any ring, the collection

of invertible elements of form a multiplicative subgroup of so that the
products of any of the above are also invertible in t. We shall now show that
contains all of the distributions of t which are bijections on , such as those
illustrated in (a) above.

THEOREM 10. If F is a distribution and is a bijection on c, then F has an
inverse F-1 in which is also a distribution:

Proof. Clearly, since F is a bijection on c, the algebraic inverse F-1 of F
exists. Moreover, since F is a distribution, it commutes with convolution on c (see
(1)) and since it is a bijection on c, then its inverse F-1 also commutes with
convolution on c. Hence F-1 is an operator homomorphism [10] and thus
corresponds to a distribution, which completes the proof.

The elementary type of example G1 in 4, where Gl(q)--tr(g, b), permits us
to construct linear mappings on c which are not continuous, for we need only
select a linear functional g on c which is not continuous. It would be of
considerable interest to know if there are linear bijections on c which are not
continuous since otherwise Theorem 10 could be extended from distributions to
all of .

According to Theorem 3, if an operator transformation is not a rnultiplier,
then the commutator [D, F] DF-FD O. For distributions F f, this becomes
D[f] 0 and suggests the following result.

THEOREM 11. The commutator equation [D, F] DF-FD 1 has the solu-
tion F s in , which is unique to within an arbitrary (additive) multiplier. More
generally, for any distribution G, the commutator equation [D, F]= G has a
(distributional) solution in , which is unique to within an arbitrary multiplier.

Proof. It is readily verified that the differentiation operator s satisfies Ds-
sD- 1 in . More generally, it is well known [9] that for any distribution g, the
divisor problem Dill(t)= -tf(t)= g(t) has a distributional solution f(t)= -g(t)/t
(actually, unique to within an arbitrary multiple of 6). If g has left bounded
support, then so does f, and thus f corresponds to a solution F of [D, F] G,
where g corresponds to G. The difference of any two solutions of [D, F] G
commutes with D and, hence by Theorem 3, is a multiplier. This completes the
proof.

There is a sense in which all right-sided distributions are invertible, namely,
as Mikusifiski operators [5]. In the present context, a Mikusifiski operator
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(M-operator) x is merely a linear mapping in c which commutes with convolu-
tion, but may have .for its domain only a proper ideal J of the ring cC That is,
x:J-C satisfies x(ac+bd/)=ax(d)+bx() and x(b*tr)=x(b)*tr for all
oh, J, tr c and complex a, b. Because the ring has no zero divisors, any such
x can be uniquely extended to a maximal one and is uniquely determined by.any
restriction of itself to a nonzero ideal of c. The right-sided distributions then are
simply those M-operators which have extensions to all of c and turn out to be
precisely the continuous M-operators. Two M-operators x and y are added x + y
and composed (multiplied) xy as mappings on suitably small nonzero ideals, and it
is not difficult to show [5] that the collection of all M-operators under this type
of addition and composition becomes a field. This field is isomorphic to the one
originally defined by Mikusifiski [6]. The inverse 1Ix in of an M-operator x
becomes simply the inverse mapping so that, in particular, every right-sided
distribution is invertible in, and its inverse there is the usual inverse mapping,

Mikusifiski’s definition of convergence in is of a very weak variety and, in
this context, becomes pointwise convergence of functions at a single (nonzero)
point. For example, an ///-valued function {xx } xx of a real variable A is said to be
continuous if for some nonzero 4 in (, the mapping A -xx (b) from say, some
subset of real numbers into c is continuous in the standard topological sense. Of
course, this requires that b belong to the domain of the operator xx for each A
considered. Gesztelyi’s requirement of continuity for a linear transformation Fon

is essentially that every such -valued continuous function xx be mapped by F
to another one, y F(xx).
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ANALYTIC PROPERTIES OF GENERALIZED
COMPLETELY CONVEX FUNCTIONS*

J. K. SHAWf

Abstract. The analytic character of real functions f in C[a, b] which satisfy a certain positivity
condition is studied. The condition is of the form Lkf(x) >= 0, a _--< x <_-- b, k 0, 1, 2, , where L is a
Sturm-Liouville operator and Lk is its kth iterate. It is shown, for a special class of operators, that a
function with this property is necessarily the restriction to [a, b] of an analytic function in some
complex neighborhood of [a, b]. The proof is based on a series representation associated with
Sturm-Liouville boundary value problems.

1. Introduction. This paper is concerned with the analytic character of real
infinitely differentiable functions which satisfy certain "positivity" properties. We
shall investigate a type of condition, involving successive iterates of a linear
differential operator, under which a real function f of class C[a, b] is necessarily
the restriction to [a, b] of a complex function analytic in some complex neighbor-
hood of the interval [a, b].

The most familiar result in this direction is the well-known theorem of D. V.
Widder [5] which asserts that a function f Coo[0, 1] having the property

(1.1) (-1)f()(x) _-> 0, 0-<x=<l, k=0, 1,2,...,

is necessarily the restriction to [0, 1] of an entire function, that is, a function
analytic in the whole complex plane. Functions satisfying (1.1), the simplest being
sin zrx, were termed completely convex by Widder. For a discussion of these and
related classes of analytic functions, we refer the reader to the survey article on
this subject by R. P. Boas [1].

The positivity condition we shall study was introduced by this author and
J. D. Buckholtz [2] in a recent paper on a generalization of completely convex
functions. Let L be the Sturm-Liouville operator given by

(*) Ly -(Py’)’ + Qy,

where P is a positive, continuously differentiable function on the interval [a, b l,
and where O is a real continuous function on [a, b]. Let

Bay=cey(a)+a’y’(a), Bby=fly(b)+fl’y’(b)

be linearly independent boundary forms such that the eigenvalue problem

(1.2) Ly Ay, B,,y Bby 0

is self-adjoint. We say that a function f Coo[a, b] is LB-positive if

(1.3a) (L kf)(X) >--__ O, a <-- x .<--_ b, k O, 1, 2,...,
and

(1.3b) B,Lkf>-O, BbLkf>=O, k =0, 1, 2,...,

* Received by the editors September 4, 1975, and in revised form January 29, 1976.

" Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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where Lk is the kth iterate of L. These are generalized completely convex
functions in that (1.3) reduces to (1.1) in case Ly -y", Boy y(0) and Bay
y(1). Similarly, for the system Ly=-y", Boy -y’(0) and Bay =y(1), the
LB-positive functions coincide with a subclass of completely convex functions
studied by S. Pethe and A. Sharma [4].

The object of the present paper is to prove, for suitably restricted operators
L, that LB-positive functions are analytic. Our results applied to the system
Ly -y", Boy y(0), Bay y(1) yield Widder’s theorem as a special case. In
general, though, the region of analyticity will vary with the operator L.

2. Hypotheses and statements of results. The methods we use presently are
based on certain representation theorems in [2]. Thus, the hypotheses required in
[2] must also be required here. We shall suppose that the eigenvalues of (1.2) are
all positive, andhat the signs on the constants in Ba and B0 are normalized so that

and

a’--<O, and if a’=O thena>O,

fl’_->O, and if /T=O thenfl>O.

This normalization either holds or can be brought about, without affecting the
eigenvalues or eigenfunctions of (1.2), by multiplying one or both of the equations
Bay 0 and Boy 0 by 1. These hypotheses imply (see [2]) that solutions of the
homogeneous equation Ly 0 are nonnegative in [a, b] if By >= 0 and Boy => 0,
and either Bay >0 or Boy >0. Thus we are assured that such functions are
LB-positive.

Finally, it is clear that we must make some assumption concerning analyticity
of the coefficient functions P and O of the operator L, as otherwise the solutions of
Ly 0 would in general fail to be analytic. Our last hypothesis, then, is that P(x)
and O(x) are restrictions to [a, b] of functions which are defined and analytic in
some complex neighborhood of [a, b]. We denote the extensions of P(x) and O(x)
by P(z) and O(z), respectively, and follow this same notational convention
throughout when referring to analytic continuations of real functions.

Now let 12 be a simply connected region of the complex plane which contains
the interval [a, b], and in which P(z) and O(z) are analytic and P(z) O. Then we
have the following basic result [3].

THEOREM A. Let q(z), P(z) and O(z) be analytic in a simply connected
region f containing [a, b ], tz a complex number, and L defined by (*). Then every
solution of

Ly ty +

on [a, b] is continuable analytically throughout fl.
Our principal result is
THEOREM 1. Let L and 1) be defined as in Theorem A, and let f be

LB-positive. Thenf is analytic in 1 that is, f is the restriction ofa complexfunction
analytic in 1).

Once 1) has been established, then analytic continuations into fl are unique
by simple connectivity. Thus multiple-valued functions are avoided. However,
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there may not be an optimal, or "largest possible," simply connected fl. To
illustrate the theorem, let us consider the functions x
where u ranges over the real numbers. Let Loy =-(x2y’)’, Bay=y(a) and
Bby y(b). One easily verifies that Lo(x) -(u2 + u)x, and therefore L(x)
(--1)k(l2+l)kxv, k=0,1,2,-... Hence x is LoB-positive if u+u<_-0. If
2u 4-, >0 we consider instead the operator Ly --(xEy’)’+ 2(p2+ p)y, and the

same boundary forms. We have L(x) (,+u)x, and therefore L(xk)=
(,+ u)kx, k 0, 1, 2, . Then x is LJ3-positive if /2

2 +/ 0.
Consequently, each of the functions x, -c< u < c, is LB-positive for an

appropriate choice of L. For either L0 or L, the region 1 may be taken as the
complex plane with a ray from z 0 removed. The theorem concludes, as
expected, that x extends to the complex function z having the ray as its
(possible) branch line.

To prove Theorem 1, we shall actually establish a much stronger result having
to do with series representation of LB-positive functions. The series, termed an
LB-series in [2], has the form

(2.1) f(x) Y {(BbLkf)p.k(X)+(B,,Lkf)PEk+l(X)},
k=0

where the functions {Pk} are defined recursively by

Lpo= Lp O,

Bapo O, Bbpo 1,
(2.2)

Bap 1, BbPl O,

Lp,,, P,,,-2, B,,p,,, Bbp,,, 0, m 2, 3, 4, .
It can be shown [2] that each pk(X) is nonnegative in [a, b], and is therefore
LB-positive. Moreover, a simple induction argument based on Theorem A shows
that Pk (X) extends to an analytic function Pk (Z), Z ’, k O, 1, 2,. .

The series representation we shall employ (Theorem 1 of [2]) may be stated
as follows" if [ is LB-positive, then ]" admits on [a, b] the uniformly convergent
representation

(2.3) f(x) Cy0(x)+ {(BbLkf)PEk(X)+(BaLkf)P2k+I(X)},
k=0

where C is a nonnegative constant dependent on [, and where Y0 is a nonnegative
eigenfunction corresponding to the smallest eigenvalue A0 of (1.2).

In connection with LB-series, we prove the following.
THEOREM 2. Let l) be defined as in Theorem A. Suppose thatfor a sequence of

nonnegative numbers {hk} the series

(2.4) S(x)= Y, {h2kP2k(X)+h2k+lP2k+l(X)}
k=0

converges in [a, b]. Then the complex series

S(Z)- Y’. {h2kP2k(Z)+h2k+lP2k+l(Z)}
k=O
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converges absolutely for all z 12, and uniformly on compact subsets of fl. Thus
S(z) is analytic in

Assuming for the moment that this result is true, consider its application to
the representation (2.3). The LB-series in (2.3) is continuable to an analytic
function in II by Theorem 2. The eigenfunction Yo, which satisfies Ly0 AoYo on
[a, b], also extends to an analytic function yo(z), z 1, by Theorem A. Conse-
quently, the function

f(z) Cyo(z) + Y {(BbLkf)P2k (Z) + (B,,Lkf)p2,+(Z)},
k=O

is analytic in II, and this proves Theorem 1.
Thus there remains only to prove Theorem 2. For this we shall need a few

basic properties of LB-series from [2]. These are listed in the following section.

3. Preliminaries. The following result (Theorem 3.2 of [2]) shows that
coefficients in LB-series are uniquely determined and satisfy a summability
condition.

THEOREM B. Let {hk} be a real or complex sequence and suppose that the
series

(3.1) S(x) hkPk(X)
k=0

converges in [a, b]. Then (3.1) converges uniformly in In, b], and

(LnS)(x hkPk-2n (X
k =2n

for a <-x <--b and n O, 1, 2,. . Moreover

BaL"S h2+1, BbLS h2n, n O, 1, 2,. ,
and the series k=O ak, where

a.k =(Po, Yo)-okk, tX2k+l (pl, yo)h k=O, 1 2,’"

is convergent.
Remark 1. The symbol (u, v) is the usual innerproduct (u, v) b u(t)v(t) dt.

Since Po, P,. and Yo are nonnegative, we have (Po, Yo) > 0 and (p,, Y0) > 0.
Remark 2. The statement of Theorem B in I-2] is for real sequences {hk }, but

the proof remains valid even if the hk are complex.
Remark 3. If the hk are nonnegative, then (3.1) converges absolutely. In

particular, the terms in the series can be grouped as in (2.4) without affecting the
sum.

We denote the eigenvalues of (1.2) by {Ak}, with 0 < A0 <,1 <’’’- These
are simple eigenvalues so that we may associate with each Ak a single eigenfunc-
tion Yk, Lyk AkYk, BaYk BbYk O, normalized so that Ilyll- .

The functions Pk have eigenfunction expansions

(3.2) pak+(X) A-k(p, y,)yn(x), ]= 1, 2,
rt=O
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which converge uniformly in [a, b] for k 1, 2, 3,. . Taking the terms corre-
sponding to n 0 to the left side of (3.2), multiplying by A ok, and using some simple
inequalities, one obtains

lim Ap2k+j(x)= (pj, Yo)Yo(X), j 1, 2,

with uniform convergence in [a, b]. Thus we can find constants M0 and M1 such
that

0 P2k (X) M0X
(3.3)

0 <= Pzk + 1(X MI, k,
for a_-<x_-<b and k =0, 1, 2,. .

Finally, we require corresponding asymptotic estimates on the sequence of
analytic functions {qk } defined by

qEk+i(Z) PEk+i(Z)--Ak(Pi, Y0)Yo(Z), Z 6

Starting from the eigenfunction expansion

(2k+j(X)’-" A-k(pj, Y,)Y,(X), a <-x <-b,
n=l

and proceeding as before, we find

lim A kq92k+(X)=(p, y,)yl(X), j 1, 2,

with uniform convergence in [a, b]. Thus we are led to the bounds

(3.4)

for a _-< x =< b, k 0, 1, 2, , and for suitable constants M and M.
4. Proof of Theorem 2. Our proof Will be based on extending the bounds

(3.3) over into the complex domain 12. We start by defining the generating
functions

(4.1) K(x, w) P2k+j(X)W2k+ ]= 1 2
k=0

Using (3.3), we have for complex w

(4.2) , Ip=,+(x)w2+l-- AoP:zk+j(x)
k =0 k =0

W
2

Iwl  M lwl
k=0

forf 1, 2 and all x. Therefore, series (4.1) converges absolutely and uniformly on
closed subsets of the comple__x disc Iwl<4 o for each fixed x, a<-x<-b. Then
K.(x, w) is analytic in Iwl < 4; o, as a function of w, for each fixed x.



276 J.K. SHAW

Now for fixed w, Iwl <o, (4.1) is an LB-series in x on [a, b]. Applying
+, one hasTheorem B with h2k/i wZk

LKj(x, w) E P2(k-1)+jW2k+i
k=l

=w E p(_+(x)w
k=l

2(k-1)+j

=w E p+(x)w+
k=O

w2K(x w)

that is,

l,:,. x, w)= w l’;,. x, w

By Theorem A, then, K.(x, w) is continuable to an analytic function K.(z, w),
z l), for fixed Iw] < 4o.

Hence Kl(Z, w) and K2(z, w)are analytic in the complex variables z and w
separately, for z l and Iwl < v/-o.

Now consider the auxiliary generating functions

/, j= 1,2.(4.3) I(x, W)= E q92k+](X)W2k
k=O

Using (3.4) and proceeding as in (4.2), one sees that for fixed x, (4.3) co0__nverges
absolutely andA uniformly on closed subsets of the larger disc Iwi <,/, Then
Kl(x, w) and K2(x, w) are analytic there for fixed x.

Now suppose wl <4o and write (4.1)in the form

/,;,.(x, w)= E p+(x)w
k=O

2k +j

(4.4)

where

y {qgZk+i(X)+A’(Pi, yo)Yo(X)}W2k+i
k=O

=(p/, yo)Yo(X)W kEO= + KI.(X w)

Aowy=(p, yo)YotX)Ao, w,- + I(x, w)

V(x, w)+ R,.(x, w),

Y(x, w).=(pi, yo)Yo(X
ho- w2’ j= 1,2.
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Note that

awLY.(x, w) (pj, yo)yo(x) 2,o-W
owj

,oWi(Pi, yo)Yo(X) + w2(pl, yo)Yo(X)&o w2

AoW (p, yo)Yo(X) + w2 .(x, w).

en applying the operator L to (x, w) in (4.4) yields

Lgi(x, w)= L.(x, w)-L.(x, w)

w(x, w)- w U(x, w)-aow(p, yo)yo(x),

and so
2(4.5) Lg(x, w)= w N(x, w)-aoW(p, y0)yo(X).

Now this equation, as does (4.4), holds for a Nx N b and Iwl<, But ,(x, w)is
analytic in the larger disc w<. Therefore, each side of (4.5) is analytic
in w]. Since the separate sides agree on wl<, they must agree on
[wl <#A bthe identity theorem. This shows that (4.5) is valid for a N x N b
and wl <a. By Theorem A, .(x, w) extends to a analytic function (z, w),
z cO, and it therefore follows that Ka(z, w) and K(z, w) are analytic in the
variables z and w separately for z e and lwl <.

LEMMA 1. If Z , then

klim AoPzk+i(z)=(pi, Yo)Yo(Z), j 1, 2.
kc

Furthermore, the convergence is uniform on compact subsets of f.
Proof. By uniqueness of the Taylor series coefficients in (4.3), we have for

each k,

a I ,,x: W)dw(4.6) q2k+(X)=-_wl=R w2k++a
for a x b, j 1, 2, and where R may be chosen to satisfy Ao <R2< A1. e
separate sides of (4.6) extend to analytic functions in which agree on [a, b]. us

,(Z, W) dw(4.7) 2k+i(Z)
_I=R w2k+i+l

for z e and ] 1, 2. For each compact subset A, let re(A) denote the
maximum of [.(z, w)[ for z e A and Iwl R. en by (4.7),

m(A)
12+(z)l R2, z A,

and so

0q92k+](Z) R
z6A.
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Recalling the definition of (2k+j(Z), we now have

m(A)[Ao] k

IAP2k+i(z)--(Pj, Yo)Yo(Z)[ <- Ri \-] z 6A.

Noting that the right side of this inequality is independent of z, and that A0 <R 2,
we obtain the desired result by letting k o.

The following is a trivial consequence of Lemma 1.
LEMMA 2. For each compact subsetA c f, there exists a constantM(A such

that

oP2k+j(Z)l<--M(A)

forzA,k=O, 1,2,..., andj=l,2.
We now proceed with the proof of Theorem 2. We are given a sequence {hk}

of nonnegative numbers such that the series

S(x) , {h2kP2k(X)+ h2k+lP2k+l(X)}
k=0

converges everywhere in [a, b]. By Theorem B and the remarks following it, the
series

h2k+h2k+l
k=0 A0k

is convergent. Now let A be a compact subset of fl and consider the series

(4.8) S(z)= {h.kPk(Z)+hk+lP2k+l(Z)}
k=0

for z A. By Lemma 2,

Y. (IhekP2k (Z)] + ]h2k +lP2k +1(Z
k=0

kEO= IX oP2k (Z)[ +

h2k + h2k+<=M(A) Z
k=0 A0

Therefore, series (4.8) converges absolutely and uniformly on A, and this com-
pletes the proof.
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ON AN ISOPERIMETRIC INEQUALITY FOR THE FIRST
EIGENVALUE OF A BOUNDARY VALUE PROBLEM*

MIRIAM BAREKETf

Abstract. Let D be a two-dimensional simply connected bounded domain whose boundary OD
consists of a finite number of regular arcs. This paper suggests that for all such domainsD of the same
area A, the circle yields the maximum value for the first eigenvalue A of the problem:

Au +hu O inD,

Ou
Zu on OD.

On

Here O/On denotes differentiation with respect to the exterior normal toD andZ is a positive constant.
This isoperimetric property of A is proved for any Z>0 under certain assumptions on the

circumference, and the local extremum property is shown for certain values of the parameter.

1. Introduction. It was first conjectured by Lord Rayleigh [13] that of all
fixed membranes of a given area, the circle yields the lowest fundamental tone;
that is: "For all domainsD of the same area A the circle yields the minimum value
for the first eigenvalue A of

Au+Au=0 inD,

u 0 on OD."

This conjecture was formally proved by Faber [7] and Krahn [10], and later a
different proof was given by P61ya and Szeg6 [12]. In [14] Szeg6 proved an
isoperimetric property for the first nonzero eigenvalue/z2 of the free membrane
problem"

Au+tzu=0 inD

Ou
=0 on OD.
On

Here it is assumed that the boundary OD is an analytic curve and it is proved that"
"For all domains D of a given area A (D) the circle yields the maximum value of
/z2." In the case of

Au+Au=0 inD
(1) OU=zu on 0D, Z>0,

0n

the first eigenvalue A is always negative, since the Rayleigh quotient related to (1)
is

(2) O(u, D)
j’o (Vu)2 &r-Z oo u2 ds

IIo u
* Received by the editors February 13, 1975, and in revised form October 1, 1975.

" Tel-Aviv University, Israel, and Department of Mathematics, University of Maryland, College
Park, Maryland 20742.
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and h minu Q(u, D), where the minimum is sought over all functions u that are
continuous and have piecewise continuous first derivatives in D. Setting u const.
in (2), we get

(3) Z oD ds L(D
AI <-- D&r=--ZA(D) <O,

where L(D) and A (D) denote the circumference and the area of D respectively.
Inequality (3) also furnishes an upper bound for A1, and by the fundamental
isoperimetric property of the circle, for all domains D of the same area A, the
circle yields the maximum upper bound of the form -ZL(D)/(A (D)). This, and
other supporting arguments lead to the conjecture that" "For all domains D of a
given areaA (D) the circle yields the maximum value of h of 1)." This conjecture
is the subject of this paper.

It is worth mentioning that although problems similar to (1) are usually
connected with membranes, (1) is not. It appears in acoustics in connection with
propagation of waves through elastic cylinders [11].

2. The main theorem. In the proofs given in this section, we shall use the
following bound for A for a circular domain R of radius a"

2Z(4) Z2 ._Z_ x2 Z2--,
a a

where x2= -h I(R). Inequality (4) was derived in [4] using Barta’s method [5]..
Since the function used for obtaining (4) is not a solution of (1), the equality signs
in (4) do not hold for any finiteZ except for the case Z 0, for which A (R) 0.

LEMMA. Let A I(D) be the first eigenvalue of (1) ]:or a domain D of area A
and circumference L(D), and letA (R be the first eigenvalue of (1) for a circle R of
radius a with the same area A. ffL(D)/(2ra)>= 1 +Za/2, then AI(D)_-<AI(R).

Proof. From (4), we have -Z2- 2Z/a -< h I(R). Since (3) holds for any domain
D, then as long as -ZL(D)/A <--Z2- 2Z/a holds, (which is equivalent to the
condition of the lemma), we have h (D) -< A I(R).

Remark. The larger L(D) gets and the smaller Z is, the larger is the family of
domains for which the lemma holds.

In the proof we used the inequality (3). In case of several star-shaped
domains, better upper bounds for A (D) can be found [3], and the condition of the
lemma can be weakened. WhenD is a circle or a rectangle, we can find solutions to
(1) by separation of variables. The first eigenfunction for the circle R of radius a is
given by

(5) u(R) Aolo(xr) (x 2 --I (R )),

where A0 is a constant and x is determined by solving the transcendental equation

I(xa) Z
(6)

Io(xa) x

Io and I1 are the hyperbolic Bessel functions of order 0 and 1, respectively. The
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first eigenfunction for a rectangle D’ of sides 2a and 2b is given by

uI(D’) A cosh ax cosh fly,

whereA is a constant, a is determined by tanh aa Z/a and fl by tanh Bb Z/
and A (D’) _(a2 +/32).

In order to get an idea of how the first eigenvalue of (1) changes with the
circumference of D,.we can look at Table 1 in which A was calculated for the unit
circle and for a square and various rectangles all of whose areas are r. Since
A -ZL(D’)/(A (D’)), it follows that h -oo as L(D’) oo andA (D’) is fixed.

Nowwe check how the first eigenvalue of (1) varies when an infinitesimal area
preserving perturbation of D is performed. Let Ar and uN be the Nth eigenvalue
and eigenfunction of (1) for the domain D. Let D be perturbed as in Courant-
Hilbert [6, pp. 419-421] and let 8n be the infinitesimal change in OD, in the
direction of the outer normal to D. (Sn may be positive or negative). It is easy to
show that

tSAv=Ioo [(Ouzv)2-(Z2+xZ+Azv)u]8nds’
where 8hr denotes the change in hr up to terms of first order and K denotes the
curvature of 019. In the case of the circle, u depends on r alone (5), and therefore
Ul(OR) const, and Oul/Os(OR)= 0. In this case, K 1/a is constant and

(Z2-Z--A)u(OR) a6n dO.(7) Xl a

Here 8n 8n(O), and from the requirement for area preservation, we have

(8)

where A (R*) is the area of the perturbed domain. Hence, up to terms of higher
than the first order, the area preservation requirement yields

2’

6n dO O,

and thus in case of the circle, 8A 0. Hence the circle is a "stationary point"
which is a necessary but not a sufficient condition that the extremal domain should
satisfy.

We shall next calculate the change of h I(R) up to terms of second order,
caused by an area preserving perturbation.

DEFINITION. We call a domain R’ a nearly circular domain if it is obtained
from the circle R (of radius a) by an infinitesimal perturbation as in [6], for which
8n 6n (0) is given by the periodic function 6 (O). R’ is given by r =< a + 8 (0).

We call 8 (0) an area preserving perturbation if A (R ’) A (R).
Using [6] and [9], it is easy to show that 8(0) and its derivative 8’(0) are of the

same infinitesimal order.
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Remark. A perturbation of this type clearly changes the circle into a
star-shaped domain [8] with respect to the origin.

THEOREM. LetR be a nearly circular dorain, obtained by an area preserving
perturbation 8(0) ofthe unit circle. Then there exists a positive constantZo such that
A.(R’) -<a (R) for all Z <Zo.

Proof. Let D be a domain star-shaped with respect to the origin, whose
boundary curve is given by r= rt(0). Let h h(O) be the distance between the
origin and the tangent to OD at the point (r=rt(0), 0) [8, pp. 410-411]. By
Appendix A,

(9) A I(D)-<
t

L(D)-

where A x(R)-" "-x
2 is the first eigenvalue of (1) for the unit circle and

2Z(10) K xZ----.
By [8], we have

[(11)
h(0) l+r/(0)_l dO and ds =4r/z+r/’ds,

where indicates differentiation with respect to 0.
LEMMA 1. I2o (6’)2 dO >I 62 dO.
Proof. Calculating L(D) using (11) for rt(O)= 1 + 6(0) yields

(12) L(D)= (1+) 1+
1+

dO,

which, up to second order terms, yields

L(D) =2+ 8dO+ d#.

Since 8 8 (0) is an area preserving perturbation, L(D) >L(R) 2, and thus

0 > 0.

Looking back to (8), we have by the area preserving requirement that- dO
2 2 2Io /2 dO and therefore Io (’) dO > dO.
LA 2. e unction K(Z) is a monotone increasing Nnction o Z,.

1 < K(Z) < 2 or 0 <Z< and limzo K(Z) 1.
In order to prove the lemma, we first note:

(a) Since Xlzo= 0 and I(0)=0 while Io(0) 1 [1, pp. 374-375, pp. 423-428],
we have by (6) that limzo (Z/x) O.
(b) x -I(R) is an analytic function of Z [2]. Differentiation yields

dx 2x 2
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and therefore

--1 z=o
=2"

(c) (Z/x)z is a monotone increasing function in Z. This can be seen by checking
the first derivative with respect to Z.

Proof ofLemma 2. First, by using (4), we get

2Z
(14) 1 <=K(Z) x2_Z2<=2.

By l’H6pital’s rule and by note (b) we have

2
lim K(Z)= lim
z-,o z-,o dxZ/dZ 2Z

We now wish to show that K(Z) is a monotone increasing function of Z, In view of
the preceding remarks, K(Z) is an analytic function of Z, and by differentiating
it, we get

dK 2(x2-ZZ)-2Z(dxZ/dZ-2Z)

By using (13) and the definition of K, we can write this last expression in the form

2xZ K(Z)]
It is sufficient to show that/(Z) > 0. By expanding K(Z) in power series of Z in
the neighborhood of the origin, we find that K 1 +Z/4 + 0(Z2), and therefore K
is increasing there. For any Z>0 it is sufficient to show that 1 + (Z/x)2>K(Z).
Suppose the inequality does not hold for all 0 <Z<; then there exists some
Z Z’ for which 1 + (Z/x)2 K(Z) and 1 + (Z/x)2 <K(Z) for someZ>Z’. K(Z)
is a decreasing function there since /(Z)<0 in this interval. By note (c),
1 + (Z/x)2 is an increasing function of Z, and if for Z>Z’, K(Z) is decreasing,
then 1 +(Z/x)2>K(Z) there, and that is a contradiction. Hence either 1 +
(Z/x)2>K(Z) for all 0<Z< or 1 +(Z/x)2= K(Z) for some Z’s. In both cases,
K(Z) is increasing in Z, and that completes the proof of Lemma 2.

Nowwe return to the proof of the Theorem. By using (11) for rt(O) 1 +6(0)
and inserting the result into (9) for A(D) A(R) 7r, we get

2,rr 1+6
dO+

\ 2r-1
Since A x(R) is negative, as long as its multiplier is greater than 1, A (R’)=<A (R).
Therefore we wish to exhibit conditions under which

(17) 1-KIo" 6’ K(L(D) 1)>0"2zr ("1+ 8) dO+
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Calculating (17) up to terms of second order, we find that (17) will hold as long as

2 j’o2’ (a’)2 dO
(18) K< 2, 2I (a’)= de + Io ’ de

Denote the right-hand side of (18) by K’. K’ <2 since 02" 62 dO >0. By Lemma 1,
K’> 1 and therefore 1 <K’ <2. By Lemma 2, there exists a Z0 such that
K’= K(Zo), and for every Z <Z0, K(Z)<-K(Zo)= K’. So there exists a Zo> 0
such that for any Z<Z0, a I(R’) _<- a (R). Q.E.D.

The question of the existence of a similar isoperimetric inequality for the
elastic supported membrane (i.e., equation (1) for negative values of Z), namely,
that for all domains of a given area A, the circle yields the minimum value for a 1, is
still unanswered. Yet, a calculation shows that 8A 0 for a circular domain, and
therefore the circle is a "stationary point" in this case as well.

Appendix A. Derivation ot formula (9). By (2), we have

.[o (Vu)2 dtr-5oo Zu2 ds
(A.1) al(D) Iou d

For a star-shaped domain D, whose boundary curve is given by r r/(0), we
introduce the coordinate transformation r=prl [3], [8] and calculate (A.1) for
functions u of the form u(r, O)= v(r/(rl(O)))= v(p), obtaining

(A.2) A I(D) <IOD ds/h I10 [v’(p)]2p dp -Z[v(1)]2L(D)
2A (D) 1o [v(p)]2p dp

where h is as in the proof of the main theorem.
Different upper bounds for a I(D) can be established by inserting different

functions v(p) into (A.2). In particular, if we choose v(p) to be Io(xp), the first
eigenfunction of (1) for the unit circle R, we get

<AI(R) [Io ds 2 Io(x)II(x) [L(D)_Io _]],(A.3) h I(D)=
2A (D) D -+-I(x)-I(x) D

where AI(R)=-x2. Since Io(xp) satisfies, the boundary condition (6),
II(x)/(Io(x)) z/x, formula (9) is concluded.
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ON CHAPLYGIN’S PROBLEM*

M. S. KLAMKIN"

Abstract. Chaplygin’s problem is to determine the closed path of an airplane flying in a horizontal
plane with a constant speed with respect to a constant windfield if it is to fly around the greatest area in a
given time. A complete solution is obtained by using Wultt’s construction.

In a recent note "On extreme length flight paths" [ 1], the author gave some
elementary solutions of several extremal problems. A related but more difficult
one is Chaplygin’s problem [2, pp. 206-208]. Here an airplane is flying horizon-
tally at a constant speed v with respect to a constant wind field given by W
(w IWl< v) and we want to determine the closed path one should fly, with
respect to ground in a given time, such that the area enclosed by the path is a
maximum. Using the calculus of variations [2, pp. 206-208], it has been shown
formally that the path is an ellipse whose major axis is perpendicular to W and
whose eccentricity is w/v. By using Wulff’s construction [3] for the equilibrium
shape of crystals, we can give a simpler and complete proof. To apply Wulff’s
construction, we consider the dual problem, i.e., minimizing the time to traverse
the boundary of a region of given area or minimize T= (ds/vg) subject to
[x(dy/ds)- y(dx/ds)] ds const.

To determine the speed vg of the airplane with respect to ground when its
path with respect to ground makes an angle 0 with W, we resolve W and V (the
plane’s velocity with respect to W) along and perpendicular to the path. See Fig. 1.

with respect to ground)

vp=(v2-w2sin20)/2

FIG.

The component of V along the path is (vz- W2 sin2 0) 1/2 and then

/)g W COS Oq-(I)2--W 2 sin2 0) /2.

For Wulff’s construction, we first plot r versus 0, where

(1)
r (v2- w2)/vg x/v2- wE sin2 0- w cos 0.

* Received by the editors September 29, 1975, and in revised form December 30, 1975.
f Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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Then aside from a simple scale transformation, the desired extremal path is found
by finding the envelope of the family of lines normal to the radius vector (from the
origin of the (r, 0) coordinate system) at each point of (1). A justification of this
construction using the Brunn-Minkowski theorem is given by J. A. Taylor [4] and
C. A. Johnson and G. D. Chakerian [5], The family of normal lines is given by

x cos O + y sin O x/v- W
2 sin20 w cos/9.

To find the envelope, we first differentiate partially with respect to 0 and then
solve parametrically for x and y"

-x sin 0 + y cos 0

v2 cos 0

--W
2 sin 0 cos 0

N///) 2__ W 2 sin2 0

x /v2- w2 sin2 0

(X + W)2 y2
v +v.w- =,

It now follows that

giving the desired result.

+ w sin 0;

(v 2 w 2) sin 0

4/)2--W2 sin 0"

It is to be noted that this result contains the isoperimetric theorem for circles
(just set W 0).

Coincidentally, we also get the congruent path

(X --4)2 y2
+ 2 -2 =1

/) /) --W

if we minimize Vg ds instead of { (v 2 w 2) ds/vg.
For other wind field problems, see [6], [7], [8].

Acknowledgment. For the proof here, the author is indebted to F. J.
Almgren, Jr. who in his excellent series of three Hedrick Lectures [9] illustrated
Wulff’s construction geometrically with respect to the same problem for a sailboat
in which the vector velocity of the boat is given graphically.
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DOUBLY ORTHOGONAL CONCENTRATED POLYNOMIALS*

E. N. GILBERT AND D. SLEPIANf

Abstract. We seek an nth degree polynomial fo")(x) which maximizes the ratio

R(/) I ’f(x)’2dx/I If(x)’2dx,

where I, and It, are two intervals on the real line. R (f) may be interpreted as an energy ratio andfo")(x)
as the polynomial having its energy most concentrated into I,, at the expense of its energy in It,.
Maximizing R (f) is equivalent to finding the largest eigenvalue A o") and corresponding eigenfunction
")(x) of an eigenvalue problem. The other eigenfunctions, which are also polynomials of degree n,
have interest because the eigenfunctions fJ")(x), j =0,..., n, are orthogonal both on I, and on It,
simultaneously.

For small n the eigenvalue problem can be solved numerically by standard matrix methods. We
give special attention to asymptotic results for n large. When I, and I are disjoint, Ao") grows as

C1n-1C. We give C and C2 as functions of I, and It,. We also solve the problem when Ia is centrally
positioned inside Ib, say, I [- a, a], Ib 1, ], with a < 1. Then, for large n, A 0") has the behavior
1-C3n/2C and we obtain C3 and C4. In both these cases the eigenvalue problem can be put into
differential equation form.

When I and Ib are disjoint we maximize other ratios, related to R (of), to obtain maximizing
polynomials which are simple expressions involving Chebyshev or Legendre polynomials. These
polynomials have R (f) growing with the same exponential term C as A 0") but with constant factors
different from C1.

1. Introduction. Consider two intervals Ia and Ib on the real line. The ratio

(1) R(f)= fr ’f(x)’2 dx/f ,f(x)12dx

is a simple index of how much larger a complex-valued function f(x) is when x I
than when x Ib. R (f) will be called the concentration of f because it may be
interpreted physically as measuring the extent to which the energy of f(x) is
concentrated in the (time) interval I and away from Ib. When f(x) is restricted to
the set F, of polynomials of degree not greater than n, there is a largest possible
ratio

(2) A o") max R (f).

Much of this paper is concerned with determining how rapidly A on) grows with n.
In connection with this problem we also study n + 1 concentrated polynomials

fon(x), fn(x),..., fn(x) each contained in Fn. Here fo)(x)is a most concentrated
polynomial, i.e., one in F, for which R(f0") =,t0"). For j 1, 2,.-., n, the
polynomial f"(x) has greatest possible concentration among all polynomials of
degree n orthogonal in the usual Hermitian sense on Ib to fo,f,’" ,Jj-l" We
denote this extremal concentration by

(3) A0’)--= R(f")), ]=0, 1,’’’ n.

* Received by the editors June 16, 1975, and in revised form January 15, 1976.

" Bell Laboratories, Murray Hill, New Jersey 07974.
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In the remainder of this Introduction we present without proof some of the
more interesting properties of the polynomials f}n)(x) and of their concentrations

The concentrations are nonincreasing,

(4) ")>...=

and interleaving,

(5) (n-l) >/ (n)t(On)>=l(O 1)=./n)>/(ln 1) ">/n--1

f(n)The polynomials Ji are real and are orthogonal both on Ia and on Ib. If we scale
them so that

(6) I,,, f)’)(x)f(’)(x) dx

which we will henceforth assume done, then

(7) f) X)fk >(X) dx

for j, k 0, 1, , n, and for n 0, 1, 2, . This double orthogonality property,
(6) and (7), can also be used to define the ") and the1

Double orthogonality is useful in certain least-squares approximation prob-
lems. Suppose that one seeks an nth degree polynomial f(x) to approximate a
given function g(x) and that the approximation error is measured by

where the constants Wa and Wb are real positive weights. To minimize E, write [(x)
as

and obtain the minimizing coefficients

f gdx
C] (n).._ WbWa/t

y=0, 1,...,n.

Without loss of generality, we henceforth choose the interval I to be [- 1, 1 ].
e nature of the polynomials f"(x) depends markedly on whether L is

disjoint from I [-1, 1] or is contained in it. When L is disjoint from I, we
speak of an exterior problem: when Ia I, we speak of an interior problem.
Figures 1 2 and 3 show some typical for these two cases for n 5 Note the

Jl

change of scale necessary within L in Figs. 1 and 2 to show detail of f5 and fs.
5 1/Ai forFor the case shown in Fig. 3, one clearly has [(x)=/5(1-x), A

i=0,1,...,5.
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FIG. 1. Concentrated doubly orthogonal polynomials for symmetric interior case Ib [--1, 1],
[-.3, .3], n 5

For the exterior problem with Ia =[a l, a], where 1 <-_al <a, we find the
asymptotic result

(8)
8,n’n x/a’2- 1
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2.0 f(o5) fl 5)
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-0.5
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-0.5 0 0.5 1.0 -0.5 0 0.5 1.0 -0.5 0 0.5 1.0

FIG. 2. Concentrated doubly orthogonal polynomials for asymmetric interior case Ib [-1, 1],
=[.1, .7], n 5

which does not depend on a 1. For the interior case, , o") 1 as n oo. When Ia is
centered in Ib, SO that Ia [-a, a] with 0 < a < 1, we find the asymptotic result

(9) l-A,(") 4-a
1 +a ,,1 (1 8-a 2)’n’+1/2( aa)" + [ 1 +O()]
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FIG. 3. Concentrated doubly orthogonalpolynomialsforexteriorcase Ib [-- 1, ], Ia 1, 3], n 5

for fixed j. The asymptotic form of !n) is given by the complicated expressions11

(97)-(99). When Ia Ib but is not centered, we have not been able to determine
(n)the rate at which Aj - 1.

The determination of the !n) and their concentrations is equivalent to the
solution of a matrix eigenvalue problem of the form Ax=ABx with A and
B (n + l) (n + l) real symmetric positive definite matrices and x an
(n + 1)-vector. The polynomials are also the solutions of the integral equation

(10)

where

()

I. K, (x, y)f(y) ay Af(x),

n + 1 P,+I(x)P(y)-P+I(y)P(x)
K.(x, y)=--

2 x-y

X Ia,
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with Pn (x) the usual Legendre polynomial. The corresponding eigenvalues of (10)
are the concentrations

In two special cases we have found an equivalent differential equation
eigenvalue problem for the concentrated polynomials. For the centered interior
case with Ia [--a, a], the f"(x) are all the polynomial solutions of

(12) xx (1-x (aZ-x2)x +[x-n(n+3)xZ]f=O

and the same equation with n replaced by n- 1. Such polynomial solutions exist
only for special values ,t’j of the parameter X. These eigenvalues of (12) do not
seem to be related in a simple way to the concentrations !") For the adjacent
exterior problem, where Ia =[1, al, a > 1, there is also a formulation as a
differential equation:

(13) xx (x- 1)(x a) -x +D( n(n + 2)x]f= 0.

We have not been able to find a corresponding differential equation formulation
for either the general interior or general exterior problem.

The problem under consideration is a special case of one mentioned by Szeg6
[1]. Other somewhat similar problems are discussed in the literature, but we
have found no reference that treats the concentrated polynomials considered
here. Further properties of the polynomials will be found in the sections that
follow.. Egevles. Let o0(x), q(x),-.., q,(x) be a basis for the space F of
n th degree polynomials. Each polynomial in F has an expression

(14) f(x) ’o (x)
k

and so a representation as an (n + 1)-tuple of coefficients t (f0, ]’, ",f,). Then
R (f) in (1) becomes a ratio of quadratic forms

(15) R (f) (ftAf*)/(f’Bf*).
In (15), f is regarded as a column vector, f is its transpose, and A and B are
(n + 1) (n + 1) matrices having elements qi(x)cp(x)dx taken over Ia and Ia,
respectively. To maximize (15) one may solve a matrix eigenvalue problem

(16) Af=ABf.

The largest eigenvalue A of (16) is the maximum ratio R(f), i.e., Ao. The
coordinates fk of the corresponding eigenvector f are the coefficients in (14) of the
polynomial f(x) having R(f)- Ao’, i.e., the coecients of fo(x).

The eigenvalue problem (16) is well known [2], [3]. In the present problem,
both A andB are positive definite Hermitian matrices since the quadratic forms in
(15) are integrals of squared magnitudes of polynomials. From [3] one can find

(n)that the eigenvalues A of (16) are real, that they satisfy (4) and (5), and that there
()are real eigenvectors fi which can be chosen to satisfy

(17) (f,))tB (f(k,,)) Big, (f.
j,k=O, 1,. .,n, n=0, 1,2,....
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Equations (6) and (7) follow from these relations combined with (14).
Since the eigenfunctions and eigenvalues are real, we restrict attention to real

functions from now on. In particular, basis functions 0k (X) in (14)will always be
real. Two bases suggest themselves immediately. First, one may use qk(X)= X k.
Then, with Ia of the form [a 1, a2] and Ib [-- 1, 1 ], the elements of A and B are

i+j+l i+j+l
a2 --al 1--(--1)i+j+l

(18) aj=
i+]+1 b= i+j+l

i,]=O, 1,...,n.

When cast in this form, the problem makes connection with the theory of the
Hilbert matrix (with elements 1/(i +j + 1)), which has been widely studied as an
example of an ill-conditioned matrix (see 14, p. 233 and p. 236, Prob. 4d] and [5,
pp. 22-23]).

A second convenient basis is qPk(X)--(k d-1/2)l/Zek(X where Pk(X) is the kth
Legendre polynomial. This basis is orthonormal on Ib and so B in (16) simplifies to
the unit matrix. However, A becomes more complicated, having elements which
are integrals of products of Legendre polynomials.

For small values of n the eigenvalue problem can be solved numerically by
finding the roots of the characteristic equation det [A AB[ 0. The basis q (x)
x is as convenient as any. Table 1 gives values of h(0") for several choices of Ia and
n. Figures 1-3 show some eigenfunctions.

TABLE
A(o"= largestrootofdet (A -AB)=O. Ib =[- 1, 1].

[1,33 [-.2, .2] [-.5, .5] [-.8, .8] [-.2, .8]

n 13.93 .20000 .50000 .80000 .66618
2 254.0 .43057 .86474 .99339 .78712
3 5,875 .43057 .86474 .99339 .96014
4 152,000 .62401 .97576 .999883 .96299
5 4,160,000 .62401 .97576 .999883 .99116
6 1.18x 108 .99651

To maximize the ratio R (f) one may also maximize the numerator of (1)
subject to the side condition that the denominator have the value 1. That leads to
the problem of maximizing

(19) It,, f2(x) dx-h f f2(x)dx I{)(a(X)--AXb(X)}f2(X) dx,

where h is a Lagrange multiplier and ,(x) and go(X) are the characteristic
functions of Ia and Ib. The condition that an nth degree polynomial f(x) be an
extremal of (19) is just that

(20) Ip(x){)(a(X)--AXb(x)}f(x) dx 0

must hold for all nth degree polynomials p(x). Again, the condition (20) can hold
only for certain eigenvalues A and corresponding eigenfunctions f(x). Indeed, let
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qgo(X),’’’, q, (X) be any basis of F,, orthonormal over Ib, and define

K(x, y)=
j=0

The substitution p(x) K(x, y) in (20) puts the problem in the form of an integral
equation

(22)

_
K(y, x)f(x) dx Af(y).

"1

The matrix equation (16) is obtained again as the system for the coefficients fk of
(14) when (22) is multiplied by qk(X) and integrated over I.

The integral equation (22) has an interesting interpretation for interior
problems. For any function F(x), the integral

I, K(x, dy q,(x) I, %(y)F(y)ayy)F(y)

represents the orthogonal projection of F(x) onto the space F, of n th degree
polynomials defined on I. The integral operator on the left side of (22) first
truncates f(x) to the interval I (equivalent to multiplication by Xa(X)) and then
projects the truncated f(x) back onto the space of polynomials.

Exterior problems can also be interpreted in terms of projections, although
not directly from (22). An exterior problem is equivalent to the interior problem
of maximizing

ft f2(x) dx/I f2(x) dx =R(f)/(l +R(f))
IaOlb

and hence it has another integral equation involving projections onto the space of
polynomials over/a LI I.

When I [- 1, 1] and the basis functions q are chosen to be the normalized
Legendre functions, (21) and (22) become (10) and (11). Here we have used the
identity ([6, 8.9.1, p. 335])

(X y) E (] + 1/2)P-(x)P.(y) (n + 1)[en+l(x)en (y)-Pn+l(Y)Pn (x)].
0

The double orthogonality property (6)-(7) provides another way of posing
the original problem. We seek nth degree polynomials $0(x),"" ", $,(x) and
numbers/Xo," ,/z, which satisfy

dx I, (x) (x) dx

But then these $i are suitable basis functions for the nth degree polynomials and
so can be used as the qi of (14). With this basis, the double orthogonality property
puts both A and B in diagonal form: B=diag (1, 1, ..., 1), A
diag (0,/z 1, , z,). Then tZk and ’k (x) must be the eigenvalues and eigenfunc-
tions of the original problem.
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3. Comparison of Chebyshev polynomials with fro"). A definition of a differ-
ent kind of concentration of a polynomial f(x) might single out a point y where
f(y) is to be large, and a set $ where fix) is to remain small. Then measure-the
concentration by the ratio

(23) If(y)12/max If(x)l 2.
x.S

In our exterior problem, with Ib =[-1, 1] and Ia =[al, az], y a2 and S =Ib
would be appropriate choices. In the interior problem with Ia [--a, a], one
might take y 0 and $ I- Ia.

The maximizations of (1) and (23) lead to totally different problems. We
mention (23) here because the maximizing nth degree polynomial in (23) has a
large value of R (f) which makes an interesting comparison with A(0". It is not hard
to show [7, p. 304] that in maximizing (23) over F,,, f(x) must have all its zeros in $
and exhibit "equal ripple" behavior there. It then follows that in the exterior
problem, the maximizing f(x) is the Chebyshev polynomial

Tn (x) cos nO (x cos 0).

For the interior problem with I [-a, a], the solution for even n 2N is

tn(x) Tt((1 +aZ-2xZ)/(1-a2)).

We omit formal proof.
These polynomials are especially simple because of the identity

(24) Tz,,(x) cos2 nO 1/2 + T2,, (x).

To integrate TZ,,(x) for the exterior problem one may use (24) together with

I T2,,(x) dx -I cos 2nO sin O dO

1 I (sin (2n + 1)0-sin (2n- 1)0) dO(25)
2

((2n + 1)-lTz,,+1(x)-(2n 1)-1Tzn-l(X)).

In (25) the right-hand side is to be evaluated between limits appropriate to the
numerator or denominator of (1). For an exterior interval I [1, a], the final
result is

(26) T(x) dx (4n2- 2)/(4n- 1),

(27)
TZ,,(x)dx 1/2(a- 1) +1/4{(2n + 1)-1(T2,, ,(a)- 1)

-(2n- 1)- l( Tz,,_1(a 1)}.
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Using (26), (27) and the recurrence

Tk/(x)+ Tk-(x)= cos (k + 1)0 +cos (k- 1)0

(28) 2 cos kO cos 0

2XTk(X),

one can easily tabulate R (T,).
For the interior problem with Ia [-a, a l, (24) again shows

(29) tx) 1/2-1-1/2taN(X
while (28) becomes

(30) t2k/1)(X) + t2k-l)(X) 2(1 + a 2 x2)t2k (X)/( 1 a2).
The integral of taN(X) is not as simple as in (25). Instead, (30) shows that the
coefficients CN,k Of the polynomial

N
2ktzN(X) Y C,kX

k=0

satisfy a recurrence

(31) C+l,k + C-l,k (2(1 + a2)Cs,k 2CN,k_l)/(1-- a2).
Using (31) one can easily evaluate coefficients for taN(X) in (29) and integrate term
by term to get

2N

(32) tx) dx x+ 2 CZN,kX /(2k + 1).
k =0

Set x a and x 1 to evaluate the integrals needed for R
Table 2 gives numerical values of R (T.) and R (tN) which may be compared

with Table 1.

TABLE 2
R(T.)andR(t,,)

R(Tn) R(tn)

a [1, 3] [-.2, .2] [-.5, .5] [-.8, .8]

n 13
2 172.4 .4152 .8593 .99334
3 4,028.1
4 105,397 .4567 .9625 .999844
5 2,917,953

.837x 108 .5641 .99451 .999998

Asymptotic results for large n follow easily from the formula

(33) T,, (x) 1/2{p (x)" + p (x)-"},
where p(x) =exp iO x +(x2- 1) 1/2. For any x > 1 the term p(x)-" becomes small
exponentially with n, leaving T, (x) ---1/2p(x)". For the exterior problem with
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la 1, a ], the numerator of (1) is given by (27). Then (33) may be used to obtain

(34) R(Tn) (a2- 1)a/Z(8n)-lp(a)2n{1 + O(n-1)}.
Note that A(o"), as given by (8), also grows exponentially and contains a term
p(a)2". Indeed (34) differs from (8) only by a constant factor.

For the interior problem with Ia [--a, a], the integrals required for R (t2N)
may be estimated as follows. In the range -a-<x =< a, write t2r(x)= cosh Nu
where cosh u (1 + a2- 2x2)/(1 -a2). Then

I_ I0 lloatx) dx 2 cosh Nu dx- exp (2Nu) dx

asymptotically as N-->. This integral can be handled by the method of steepest
descent, Let U be the value of u at x 0, i.e., cosh U (1 + a)/(1 a), sinh U
2a/(1- a). The appropriate variable of integration is v U-u;

(35) tx) dx "-- exp (2NU) exp (-2Nv) dr.

Now
2x2= 1 +a2-(1-a2) cosh u

2a sinh v (1 + a 2)(cosh v 1)

so that dx/dv has a series expansion

(36) dx/dv 1/2(a/) 1/2- 3(a + a-1)v1/2/16 +....
Now Watson’s lemma [8, p. 218] applies to (35) and gives an asymptotic series
when (35) is integrated term by term, after substituting (36). The leading term is

dx +a)/(1-+2-3(27raiN)l a))2N{1 O(n-1)}.

The energy of t21(x) outside the interval I is

2 tu(x) dx (1 +cos 2NO) dx

1-a + Idx/dOI cos 2NO dO,

where 0 is defined again by (1 a) cos 0 1 + aa- 2x z. AsN oo the integral on
0 tends to 0 (Riemann-Lebesgue theorem). Finally

(37) R (t,,) 1-4(l+a)(ra)-/n/((1-a)/(l+a))/{l+o(1)}.
Now 1- A(0) and 1-R (t,,), as given by (9) and (37), become small exponentially at
the same rate, and differ only by a constant factor.

4. Legendre polynomials and the derivation of equation (8). Still another
kind of concentration uses a set S and point y as in (23), but forms the ratio

(38) E(y; f)=lf(y)[2/Is ]f(x)[2 dx.



DOUBLY ORTHOGONAL CONCENTRATED POLYNOMIALS 301

The n th degree polynomial f(x) that maximizes E(y;f) differs from the ones that
maximize (1) or (23). However, for exterior problems at least, E(y; f) is easy to
maximize and the solution will be used to derive the asymptotic result (8). Indeed,
the problem of maximizing E(y; f) may be regarded as a limiting form of the one
for maximizing R (f) as the interval Ia shrinks to a point y.

To maximize E(y; f), let q)o(X), , q, (x) be a basis of F,, orthonormal over
S. For any polynomial f(x) with coefficients fo," , f, in (14),

2/(39) E(y; f)= Y’.fq(y) Y.f <-_Y. o(y).
The inequality here follows from Schwarz’s inequality, and equality holds only if

f c(0 (y) with c independent of k. Thus the function

(40) fy(x) K(x, y)

in (21) is a maximizing function, and the maximum is

(41) max E(y; f)= K(y, y).
fF.

For the exterior problem with Ia [a 1, a (1 <- a < a ), take S I 1, 1 ].
The basis

qk(X) (k +1/2)l/Pk(X)

is orthonormal on S and so the maximizing function is

K(x, y)= . (k +1/2)e(x)P(y)
k=0

(42)
1/2(n + a)(P,.,+l(X)P,,(y)-P,,(x)Pn+l(y)}/(x-y),

the last line following from Christoffel’s identity (see [6, 8.9.1, p. 335]).
") SinceThe solution (40), (41) can now be used to derive bounds on A o

K(x, a)=fa(x)6F.,
(n)(43) R(f,)-<Ao

Also, (38) with S Ib shows that

R(f)= f E(y;f) dy
"I

holds for every f. In particular, take f to be a polynomial maximizing R (f) and use
(41) to obtain

(44) Ao")=< K(y, y)dy p(y) dy , R(qk).
k =0 k =0

The upper bound (44) can also be derived from the theory of the integral equation
(22). The integral

I. K(y, y)dy
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is actually the sum of the eigenvalues a !") and so is an upper bound on the largest
eigenvalue A0").

When n is large the bounds (43) and (44) on X0") are close. This can be shown
with the help of Darboux’ asymptotic formula for P,,(x) for large n. When
1 =<x =<a, let x cosh u so that exp u p(x) x +(xz- 1) 1/2 as in (33). Darboux’
formula (see [8, p. 285.]) states that

P,,(x) (2nrr sinh U)-1/2 exp [(n +1/2)u]{1 + O(n-l)}
(45)

[nTr(1 -p(x)-2)]-l/2p(x)"{1 + O(n-1)}.
To estimate the lower bound R(fa), let U and U1 satisfy cosh U a, or

exp U= p(a), and cosh U1 al. Then write

k=0

(,rr-lp(a)Z"/(1 -p(a)-2)) {1 + O(n-1)},

f(x) dx (] +1/2)(k +1/2)P(a)P(a) P.(x)P(x) sinh u du
j,k

y, (er( +j + ))-’o(a)//’{ + o(-’ +j-’)}

(4n)-’o(a)4"+( -.(a)-)-{ + O(n-’)}.
e final result is

(46) ) (Sn(a- )’/)-’o(a)’+{ + O(n-’)},
in agreement with (8).

Likewise, in the upper bound (44) the term R()= R(P) is

R (P) (k +) P(x) sinh u du

(k +) (2k)- exp (2k + 1)u du {1 + O(k-)}

(o(a)+l/(4k)){1 + O(k-)}.
e upper bound (44) on I is now

(47) R(Pk) (p(a)2"+/(4nTr(1-p(a)-2))){1 + O(n-a)}
k=O

which can be rewritten in the form (46) by using the identity p(a)-p(a)-1"
2(a- 1) 1/2. Since the bounds (46) and (47) agree to within a factor 1 + O(n-1), the
result (8) follows.

Bounds like (43) and (44) also hold for the interior problem. S It, Ia is the
appropriate set in (38). Inequalities (43) and (44) may be rederived with two
alterations. One is that these bounds now relate to

R’(f)= ft f2(x) dx/ fs f2(x) dx R(f)/(1-R(f)).
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With/ =[-a, a] one would use fo(x) K(x, 0) to derive R’(fo)-<_ A(o")/(1 A(o")),
in (43), or R(fo)_<--Ao"). The analogue to (44) is

h(o")/(1-h(o"))<_- R’(o).
k=0

The other alteration requires a new basis qgo(X), ., o,(x), which now must be
orthonormal over/--/a. Thus K(x, y) no longer has a simple expression (42) in
terms of Legendre functions. The derivations of (46) and (47) relied heavily on
special properties of Legendre polynomials and do not generalize directly to the
interior problem. It is not clear whether or not (9) for/" 0 can also be derived
from the analogues of (43) and (44). Fortunately, the differential equation
obtained in 6 provides another.way of deriving (9).

5. An alternate oath to (8). We now outline briefly another derivation of (8)
that is of interest in its own right.

When Ib [-- 1, 0], / [0, a ], a > 0, and k Xk, the matrices in (16) have
elements

ai++1 (_ 1)i+j+l(48) a +] + 1’ b +/" + 1

i,/" 0, 1, , n. Now it is easy to invert B. The elements of the inverse are (see [4,
p. 233, p. 263, prob. 4d] or [5, p. 23])

(")(") (n+i+l)!gi g/ (n)

]2, i, ] 0, 1,. n.(49) (B-1)iJ
i+]+ 1’ gi

(n-i)![i!

Equation (16) in the form B-1Af h f now reads
(n)_(n)_i+j+l

jk (i +j+ 1)(j+ k + 1

0, 1, , n. By direct substitution one verifies that this is the same as

(50) Tx- ;x,
where the (n + 1) (n + 1) matrix T has elements

i+j+l’
i,j=O, 1,...,n,

and

(52) II")--/a-")gi xi--fi/li"), i=0, 1, n.

The matrix T is real and symmetric. It is not hard to show that it is positive definite.
Equation (50) is equivalent to the well-studied eigenvalue problem

(53) Tx 0x, A 02,
with which we now work.

The key to finding an asymptotic expression for 0(o"), the largest eigenvalue of
T, is the observation that for large n the elements, t, of T are large only when
and j are near the value nx/a/(1 + a). More precisely, by straightforward tech-
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niques using Stirling’s formula for the factorials in (49), one finds that

(54) 1(n)" (1 + 0)3/4
n e e-(-6)2n/(2z)

/27r60(1 6o)a/4
provided

Here

a
2(55) o=- o-=-,/a,

l+a
c -= log [/-a+,f + a].

Thus II") will be large only for in the range 8on -r2,fn <=i <= 6on +ofor
some large d > 0.

With and j restricted to the ranges where l}") and l") are large, the factor
1/(i +j + 1) in (51) has the value (26on)-a[1 + O(n-a/2)]. Thus asymptotically T
behaves like a singular matrix with elements

a /;")/9’)
,,./J =2on

The largest eigenvalue and the corresponding eigenvector of such a matrix can be
found at once. One has

(56) 0o 26on 2o [/},]2,

(") i=0,1 n(57) 2i=li

The validity of the heuristically derived asymptotic forms (56) and (57) can be
established rigorously as follows. The largest eigenvalue of T, say 0o, is bounded
by ([5, p. 10])

(58) M_=
2 tuu< Oo.u

for every real (n + 1)-vector u (Uo, Ul," , u,). As suggested by (57), we take
ui II") in (58). Then some detailed analysis, omitted here, shows that for large n,

(59)
M+ M_

4-da
2on

[a+4a+l]"+
44n[a (1 + a)]1/4"
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Here to find the asymptotic forms one can make use of (54). Now Ag [0(0n)]2 as
shown by (53). To compare the result (59) with (8), we must also take account of
the fact that for (59) Ib [--1, 0], Ia [0, a] whereas for (8), Ib [--1, 1] and
Ia [al, a]. Replacing a in (59) by (a 1)/2 and squaring, one obtains (8) again. It
is not hard to see that A0n) for the intervals Ib [-- 1, 0], Ia [al, a], 0 < al < a will
have the same asymptotic value as that just found; i.e., the asymptotic value is
independent of a.

Perhaps the most interesting feature of this derivation is the asymptotic
formula (54) for the coefficients {lln)}2 of the maximizing polynomial

[(x)= Z
i--O

when Ib [-- 1, 0]. When n is large the coefficients follow a Gaussian distribution
with mean [a/(1 /a)]l/Zn and standard deviation tr(n/2) 1/2. Thus the largest
coefficient in the polynomial does not belong to x" as might have been supposed.

An attempt to carry out a similar analysis for the interior case is thwarted by
the fact that the analog of the matrix T now has elements tij whose sign varies as
(- 1) and so no asymptotic form for the largest eigenvector is evident.

6. Differential equations. The derivation of the differential equations (12)
and (13) requires some properties of the eigenvalues , !") Here we give the details
for the interior problem Ib [-1, 1], Ia [--a, a]; the exterior problem is less
complicated.

We first investigate conditions under which the same number A can be both
Cn) and A k" for two different degrees n, m. Table 1 shows instancesan eigenvalue Ai

(n+l)of Ao"= Ao
In (20) with I [-a, a] and Ib [- 1, 1] it is clear that f(-x) is always an

eigenfunction if f(x) is. Then if f(x) be decomposed into a sum f(x) e(x) + o(x)
of an even function and an odd function, both e(x) and o(x) will be eigenfunctions
belonging to the same eigenvalue as f(x). Thus a complete basis of eigenfunctions
can always be constructed from functions which are either even or odd.

If n is even and e(x) is one of the even eigenfunctions f)")(x), then (20) holds
with A A1<’), f(x) e(x), and p(x) F,,. But also one can set p(x) x n+l, an odd
function, and then it follows that (20) holds when p(x) F,+I. Thus A)") and e(x)
reappear among the list of eigenvalues A kn+l) and eigenfunctions fk"+)(X). Like-
wise if n is odd, each odd eigenfunction o(x) is both an f)")(x) and an fk"+a)(X).
When n is even, the eigenfunctions are the n/2 odd eigenfunctions f"-a)(x) and
1/2n + 1 new even eigenfunctions. When n is odd, the eigenfunctions are the 1/2(n + 1)

(neven eigenfunctions f) )(x) and 1/2(n + 1) new odd eigenfunctions. The separation
of the eigenvalue problem into two smaller problems, one for even eigenfunctions
and the other for odd, is also evident in the matrix formulation (16), (18). The
matrices A, B are decomposable and (16) factors into separate eigenvalue
problems for the even and odd eigenfunctions.

Whether n is even or odd, A 0") is always an eigenvalue belonging to one of the
even eigenfunctions. For, any odd eigenfunction o(x) can be written as xe(x)
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where e(x) is even. But

R(o)
1

1 +[a x2e 2 dx]/[’ x2e 2 dx]

1
1 + [1 a 2e2 dx]/[ a2e 2 dx

R(e).

Thus an odd function never maximizes R (f). Since the even eigenfunctions for n
even are the same as those for n + 1, it is now clear that A (0 /1 A (0n as observed in
Table 1.

To derive the differential equation we first need to show that an eigenvalue
A !n never reappears as an eigenvalue A (n/2 where the corresponding eigen-
functionsf)n(x) and ]’(n/2(x) have the same parity. To prove this by contradiction,
suppose the contrary, say, ])n(x)= en(X) and f(n/2(x)= en/2(x) are even eigen-
functions belonging to the same eigenvalue A. Because even eigenfunctions for
odd degree are the same as the even eigenfunctions for the preceding degree, we
may take n to be even.

If en+2(x) E Fn, then en+2(x) is an eigenfunction for degree n as well as n + 2. If
en/2(x) does not belong to Fn, then the following argument shows that e,, (x) is an
eigenfunction for degree n + 2. First apply (20) with f(x)= en/2(x) and p(x)=
e,,(x),

(60) f en+2(x){Xa(X)-h.Xt,(x) e,,(x) dx O.

Next

(61) I x"+’{X,,(x)-X,(x)}e,(x) dx 0

because en(X) is even and xn+a is odd. Finally

(62) I p(x){Xa(X)--AXb(X)}en(X) dx =0

for all polynomials p(x)EF,. But en+z(X) does not belong to Fn; then every
polynomial in Fn+2 is a linear combination of en+z(X), xn+, and a p(x) in Fn. Thus
(60), (61), (62) combine to prove that (20) holds with/(x) e,,(x) and p(x)GFn+2;
i.e., e, (x) is an eigenfunction for degree n + 2.

Now one eigenfunction e(x), either en (x) or en+z(X), is proved to belong to Fn
and be an eigenfunction for both degrees n and n + 2. But consider (20) for degree
n +2, with [(x)=e(x) and p(x)= (xZ-aZ)e(x)6Fn+2. Since A R(e), one has
0<, < 1 and (xZ-a2)eZ(x)O(a(X)-.Xb(x))<=0. Then the integral in (20) is nega-
tive, which is the desired contradiction to the assumption that en(X) and en+z(X)
have the same eigenvalue. A similar contradiction can be derived for odd
eigenfunctions.

We may now derive the differential equation for the eigenfunctions. Consider
an even eigenfunction f(x) and take n to be the even degree for which ]’(x) is an
eigenfunction. Since f(x) is even, the condition (20) holds more generally for



DOUBLY ORTHOGONAL CONCENTRATED POLYNOMIALS 307

polynomials p(x) Fn+lo Let L(. denote the differential operator

and note that L(q) F+ for all polynomials q(x) F,_I. Thus

f L(q)(.Xa(X)-AXt,(x))f(x) dx O.

After two integrations by parts, this equation assumes the form

(64) f q(x){x,,(x)--,Xb(X)}L(f) dx O.

Also

(65) J q(x){x,,(x)-AX,(x)}f(x) dx 0

follows because f(x) is an eigenfunction of degree n and q(x) F,,_ F,,. Now
f(x) F,, butf(x) F,_e (because f(x) cannot be an eigenfunction for both degrees
n and n 2). Also L(f) is even and the term n(n + 3)xf in L(f) has been included
to make L(f) F,,. Then some linear combination L(f)-Xf(x) has degree n- 2.
But (64) and (65) show that

I q(x){Xa(X)-hXo(x)}[L(f)-xf(x)] dx 0

for all q(x) F,,-1. Either the differential equation

(66) L (f) xf
holds identically or else , has even eigenfunctions f(x)L, and L(f)-xf(x)
Ln_2. But the latter alternative has been proved to be impossible. A similar
argument rederives the differential equation (66) for the odd eigenfunctions, in
which case n in (63) is an odd number.

Solutions to the differential equation (66) can be found in the form of a power
series

kf(x Z
containing only even or odd powers according to the parity of n. The recurrence

a2(k +2)(k + 1)ck+2 [(1 +aZ)k(k + 1)--X]Ck
(67)

+[n(n + 3)-- (k- 2)(k + l)]Ck-2,

where cj--=0 for j < 0 then determines the coefficients as polynomials in X. In
general the series does not terminate. However, for special values of X, c,+2 0.
Then (67) with k n + 2 shows also that c,+4 0 and all higher order coefficients
must vanish. Thus ,t’ appears in (66) as an eigenvalue which is determined by the
condition c,+2 0 to make f(x) F,,.

A polynomial equation with the eigenvalues X as roots can be found. If
c,+2 c,+4 0, the recurrence (67) becomes a square system of linear
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homogeneous equations in. , Cn_4, Cn_2, C whose determinant, a function of X,
must vanish. For example, if n 2m, the consistency of (67) for Co, c2,’" ", C2,n

requires that

(68)

ao X flo 0 0 0 0

0 72 o12-X 2

0 0

0 0

0 0 0 0 am-1 --X m-1
0 0 0 0 ’)tm am --X

The tri-diagonal matrix here has elements aj=(l+a2)2j(2j+l), flj=
-a2(2j+l)(2]+2), yi=2m(2m+3)-(2]-2)(2]+l). The m+l roots of (68),

j 0, 1, , m, give rise to m + 1 even polynomial solutions of (66) of degree
n 2m. The other m concentrated polynomials belonging to the family fZm) are
the odd polynomial solutions of (66) with n there replaced by 2m- 1.

The eigenvalue A depends on X only indirectly. Having determined an
eigenfunction f(x) for an eigenvalue X of (66), one obtains A from A R (f).

The exterior problem with Ia 1, a also has a differential equation, as given
in (13). The proof is simpler and requires showing that no A can be an eigenvalue
for both degrees n and n + 1. We omit the details.

7. Asymptotics for the differential equation (12). We now investigate the
solutions of the differential equation

(69)

d [A(x)-x] +(x-n(n + 3)x2)f =O,
dx

A(x)=_(1-x2)(a2-x2),
as n becomes large. We seek solutions that are continuous for all finite values of x.
Our techniques follow closely those used in [-9] to investigate the asymptotic
behavior of the prolate spheroidal wave functions. Different asymptotic expres-
sions will be found for (69) in different intervals on the x-axis. Much of the analysis
will be concerned with joining these separate pieces so that they correspond to a
single continuous asymptotic solution. We shall frequently omit details of
straightforward calculations. We proceed in a purely formal manner without
investigating the convergence of assumed series solutions.

LEMMA 1. If

and f g/4L, then

dxk dx J+Mf=O

dx -+4\L] ---jg O.
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LEMMA 2. I

dx 2 nE(x) + nF(x) + Y, G(x)
o n

g=O

with E, F and the G’s independent of n, then

F dx)+ exp( I Edx) exp (1/2 I-1 [c exp(-nIEdx) exp(-1/2f- c2 ng

for fixed x, not a zero of E.
Lemma 1 is proved by direct substitution and differentiation. Lemma 2, the

WKB approximation, is established formally by substituting g=e in the
differential equation to find

n [w + n[w"-F]- O.
0

Write w=Yo wj(x)/n here with wj independent of n. Equate to zero the
coefficients of separate powers of n. The resulting equations can be solved readily
to give explicit forms for w0 and Wl. The Lemma follows directly.

We return now to investigate (69) near x 0. The substitution x /a/2nt
and division by 2na yields

=o.

Assume the series solution f Y0 uj/n and x/2na Yo cj/n with the uj and
independent of n. One then finds Uo Dj(t), Co j + for j 0, 1, 2,. . Here
is the Weber function. See [10, vol. II, chap. 8]. We thus have

(70) f(t) Dj(t) + O(-),
(71) X -=Xj (2] + 1)na + O(1).

The remainder in (70) is O(1/n) for fixed t, that is, for x O(1/4n). Investigation
of the higher order terms, much as is done in [9, pp. 111, 112 and 119] shows that
for

1
0X 1/3,n

(72)

f(x)=-fo(x)=Dj(2f2x) + O(n--1/3).
The Weber function Di(t) has precisely zeros.

We note that from the asymptotic expansion for Di(t) (see [10, vol. II, eqs.
(8.4.1), p. 122]) we have

(73)
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which gives the value of the asymptotic solution (72) at the edge of its range of
validity.

Equation (71) gives the asymptotic form for the eigenvalue X in (69). This in
turn permits us to find asymptotic expressions for [ in ranges other than the one
(72) close to the origin. Indeed, the substitutions (71) and f= v/4 into (69)
reduce it to

d2t3 P(x)
dx 2 (1 xZ)Z(a2_ x2)2v 0,

where P(x) is a polynomial of degree 3 in x 2. For large n one finds

,) x )(x
0(74) dx--5-n (l_xZ)2(aZ_x

where

X =a -5+0
(75)

where A and B are positive and independent of n. For x 0, the coecient of v in
(74) is positive only in the intervals 0 N x < xo and x < x < x and the solution can
exhibit oscillations only in these ranges. As n increases, the turning points x and
x approach a and 1, respectively, which are singular points of (69). Thus we are
led to make separate investigations of (69) between each pair of turning points and
in small neighborhoods of a and 1.

To investigate the solution of (69) between x0 and x, we substitute (71) for
in (69) and write g/ to obtain

dZg [ 2xe [312-(2] + l)a] ]dx 2 n +n. A
+O(1) g=0

on using Lemma 1. From Lemma 2, withE=and F= [3x2- (2] + 1)a]/A,
1 a 2we find Edx log[l+ -2x:-ZaL [(F/E)dx=log[l+a2-

2x 2]+5(21+1)log[(2a 2 (l+aZ)xZ+2a)/x2], so that

(76)

g xJ[1 + a- 2xZ- 2v/-]-’+3/4
A /412a2- (1 + a2)x 2 + 2a4-]2j+/4’

1 1
1/3---x =a --.

Here, of the two terms in Lemma 2 we have chosen the one that decays with n, as
we must if we are to have agreement with (73) at x u/n 1/. Indeed, setting
x u/n/ in (76) and using the fact that [l+a2-2x2-2x/]=
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(1- a)2[1 +x2/a + O(x4)], one finds that

(n__i73/3) (1-a)-2"+3’/2
f

U

klnJ/32(ZJ+l)/Za(Zj+Z)/21g e_(1/2)(uZ/a)nl/3"

Comparison with (73) yields

(77) k 23j+a)/2aJ/2+l(1 a)2n+3)/2n/2.
For x a v/n, one finds from (76) after some straightforward asymptotics,

v) klai(1-a2)-2"+3/4 exp/2av/(1-a2)n 1/2(78)
fl a - [(l_a2)2a(v/n)]l/4[a2(l_ a 2)](2/’+1)/4

To investigate (69) near x a, it is convenient to set y /a2_ x 2 to find

2 2 d2f i[ 2( 2) 2) df-a 1-a +y2(2-Sa +4Y4]
dy

(a2 y2)(l_ a +y ,z2 Y(79)
+[x-n(n +3)(a2-y2)]f =O.

Now let y t/n, use (71) and divide by n2a2(1-a 2) to obtain

(80) d22 ( )dtf+l df 1 1
dt l_aZf+O - =0.

We thus are led to f(t) Io(t//1-a2)+ O(1/n) with I0 the usual Bessel function
notation. In terms of our original variables, then, we take

(Ja2-x2’ 1
(81) f2(x) k2Io l_a 2 ], a--<=x <-a.

The asymptotic expression for I0 ([10, vol. II, eq. (7.13.5), p. 86]) shows that

V 2av2)f2(a --) k2Io(n/l a

n exp
2
n"’k2

2a 1-a
1/2

Comparison with (78) gives

(82) k2=Tra/221/2a-1/2(1- a 2)-(n+j+3)/2nl/2kl.

For x->_ a, we write z x2- a2-- iy. When the obvious changes are then
made in (79) and (80), one finds

[ /x2--a2 1
(83) f3(x)= k2Jnv l-a2) a <=x <a +--’n
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which joins with2 at x a. The asymptotic formula for Jo ([6, 9.2.1, p. 364]) gives

(84)

f3 a +-d kJo x/n
l a e

(1-a2)l/4n-1/43 1/4 [n/2a/9_]ke 2av cos
1 a e

For a -< x -< 1, we define

(X) (1 X2)(X2- a 2) A (x)

and rewrite (69) in the form

(85)
d (df+[n(n +3)x2_x]f=O.
dx \ dx/

Set f g/V/-. Lemma 1 yields

d2g [n(n + 3)x 2 _na(2j+_ 1)+O(1)]g=0.A

We next invoke Lemma 2 with

E i_f_x F
(2j + 1)a 3x

Straightforward integration yields

2n + 3
arcsin 0

2j + 1
arcsin qo + p](86) k4 cos

4 4
f4(x) G/dl/4

where

2X2-- (1 +a 2) (1 +a2)x2-2a2

O(x) (x)
-a x2(1- a 2)

Here p and k4 are constants which we proceed to determine by making (86) agree
with (84) at x a + v/n. We find by straightforward expansion that

v 4ave) 1
0 a+ =-l+(1-a n

0 a + -I+ 2) ---- Oa(1-a n
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Thus, using the formula [6, p. 81, 4.4.41]

we arrive at

"/7"
karcsin (l-z) =-x/z[1 +Z akz ],

[ /2av 2n-2]+2( _) ]cos x/-n l_a2+ 4 +P

G(1-- a 2)1/4(-) 1/4

Comparison with (84) gives

(87)
k4 7r-1/221/2al/2(1-a2)l/2n-1/2k2,

p (n -j).

We use the solution (86)-(87) for a + 1/n <= x <= 1 1/n. The value near this latter
point is readily computed to be

k4 cos n
1 a 2 +

2n+3-2j-17r ]-+(n-j)
4 2

x/(1- a2)1/4(2v) 1/4

Near x 1, we write z /1-x2 and (85) becomes

2d2f [1-a 2

(1-z2)(1-a2-z ’-z 2+ z

]
+(2a2- 5)z + 4z3|

dz3

(89)

+[n(n +3)(1-zZ)-x]f =O.

Let z t/n, use (71) for X and divide by n2(1-a 2) to find

dt2 t-+l_f+O - =0.

Reasoning as before, we set

(90) fs(x) ksJo n
1- a

1--_<x=<l.
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The asymptotic formula for Jo gives

f5 1- k5 7r’n-1/42-1/4(1 a2)1/41)-1/4 cos

Comparison with (88) shows that agreement is possible only if n-j is even, say
n-j 2m, and if

(91) ks 1)"2-1(1 a2)-l/2nl/27r 1/2k4, n-j=2m.

When x > 1, the solution (90) passes into

f6(x)= ksIo n .l_a2
1

l_<_x<__l+ -,

which has the asymptotic value

( ) n-1/4(1--a2)1/22-1/4 / 2v
(92) f6 1 + k5 ",/-2v 1/4

exp Vn
1 a 2"

When x _-> 1 + 1/n, solution proceeds very much as in obtaining (76), but now
we must take the solution that grows with n and so find

(93)

f7(x) k7[2v/-- + 2x2__ 1 a 2](2n+3)/4[(1 + a2)x2- 2a2- 2awf-](2j+1)14

A 1/4xJ+l

1
x_>_l+--

n

Evaluation at x 1 + v/n gives

(1 a 2)(2n +3)/4(1 a 2)(2j+ 1)/4

(94) f7 1+- ---k7
(1--a2)1/4(2) 1/4

exp
1 a 2

From (92), then, it follows that

(95) 1/22-1/2 2)-(n+j+l)/2n-1k7 7r- 1-a /2k5.

For large x, one finds from (93) that

(96) f(x) fT(x) k72"+3/2(1 a)+1/2x’.

The preceding results .are summarized by (97). With j and x fixed, and n -j
even, for large n,
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(97)

DA \ 2--nx’),
XJB-(2n+3)/4

kA 1/4c(2j+1)/4,

x2_a 2,

kSo( ,,V _a ),

12n+3 2/’+1cos,- arcsin0-
4

k4’ x[_A]a/4

ksJol,nV 1-,

’X2- 1’kslo( nV
k7[-_

B](2n+3)/4[- C](2]+1)/4
A 1/4xJ+l

A ---(1-xZ)(aZ-x2),

arcsin g, + (n -j)-)

0 < X < n -1/3

/,/--1/3 X

a--_-<x =<a,

1
a <=x <_a + -,

1
a+-<_x<__l--

1
--_<x_< l,

1
l_<x_<l+ -,

1
1 +-=<x,

1

B-- 1 +a2- 2x2- 24-,

C=_2a2-(1 + aZ)x2+ 2a,f-,
0 =[2x2-(1 +a2)]/(1-a2),
q =[(1 + aZ)x2- 2aZ]/(x2(1 a2)),

Dj(x), the Weber function, Jo and Io Bessel functions. The constants are given by

(98) k ’r/" Y1/22 Y:’/2a Y3/2(1 a) Y4/2(1 + a) YS/2n Y6/2( 1) Y7/2

with values in the table in (99).

Y Y2 Y3

(99)

3j+1

3j+2

3j+3

3j+l

3j

j+2

j+

j+2

]+2

j+2

2n+3

n-]

n-]+l

n-]

-2j-1

0

-n-j-3

-n-j-2

-n -j-3

-2n-2j-4

j+l

1

j+l
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(n) for large n and8. Derivation of (9). The asymptotic formula (9) for A
fixed j for the symmetric interior problem can be derived by direct integration of
the results given by (97), (98) and (99). One has

(100)

We indicate how these integrals can be evaluated giving a minimum of detail.
Proceeding in sections as given by (97)-(99), we have

Lo IO
rt-1/3

[_frl)(X)]2 dx""IOrl--1/3U(X) dx

(101)

Here we use (8.3.23) and (8.4.1) from [10, p. 122] to evaluate the integrals.
To bound

f a--1/n f a-1/n 2] --(2n+3)/21ogB

(102) L1--" [fn)(X)]2 dx k x e

.Jig--l/2 .]/,--1/2 A 1/2c(2j+1)/2 dx

we compare y=logB(x)=log[l+a2-2x2-2x/(1-x2)(a2-x2)] and z(x)---
log (1-a)2+log [1 +x2/a]. One finds y(0)= z(0) and that for x =>0,

y’(x) 2x//(1 -x2)(a2-x 2) >- z’(x) 2x/(a + x 2) _->0,

so that for x >-0, z is nondecreasing and is not greater than logB. We thus
overbound the integral on the right of (102) by replacing log B by z(x). Each
factor in the integrand is then monotone and evaluating each factor at the
appropriate endpoint, we upper bound the integral by

f x2ie-(n+3/2)z(X)dxa-1/n
X 2Se-(n+3/2) log 13 dx<

In-1/3 A 1/2C(2]+1)/2 dn-./3 A (x)ll2C(x)(2]+1)/2

a 2] e --(n+3/2)z(n-1/3)

<=aA(a 1/n)l/2C(a)(2i+x)/2

l’x/- e /3/a’
).

The lower limit in (8.3.23) should read -oo (of. [11, p. 351]).
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Since from (98)-(99), k=O((1-a)2’*+3), we see that asymptotically L1-"
O(4n e-" 1/3/a) and hence is negligible compared to L0.

For the next region we have simply

-1/n
[fT(x)]2 dx k fa-1

<-k_l-I_ 0 n )n n(1-a

.k /-a:z 8a
2,rrn 3/2 2a

exp x/
1 a

on using first the fact that Io(x) is monotone increasing, and next using the
asymptotic form for Io(x) for large x [10, (7.13.5), p. 86]. But from (98)-(99),

l+a

so that L2 is also much smaller than L0. For the denominator of (100) we now have

(103)
[f")(x)]2 dx Lo+ L, + L2 L1 1 + o

We now proceed to estimate the numerator of (100).
One has

L3 =- Iaa+l/n )"(x)]2dx--k Jo n ..1,2 dx <=kn
since 0 _--< J(x) -< 1 for all x. Thus

l+a]]L3=O(k)=O(exp( -n log
1_-//

In like manner

-1/n
f")(x)]z dx k I i

n[ 1 a2) dx

l+a]=O(k)=O(exp(-n log
1_--1)
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The rnain contribution to the numerator of (100) comes from
1--1/n

[jn)(x)]2 dxL4
"a+ l/n

(2n+3
l-1/n cOS2 \’ 4

k]oa+l/n
2]

arcsin 0 arcsin q + (n-j))4
X----1/2A]

dx

21 fa
1-1/n dx

k4- +l/n x4(1-xl(x-(1 +aZ)xZ--2a 2

xZ(1-a2)
1_21
k4aa arcsin

1-1/n

a+l/n

"iT 2 O(n 1,+a

Using the results just obtained for L3 and Ls, we find that

[f")(x)]e dx L3 +L4 +L5 L5 1 + 0 -(104) ---ak[1+ O()]
7rE3+1a]+l /1--)n+l[ (1)]1+0 X

Nnally, combining this result with (100) and (103), we have

(n). 23’+2aJ+a/2..,+a/2{1,an+1[ (1)]1-h (1 +a)(1-a2)7! ’’ kl +a} 1 +0 -which is (9) We note that for the function !") given asympotically by (97)-(99)

(105, I_11
from (103) and (104).
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SOME EXPANSIONS AND CONVOLUTION FORMULAS RELATED
TO McMAHON’S MASTER THEOREM*

L. CARLITZ"

sion
Abstract. The writer has previously applied MacMahon’s master theorem to obtain the expan-

mn
(*) X (rl +O" (r. +.)ou Un

,,n=o m m

etlXl+’"+tnXn(A(x,x, ,x,))-1,

where rfij Y.=I mao (]= 1, 2,..., n), A(xl, x2,’’’, x,,) det (6q-xiaq) and

(**) u, x, exp {- aqx,} (i=l,2,...,n).

In the present paper a number of related results are obtained. These include the inverse of ** and
certain convolution formulas, one of which can be viewed as an n-dimensional extension of Abel’s
generalization of the binomial theorem. In addition "factorial" analogs of these results are also
derived.

1. Introduction. Let

(1.1) A (aii) (i, ] 1, 2, , n)

denote an n n array of real or complex numbers and put

(1.2) X Y. aqx (i 1, 2,..., n).
j=l

MacMahon’s master theorem [6, pp. 93-123] asserts that if m l, m2,’" ", mn are
arbitrary nonnegative integers, the coefficient of x’lx’... x" in

,-??1,
-’-2 Xn is equal to the coefficient of x’lx. xn in the expansion of

(A(Xl, x2,""", x,))-1, where
(1.3) A(x 1, x2, , x,) det (6q xiaq).

The writer has applied this theorem to prove the following result [1]:

),,.u’...u,Z (fill + O 1)ml (ff/n + On
1,’",mn =0 m mn

(1.4)
eaXl+’"+a,,x,,(A(Xl, X2, Xn))-1,

where al, O2," an are arbitrary and

(1.5) rhi m,aj (] 1, 2,..., n ),
i=1

* Received by the editors December 29, 1975.

" Department of Mathematics, Duke University, Durham, North Carolina 27706. This work was
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In a letter o the writer, I. J. Good has indicated a proof of (1.4) using the
n-dimensional extension of the Lagrange expansion [2]. Good had proved the
master theorem in this way in [3].

In the present paper we consider a number of related results. In the first place,
we shall obtain the inverse of (1.6). Since the results for arbitrary n are rather
complicated it seems advisable to first treat the case n 2 and then give a brief
statement of the general situation. Thus we shall show in particular that if

(1.7) u X e -ax-by -cx-dyv=ye

where a, b, c, d are arbitrary, then

x= , bm(am+cn)’-l(bm+dn)n-lu
m=l n=0 m!n!’

(1.8)

Y Z Z cn(am + cn)’-(bm + dn)"-1
u’v

m=0n=l re!n!

We also obtain certain convolution formulas, in particular,

(bro + cs + ce)(ar + cs + a
r=0 $=0 /’ S

(1.9) (a(m-r)+c(n-s)+a’)m-r(bm +dn

(am + cn + a + a’)" (bm + dn + +’)".

For the corresponding results involving a single summation see [4], [5], [8, Chap.
4]. For the general situation see Theorem 3 below.

We may evidently view (1.9) as a two-dimensional extension of Abel’s
generalization of the binomial theorem [8, Chap. 1].

In the next place we consider "factorial" analogs of the above. To begin with,
we have the following analog of (1.4):

Z (fft+Ol)ml"’’(fftnWOn)m, u71"’’un
ml,..-,m, =o m mn

(1-1- Xl)ca (1 -- Xn)n(A(xl, X2,..., Xn))-1,

where rhj, A(Xl, X2,""" Xn) have the same meaning as above,

(a),,=a(a+l).. (a+m-1)

and

(1.11) uj=xi I-I (l+xi)’’j+%’ (=l,2,...,n).
i=1

Corresponding to (1.7) and (1.8), we have the following result. Let

U=X(I+X)-a(I+y)-b,
(1.12)

v=y(1 +x)-C(1 + y)-a.
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Then

(1.13)

x= Z ooZ b (am+)(bm+dn)u v,
m=l,,=obm+dn m -1 n

m=O n=l am +on \ m n 1

The factorial analog of (1.9) is given by

(1.14)

ar+cs+d-1 br+ds+fl-1 Am-r,,-s(a’,fl’)
r=O s=O r s

_(am+cn+a+at-1)(bm+dn++’-l).m n

we have also

(1.15)

where

Y E A,,s (a, fl)Am_r,n_ (Ol’, ’) A,,,,, (a + a’, + ’),
r=Os=0

(1.16) Am,, (a,/3)
bma +cn +a (am + cn + a) (bm + dn +)(am + cn + a)(bm + dn + m n

For the general case see Theorems 7 and 8 below.
A curious result implied by (1.7) and (1.8) may be noted. If we take a d 0,

(1.7) becomes

(1 17) u xe -by, 1) ye

while (1.8) becomes

(1.18)
x= E Y (cn)m-’(bm)"u’v"

m=l ,,=0

)n-
umD

Y Z Z (cn)m(bm
m=O n=l m!n!

Similarly (1.12) and (1.13) reduce to

(1.19) u x(1 + y)-b, v=y(l+x)

and

(1.20)
1( cn )(bm)my,,x=YY- u

m=ln=om m-I n

y=Y. Y- uv,
m=On=l /’/ m n-1

respectively.
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2. The case n = 2. We have

(2.1) , (am +cn +a)"*(bm +dn +)

where

e +ty/A,

(2.2) A A(x, y) 1 ax dy + (ad bc)xy

and

(2.3) u --xe -ax-by v y e-cx-dy

Differentiation of (2.1) with respect to a and/3 gives

E Z (am +cn +ot)m-r(bm +dn
(m -r)!(n-s)!

--e

Since, by (2.2),

xry 1 r+l ry,+l bc)xr+ay+:-{x y ax y dx + (ad 1},

it follows that

xry e’c+ty Z (am + cn + a)m-r-l(bm + dn

uml.)
{(am +cn +a)(bm +dn +)-a(m r)

(m -r)!(n -s)!

.(bm+dn+)

-d(n-s)(am +cn +a)+(ad-bc)(m-r)(n-s)}.

The quantity within braces {. } is equal to

(ar + cn + a)(bm + ds + )- bc(m r)(n s),

so that

(2.4)

(2.5)

xrye’x+ty= Z {(ar+cn+a)(bm+ds+)-bc(m-r)(n-s)}

(am +cn +o)m-r-l(bm +dn _.[..)n-s-1
Urn1)

(r, s >--_ 0).
(m -r)!(n -s)!

In particular, for (r, s) (0, 0), (1, 0), (0, 1), (2.4) yields

e+’y (bma + cnfl + afl)(am + cn + a)m-1
m 0

(bm +dn ..[_)n--1
uml)n

m!n!’
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(2.6)
xex+ty Y {(a+a)(bm+fl)+(b+fl)cn}

m=l n=O

m(am +cn +a)"-Z(bm +dn +fl),-1 umv"re!n!’

Ye+ty= Z Y {(d+fl)(cn+a)+(c+a)bm}
(2.7)

,,=0 ,=1

n(am +on +a)’-l(bm +dn +fl),-2 ure!n!"
Specializing further we take a fl 0. Then (2.6) and (2.7) reduce to

(2.8) x Z Y’. bin(am +cn)m-l(bm +dn)"-1
uml)

m=l n=O m!n!

and

(2.9) y , , cn(am + cn)’-l(bm + dn)"-lu
m=On=l m!n!’

respectively. To sum up, we state
THORZM 1. Given

(2.1O) u X e -ax-by v y e-CX-dy,

then (2.4), (2.5), (2.6), (2.7) hold, where a, b, c, d, a, are arbitrary. Moreover (2.8)
and (2.9) furnish the inverse of (2.10).

By means of (2.1) and (2.5) we obtain certain convolution formulas. In the
first place, if we replace a,/3 in (2.5) by a’,/3’ and then multiply each side of the
resulting identity by the corresponding side of (2.5) we get

(2.11)

(2.12)

m n )r-1, (bra + csfl + afl )(ar + cs + a
r=O s=O r s

(br+ds+fl)-1" (b(m-r)a’+c(n-s)fl’+a’fl’)
(a(m-r)+c(n-s)+a)’-r-l(b(m-r)+d(n-s)+fl)

(bin (a + a’) + cn (fl + fl’) + (a + a’)(fl +’)(am
(bin + dn + + fl’)"-.

It follows similarly from (2.1) and (2.5) that

Y’, bra + csfl + aft ar + cs + oz br + ds
r=O s=O r s

(a(m-r)+c(n-s)+a’)m-r(b(m-r)+d(n-s)+fl’)

(am + cn +a+’)"(bm + dn + fl + ’)".

Note that when b c 0, (2.10) becomes

(2.13) u =xe *) =ye-dy



MAcMAHON’S MASTER THEOREM 325

while (2.8) and (2.9) reduce to

(am),,,-1

(2.14) x Um,
,,,----1 m!

y= Y. (an)
n=l

in agreement with [7, p. 125, no. 209].
If we assume only that b 0, (2.10) becomes

(2 15) u x e -ax, v y e -cx-dy

while (2.8) and (2.9) become

(2.16)

(am)m-1
X --Um,

m-- rn

Y= Z Z cn(am +cn)m-a(dn)"- u

m=O.=a m!n!"

3. The general case. We have, by (1.4),

(3.1)
(if/1-" O1)rex’’" (l’ln "’Oln)mnuT’’’" un

ml,...,mn =0 m mn
e’lXl+"" +OtnXnm--

with A A(X1, X2,’" ", Xn). Differentiation with respect to the ai gives

(3.2)

where

mrt

)m.-,o(1"1-’O1)ml-rl (ff/n +fin
m,=r, (ml--rl)!"""

Xrll Xn alXl+...+anXnA-1 (rl, r2," , r,, -->_ 0),

mi=ri ml=rl mn=rn

Consider the operator

(-a..0-) (i, j l, 2, n)(3.3) 1 det 6q ’J0
which is obtained from A(xl, x2, , x,) by replacing xi by 0/0ai. Also put

A(Xl, x2, x,,) Y. A (rl, r,,)xrl1" x,

where on the right each r 0 or 1. Thus, by (1.3) and (3.3),

or+’"+r,
12 A (rl, r,,) oog rnOOgn
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Thus (3.2) gives

e 1-i-- nt-OnX :
ml,’",mn =0

(r/Ttl "+’Ofl)rex’’" ]vl 2t- Oln m- uT U

ml!’’"

2 C(ml,’’’,
ml,’",mn =0

(/1 "-Of1)ml"’" (n 3f’Oln)mnua’"
ml! ran!’

where

C(m l, m,) 2 A (ra, rn)
O rhn nt- ten

aij-det o i+ai

H (ff/i "[- 0i)-1" det ((r/7/i-+-oli)(ij- miaq).
i=l

If we put

(3.4) D(m1, m,) det ((/i "" Ogi)i] miaq),

it therefore follows that

(3.5)

eZlXl+’"+tnxn E
ml,...,m =0

U’lo Un

We now differentiate (3.5) with respect to O and then put a Of 0.
Since

D(ml,’’’, mn)-- 0 (ml,""", m, ->0)

when al a 0, it accordingly follows that

(3.6)
ml,’",mn =0

Ci(ml,’", mn)(fftl -t-o1)ml-1 (ln 3r-Oln)ran-1

(i= 1,2,. ., n),

where C (m 1, ", m,) denotes the cofactor of the element in the (i, i) position of
the determinant

de (rfij6jk miak (j,k=l,2,...,n).

It is easily verified that, when n 2, (3.5) reduces to (2.5), while (3.6) reduces
to (2.8) and (2.9).
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We may state
THEOREM 2. Given"

(3.7) u x exp {- aqx} (i=l,2,...,n),
]=1

where

A (aq) (i,j=l,2,...,n)

is a square array of real or complex numbers. Then (3.5) and (3.6) hold; equation
(3.6) furnishes the inverse of (3.7).

Combining (3.1) and (3.5) we obtain the following theorem.
THEOREM 3. We have

(3.8)

mi )rn--1D(rl, ., r,)(F1 + a 1)rl-1 (n + an
ri =0

(/1--" --fil)ml-rl (ln--e -’I-fin)mn-rn

=(if/1-1-O1 "+" 11)ma’’" l’ln -[" Ogn "[-n mn m m.
_
0

(3.9)

D(rl,’’’, rn)(?l+Cl)q-l"’" (Fn +Cen)
ri=O

Dt(ml-r,.." m,-r)

(if/l--1-[-1)ma-r’-I (ff’ln--n --[--n)mn-rn-1

=Da+/(ml,""", mn)(ff/1 +al +ill)m’-I (fftn +an +fin)ran-1

(ml,""", m. ---->0),

and

th Y’, miaij, fj riaq,
i=1 i=1

De (m 1, m,) det ((rl -Jr- oli)(ij miaq) (i,j= 1, 2,...,n)

ri=O rl=0 rn =O

4. Factorial analog of (1.4). It is convenient to first treat the case n 2. We
consider the sum

(4.1)
(am +cn +a)m(bm + dn -[")n xm----y

(1 +x)-am-cn-m-’(1 +y)-bm-an-n-.
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Thus

(4.2)

say. Since

it follows that

Since

(am +cn +a).,(bm +dn +)n xmy--’n
rn

j,k=O
(_ 1)j+k (am + cn + rn + a)i(bm + dn + n +8)kxy k

nn (_l)i+k m n
(a(m-j)+c(n-k)+a),,,

,.,.=o .=Ok=O j k

(b(m-l")+d(n-k)+).

(7.)(7)Z (--1)m+n-j-k (aj+ck +a),.(bj+dk +fl).
m,. =0 rn !n i=o k =0

m,n=O m!n!

(a + b)m ., (a)r(b).,-r,
r=O r

m(m)Sin,. Z (-1)m+"--k Z (aj)r(ck +a).,
j,k r=O r

s=O S

()() 0 (7)rn nZ (- 11 (aj)r(bj)
r=o =o r s

2 (-- (ck +,_(ak+_.
k=O

(7)o (-1)-i (aj)(bj) 0
j=

(m > r + s)

and

(--1)"-k(n)(ck+a),. (dk+), =0 (n>m+n-r-s)
k=O

it is clear that we need only consider those terms for which r + s m. Moreover,
when r + s m, we have

(-1) (a])(b]),_ m ab-,
]=0

k=O
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Hence

Sm,,, m!n!
rq-$

s=0 S S

Substituting in (4.2), we get

m,l =0

Xmy
)--am--cn y)-bm-dn--n-O(am+cn+ce)m(bm+dn+),,m!n,!(l+x -m-’(1 +

min (re,n)

E x"y" 2
m,n =0 =0

a -*(bc)*d
S S

E (bcxy) E (ax E (dy)"
=0 =0 S =0 S

(bcxy)S(1-ax)-S-l(1-dy)-s-1
s=0

=(1-ax)-l(1-dy)-l{1 bcxy } -1(1-ax)(1-dy)

{ 1 ax dy + (ad bc)xy}-1.

We have therefore proved the identity

(4.3)
(1 + y)-t,m-a,,-,,

1
=( +x)’( +y)

where

(4.4) A A(x, y) 1 ax dy + (ad bc)xy.

If we replace a, b, c, d, a,/3, x, y by their negatives, (3.4) becomes

(4.5)
(am +cn +a)(bm +dn +) ,,,y,, )am+cn--m y),,,, +a,,-,,E x (1-x (1--

m,n =0 rn n

1
S(1 x)-’ (1 y)-t.
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Turning now to the general case, we take

(4.6) S---mi=Oj=l

x?’
=o]= m]! =o

mn
(4.7) E xT1.

En_.._Sml,.O mrs,
m, =0 m li mn

say. Here of course

rh] Z miaq, k] kiaq
i=1 i=1

(j= 1, 2,...,n).

Now

(4.8)

where

Y’, (mlh’’’,
Zimq mj

(k,.,a,q + a])

(kn-lan-1.])m._la

(rl, r2, rn)=
(rl q- r2 +" + rn)!

It follows that

mj

j= ki=O \ ki / ai mij =0

unless

Y, mq >--mi 1, 2,’’’, n).

Since, by (4.8)

E mq=mi (j= 1,2,. , n),
i--1

it is clear that

ml] mi (i 1, 2,..., n).
]=1
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The remainder of the proof is like that of 3 in [ !] and will be omitted. Thus
we finally get

THEOREM 4. We have

(]1-’-Ol)ml""" (ffn
mi =0

(4.9) 1

where

and

a(x, ,x,)

lg71 U

ma!

(1 +xa).. (1 +x,)%

A(x,-.., x,)=det (6q-xiaii)

(4.10) u x l--[ (1 + xi)-%-% (i 1, 2,. , n).

Clearly this result reduces to (4.3) when n 2.

5. Factorial analogs (n = 2). We shall first obtain analogs of the results of 2.
To do this we apply the difference operators

Af(a) f(a + 1)-f(a), h/() =f(fl + 1)-f(fl)

and generally A:A AA:. Since

A(x +Cr)m m(x +a + l),_,

m!
Ar(x -f- o )m ---(X + Ot A- r)m_

(m -r)!
and

A,(l+x)"=x(l+x)’,

it follows from (4.3) that

(5.1)

where

(5.2)

mra(l-+-X) --xr(l-[-X)’x,

umvxry
(I+x)(I+Y)t= E E (m r)!(n s)t

(am+cn+a+r)’’

(bm + dn +

U x(l ..-x)--a--l(1.- y)-b

v=y(l+x)-C(l+y)-a-a.
Exactly as in the proof of (2.4), (5.1) yields

xryS(l +x)’(l + y)t3"

(5.3) {(ar+cn+a+r)(bm+ds++s)-bc(m-r)(n-s)}

(am +cn +a +r+ 1),_r-l(bm +dn +fl +s+ 1).__

umv
(m -r)!(n -s)!’
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where it is understood that

1
(x+ 1)_1 =-.

X

In particular, for (r, s)= (0, 0), (1, 0), (0, 1), we get

(5.4)
(1 + x)’(1 +y)t

, (bma+cnfl+afl)

(am + cn + a + 1)_(bm + dn + fl + 1)n-1 re!n!’

x(l+x)’(l+Y)t= Z Y {(a+a+l)(bm+)+(b+)cn}
m=l n=O

(5.5)

m(am+cn+a+2),,_2(bm+dn+ + umD
re!n!’

Y(I+x)’(I+Y)t3= ., ., {(d+fl+l)(cn+a)+(c+a)bm}
m=O n=l

(5.6)

n(am +cn +a + 1),,,_a(bm +dn +fl +2)n-2
uml)

re!n!

Specializing further, we take a fl 0 in (5.5) and (5.6) and we get

(5.7)
x bm(am +cn +2),_l(bm +dn + 1),-1

m=l n=0

um)

y Y. . cn(am + cn + 1),,_l(bm + dn +
m=On=l

u ml)

Changing the notation slightly we have
THEOREM 5. Put

Then

U=x(l+X)-a(l+y)-b

v=y(l+x)-C(l+y)-a.

(5.9)
x= , . b (am+)(bm+dn)u v,,.=,=obm+dn m -1 n

m=O n--1 am + cn
(am+cn)(bmn +dn]umv, m ’1

Note that when b c 0, (5.8) becomes

u=x(l+x)-a, v=y(l+y)-a,
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while (5.9) reduces to

X 2
m=lm m-1 n=l/’/ n-1

v,

in agreement with [7, p. 125, no. 211].
Substituting from (5.8) in (5.9) we get the following pair of identities.

y, (-1)=+"--*
r=l s=O br + ds r- 1 s

(ar+m-r-1)(bs+n-s-1) 6,.6.o,
m-r n-s

(5.11)

C (ar+cs)(br+Z Z (--1)m+n-r-s
r--O s=l ar + cs r s- 1

(ar+m -r-l)(bs +n-s-1) mOtn 1"m --r n --S

In the next place rewrite (4.3) and (5.4) in the form

(5.12)
. (am+cn+a-1)(bm+dn+fl-1) 1
Z umv" (I+x)(I+)t,

m,,i =o m n Y

(5.13)
m,n =0

Am,,,(a, fl)u mY" (1 +x) (1 + y)t,

where now

Am.,,(a, fl)
bmo +cn +a (am + cn + cr) (bm + dn +8)(am + cn + a)(bm + dn + fl m n

A (1 --(a 1)x)(1 -(d- 1)y)- bcxy

and u, v are given by (5.8). The formulas (5.12), (5.13) evidently imply the
following theorem.

THEOREM 6. We have, [or arbitrary a, a’, , ’,

(5.14) Z A,,+ (o, )Am_r,n_ (o’, ’) Am, (or -4- o ’, fl + ’),
r=O =0

s=O r s

(am-cn +ce +a’- l)(bm +dn +13 +13’- l).
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6. Factorial analogs (n arbitrary). Applying the operator Ardl A,. tO (4.9)
we get

(6.1)
A(x,... ,x,)

Xrll x,"(1 + xa)1... (1 + x,)"

mi=rij

where the notation is that of Theorem 4.
Define the operator

(6.2) f det (6q aqA,,,) (i, j 1, 2,. ., n),

obtained from A(x1, , xn) by replacing xi by A,,,. Then exactly as in the proof of
(3.5),

(1 -q-x1)1 (1 +x,)- :a Z ",:(m
=Z2a(rl," ",r,)aZ" a2: (m.+

where each ri 0 or 1. The inner sum is equal to

where

u?, (, +r +)m,_,Z, A (r, , r,,)
i= (mi ri)’.

mi fi (j+mj+cg-1)=Y’.a(rl,’’’,r,) 1-[
r i= mi -t- ]=1 m]

=D(ma,...,m,) fi (ffti+ai)-. fi (mi+m+%-l)u’
i=1 j=l m

=D(m,...,m,) fi (mid-mi-k-ozi)-1" fi (mJ-4rm]-l-g])u.im
i=1 ]=1 mj

(6.3) D(m, , m,) det ((ff/i + Oi)ti] miaq).

Thus we have

(6.4)

This result can be simplified slightly by replacing the array A (aq) by

A I (aq 6q).
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Then (6.4) becomes

(6.5)

Note that the coefficient D(ml,..., mn) does not change.
Applying the operator As, to (6.5) and then taking a an 0, we get

(6.6) Xi
m=O j=l mi

(i= 1,2,-..,n),

where, as in (3.6), C(ml, , ran) denotes the cofactor of the element in the (i, i)
position of

det (rhj6jk --mjaik) (, k 1, 2,..., n).

We may state
THEOREM 7. Given

(6.7) u, x, [I (1 +xj) (i 1, 2,..., n),
=1

then the x are determined by (6.6).
Finally, to state convolution theorems, we make use of (4.9) and (6.5). It is

convenient to rewrite (4.9) in the form

(1 +X1)al""

where the ui are now defined by (6.7) and

Ao(X1,""" Xn)=det ((1 +xi)6q-xiaq).

Also for brevity we put

THEOREM 8. We have, for arbitrary cei, fli,

(6.9)
",rn(Ol, gn)Aml-rl,...,mn-rn(l, n)

ri =0

---Am,,...mm,(Ol+l,"’, On +fin),
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(6.10)
B,,...,mn(Oll "Jc-[l,’’" tTg --In).

It is easily verified that, for n 2, (6.9), (6.10) reduce to (5.14), (5.15),
respectively.
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LINEAR CONTINUOUS OPERATORS IN Lp AND
GENERALIZED RANDOM PROCESSES:

A KERNEL REPRESENTATION*

REUVEN MEIDAN"

Abstract. A generalized impulse response representation is developed for linear and continuous
operators from 9, the space of infinitely differentiable functions of compact support, into E, the space
of complex-valued functions on a set 1, equipped with the pointwise topology. This representation is
employed in order to develop a similar representation for continuous linear operators from into
LP(I’), where l) is now a measure space. These results are then applied in order to obtain a kernel
representation for continuous linear operators from LP(R n) into Lq(R m) and a representation for
generalized random processes.

1. Introduction. The purpose of this work is to develop a kernel representa-
tion for linear and continuous operators in Lp, 1 <-p <-_ o, the spaces of functions
on R whose moduli to the power p are integrable. As is well known, these
operators do not enjoy a kernel representation in an ordinary sense. The common
counterexample usually employed to illustrate this fact is the identity operator.
This operator will require the impulse functional 6(t- s) as a kernel, and since the
latter is not a member of any of the Lp spaces, it cannot serve as an ordinary
kernel. However, as will be shown in this work, if we suitably restrict the domain
of definition of the operator to a subspace of Lp, a kernel representation does
exist. Moreover, the representation admits a scalar product form. The same idea
will enable us to provide a similar representation for generalized random
processes.

The impulse response representation for linear continuous and time-
invariant operators is well known (e.g. Zemanian [10]). Meidan [5] has introduced
the concept of the generalized impulse response representation in order to be able
to cope with operators which are time-varying. More precisely, it is shown in [5]
that if u is a linear and continuous operator from into , it admits an impulse
response representation in a generalized sense. denotes the space of infinitely
differentiable testing functions on R with compact support equipped with the
usual testing function topology. is the space of continuous functions on R m. By
the generalized impulse response representation we mean that there exists a
family Fy of distributions in ’, the dual of @, depending on the parameter y
such that, the operator u is representable by

(1) (u@)(y) (Ky, k),

where b denotes any testing function in the domain of u. Moreover, Ky can be
expressed in terms of the response of the transpose operator

(2) Ky u 6y,

* Received by the editors August 21, 1975, and in revised form January 29, 1976.
t School of Engineering, Tel-Aviv University, Tel-Aviv, Israel. This work was carried out while

the author was on visit at the National Research Institute for Mathematical Sciences of the CSIR,
Pretoria, South Africa.
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where y denotes the shifted impulse functional in ’, the dual of % Namely,

(3) y(]-):(y,/)=[(y), fc, yRm.
However, in this work an extended version of the generalized impulse

response representation is necessary. In 2 we consider the space E as the range
space. Let f be a set. E is the space of complex-valued functions on f equipped
with the pointwise topology. It is shown that the generalized impulse response
representation holds for linear and continuous operators from @ into E. In a
subsequent work [6] a similar result will be shown to hold even when the linearity
of the operator is reliquished. However, this general result is not needed here, and
we can dispense with the complications involved in this development.

The theory is valid for a fairly broad class of topological vector space serving
as the domain space of the operator. However, the space @ has been chosen for
the following reasons.

(i) is a rather restrictive space and is equipped with the rather strong
testing function topology. On the other hand it is large enough to be dense in the
Lp spaces, except for the case where p oo. The restrictiveness of the space and its
strong topology assure a broad class of continuous operators. Its being dense in Lp

provides its unique extension onto the whole space Lp, provided, of course, that
this extensibility is possible from the viewpoint of continuity. On the other hand,
the range space E is fairly broad and in view of its weak topology it does not place
severe limitations on the class of permissible operators. In fact, the cases of
interest will be obtained by limiting the range space to certain subspaces of E.

(ii) The use of the space @ as the domain space is compatible with the
concept of the generalized random process (e.g. Gel’land [2]) which is involved
in this work. By definition, a generalized random process is a linear and continu-
ous operator from a space.of testing functions into a space of random variables,
where the latter space is defined over a probability space.

Further we introduce a measure on the set f. Namely (12, M,/x) is a measure
space, where f is the set as introduced earlier, s is a o--algebra of subsets of 12 and
/x a r-finite measure on the measurable space (f, ). We consider the spaces
Zp(’) of (equivalence classes of) complex-valued functions on . In accordance
with the earlier notation, Le denotes the case when f R and the measure is the
Lebesgue measure.

We consider linear and continuous operators from @ into Le(l’) ( 3) and
show that this class of operators is in fact a subclass of the earlier class of operators,
linear and continuous from @ into E. Hence they too admit the generalized
impulse response representation. This fact is used in order to provide representa-
tions for generalized random processes ( 4) and continuous linear operators in Le

( 5).
In the development it is imperative that the operator is linear. It is still an

open question whether the results can be extended for nonlinear operators. Of
course, in such a case one would suspect a representation in terms of nonlinear
functionals on rather than the linear functions considered in this work.

Some basic results of functional analysis are quoted in this work. Although
they may be found in any book on functional analysis, we preferred to use a single
reference. The quotations in the work are taken from Treves’s book [9].
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2. Operators from into E. Let denote the space of infinitely differenti-
able functions on R with compact support equipped with Schwartz’s testing
function topology. E denotes the space of complex-values functions on a set f.
We equipE with the pointwise topology, according to which a sequence {f (to)} of
functions in E converges if and only if {fn (ca)} converges for each ca

The dual of is denoted by @’. It is the space of distribution on R n. E’ is the
dual space of E. Let A denote the space spanned by the family of impulse
functionals {6,01 ca f}, where

(4) 6,o (f) (6,o, f) f(ca), f E, co 12.

Clearly, every 6o) is a linear and continuous functional on E. Hence, A E’. In
fact, it can be easily verified that A E’. Indeed, consider on E the weak topology
generated by A. It is equal to the initial pointwise topology of E. By a well-known
property of weak topologies (e.g. Dunford and Schwartz, [1, p. 421]), this
establishes that A E’.

The topologies assigned to the dual spaces are the weak dual topologies. The
operator u denotes the transpose operator of u. It is defined by

(5) (utF, 6) (F, ub)

where b @ and F E’. It is a linear and weakly continuous operator mapping E’
into @’.

At this point we are ready to introduce the generalized impulse response
representation for operators which are linear and continuous from @ into E.

TrtEOREM 1. The following statements are equivalent.
(i) u is a linear and continuous operator from @ into E.
(if) u is a linear and weakly continuous operatorfrom E’ into @’. u and u are

transpose operators of each other. Let us denote

(6) F,o (X)-- U 6o0 O)

F,o is afamily ofdistribution in’ parametrized by ca f. It is thefamily ofresponses
of u to the family of shifted impulses 6,,.

(iii) There exists a mapping ca Fofrom into @’ such that the operator u can
be represented by

(7) (ub)(w) (F,o, b), b .
Proof. (i) :ff (if) follows from the standard theorem of functional analysis (e.g.

Robertson and Robertson [7, p. 38, 39]).
(if) :ff (i) Let u be a linear and weakly continuous operator from E’ into @’.

Consider its transpose. It is linear and weakly continuous from @ into E. Since
is a Mackey space it is continuous for the initial topologies [7, p. 62]. This operator
coincides with u.

(i):ff(iii) Assume u is continuous from @ into E. Then for every ca f,
d-:,(uqb)(ca) is a linear and continuous functional on fi0. Hence there exists a
functional, say Fo,, such that (7) holds.

(iii) :ff (i) Conversely, if (iii) holds, the right-hand side of (7) defines a linear
and continuous operator from @ into E. It remains to show that the family
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of statement (iii) is expressible via (6). Indeed, by the definition of the transpose,

and in view of the definition of 6,, (equation (4))

(&, u) (u)(o),

which completes the proof.
Discussion. The theorem establishes a full equivalence among the three

approaches, u is usually referred to as the physical operator, which represents the
actual system. It operates on ordinary functions, u t, its transpose, is a mathemati-
cal concept and operates between the spaces of linear functionals. Finally F,o is a
family of functionals which consists of the response of u to the family of shifted
impulse functionals. Each one of these three approaches fully characterizes the
situation.

3. Operators from into L’(fl). In this section a generalized impulse
response representation is pursued for linear and continuous operators from
into LP(’). LP(-) denotes the space of complex-valued measurable functions
whose moduli to the power p are integrable in the measure space (l), ,/x). l) is a
set, sa o--algebra of subsets in l) and/z a tr-finite positive measure on the
measurable space (lI, sO). p is a real number, 1 _-< p _-< oo. The topology on Lp (1) is
the usual norm topology induced by the norm

(8) Ilfll,, Ill" dtz f Lp

It should be noted that no more generality is gained by considering the weak
topology on LP(fD. More precisely, the family of linear operators which are
continuous from into LP(O), when the latter is equipped with the weak
topology, is identical to the family of linear operators continuous into Lp() for
the norm topology. This is a direct consequence of the closed graph theorem.

The difficulty with these operators lies in the fact that on Lp (I) one cannot
speak of the pointwise definition of a function. More precisely, in L () we are
considering equivalence classes of functions. We identify functions which are
/z-equivalent, i.e. functions which are equal except for a set of measure zero.
However, it will be shown that in view of the particular structure of , the range of
u is contained in the intersection of E and Lp (YD. Moreover the continuity holds
also relative to the pointwise topology on the range. Consequently this class of
operators constitutes a Subclass of the previous one. It follows that the generalized
impulse response can be established for these operators as well.

Let K be a compact set in R" and let (K) denote the subset of consisting
of all test functions whose supports are contained in K. (K) is thus a countably
normed space. If u is the given operator which is linear and continuous from
into Lp(); then u denotes its restriction to @(K). Now UK is an operator defined
on a countably normed space. Hence it is of finite order. Namely, if {%1i
0, 1, 2, .} denotes a sequence of nondecreasing seminorms in (K), then there
exists a finite such that UK is continuous on (K) with respect to the seminorm 3’-
But (K) is nuclear. Consequently, an integer ] > exists such that the injection/.
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from (K), the space (K) completed with respect to %., into (K) is nuclear. In
other words the operator UK from (K) into Lp (12) is a nuclear operator.

We shall first show that un exhibits a generalized impulse response represen-
tation. Following the above discussion, u is a nuclear operator. Moreover, Lp()
is separable. Hence (e.g. Treves [9, p. 482]) u admits the representation

(9) u()
i=l

where {]i 1, 2,...} is a sequence of complex numbers which is absolutely
convergent, i.e. =a [A] <, {E} is a bounded sequence in (K)’, the dual of
(K), and {f} is a bounded sequence in L().
e series of the right-hand side of the representation (9) converges in the

norm of L (). However, it will now be shown that it also converges pointwise for
almost every

LEMMA. Let {fi(w)} be a bounded sequence in Lp (), and {hi} a sequence of
complex numbers such that =l[hi[ <. en the sequence

(10) hi.()[
i=1

converges pointwise for almost every
Proof. We first rewrite series (10)

We now apply H61der’s inequality to the right-hand side of (11) in order to obtain

Since, by hypothesis, Ei [hi[ converges, we can conclude that it would be sufficient
to prove the pointwise convergence of

i=1

in order to obtain the pointwise convergence of (10). Consider (p <),

i=1

In view of the fact that the family {} is bounded in LP() and E[Ai[ <, we
have that the series (14) converges. Consider the sequence {g,} of partial sums of
()

i=1

{g,} is a monotone sequence of functions which, by the convergence of the series
(14), converges in integral. Hence, there exists a subsequence of {g,} which
converges pointwise almost everywhere. But since {g,} is a monotone sequence
this subsequence can be taken to be {g,} itself. is completes the proof.
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THEOREM 2. Let u be a linear and continuous operatorlrom @ into LP(). Let
Kbe a compact set in R and @(K) the subspace of@ consisting of the testfunctions
whose supports are contained in K. Let us: denote the restriction of u to @(K). Then
us: admits the representation.

(16) (us:b)(to)= Z A(F, 4)f(to)
i--1

where to 1, {As} is a sequence ofcomplex numbers which converges absolutely, {F}
is a bounded family in @(K)’ and {f(to)} is a bounded family in LP(I)). The
representation (16) converges in the norm of L(), as well as for the pointwise
topology for almost every to. Moreover, the operator us: is a continuous operatorfrom

into L’(I)
Proof. As was established above, the representation (16) and its convergence

in the Lp norm follow from the nuclearity of us:. Since {F,.} is a bounded family in
fl0(K)’, the set of numbers {(F)} is bounded for each e(K). Hence the
pointwise convergence of the series (16) follows from the lemma.

Now let {n} be a sequence which converges to zero in @(K). We maintain
that the sequence

(17) {sup [(F,

converges to zero with n. Indeed, {F} is a weakly bounded family in N(K)’. Hence
by the Banach-Steinhaus theorem (e.g. Treves [9, p. 349]), {F} is equicontinuous.
But the topology of the locally convex Hausdorff space N(K) is identical to the
topology of uniform convergence on every equicontinuous subset of @(K)’ (e.g.
Treves [9, p. 369]). Consequently the sequence (17) converges to zero. This
establishes the desired continuity of us: and completes the proof.

The consequence of Theorem 2 is that us: is in fact an operator continuous
from @(K) into E f3LP() for both the pointwise and Lp topologies on the range
space. We may therefore invoke Theorem 1 in order to establish a generalized
impulse response representation for us:. Consequently there exists a family {F} of
distributions in @(K)’ such that for almost every to

(8) (u,,O)(,o) F(4), e (;).

We fix to. For each compact set K of R" a family of distributions {F} exists.
The families {F} are compatible in the following sense: If K1 and K2 are two
compact sets, then the restrictions of {F1} and {F2} to K1 (3 K2 coincide. Hence
by a well-known theorem of distribution theory (e.g. Treves [-9, p. 253]) there
exists for almost every to, a unique distribution F on R such that its restriction to
@(K) coincides with F. This consideration provides the final result for the
operator u, which is summarized in the following theorem.

THEOREM 3. Let u be a linear and continuous operator from into Lp (f).
Then there exists afamily {Fo, } ofdistributions in ’, such thatfor almostevery to we
have the following representation for the operator:

(19) (ub)(to) (F, b), b e N.
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Moreover,

(20) F,o u’6o,
where u is the transpose operator of u. Its domain contains E’.

We shall now pursue a characterization of the family {F,o}. If {F,o } is a family of
distributions representing a linear operator u which is continuous from @ into
LP(12), then the expression

(21) I, (b)= I I(F’’ b)lp d/z,

exists for every b . It defines a functional on @. It can be easily verified that the
functional is continuous. However, Ip is not linear, hence it is not an element of
@’. In terms of Ip the following characterization of the operator can be estab-
lished.

THEORE 4. Let u be a linear operatorfrom into L (f); u is continuous if
and only i[ there exists a family {F,o]w f} o[distributions in @’ satis]ying (19) and
the integral on the right-hand side ol (21) exists for every c, and defines a
continuous ]unctional I on .

Proof. The proof of the direct statement is obvious. It remains to prove the
converse. Assume {Fo,} has the above properties. Then it defines via (19) a linear
operator u from @ into E. In view of the existence of (21) for every b @, u in fact
maps @ into L’ (1). By the assumed continuity of the functionalI of (21) we have
that u is continuous from into Lp (f). Hence the proof is complete.

4. Generalized random processes. The concept of the generalized random
process was introduced by Ito [4] and Gel’land [2], [3]. In principle, it is defined to
be a continuous linear operator from a topological vector space of testing
functions into a topological vector space of random variables. The space of testing
functions employed in this work is @. However, as mentioned above, this is not
mandatory and the theory can be established for other spaces of testing functions
as well, provided they are nuclear. The space of random variables can be either the
space E or the spaces LP(’). Of course, in this context, one should identify the
measure/x to be a probability measure. The following is the common definition of
a generalized random process.

DEIINVrION. Let (, ,/z) be a probability space. A generalized random
process is a linear and continuous operator u from the space of testing functions D
into the space of random variables E (or LP(,)).

Our representation provides the interpretation of the generalized random
process in term of another mapping, i.e. the mapping o F,o from the probability
space 1 into the space of distributions @’. In other words, the generalized random
process can be viewed as a random process whose sample "functions" F,o are
distributions. The mapping w F,o is often called in the literature random
(Schwartz) distribution. It is instructive to note that this mapping can be linearized
by means of the concept of the transpose of the generalized random process. All
these considerations are summarized in the following theorem.

THEOREM 5. The following statements are equivalent:
1. There exists a generalized random process, namely a continuous linear

operator u, from into E.
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2. There exists a mapping to - Fo, from I) into ’ such that u is represented by
(19).

3. There exists an operator u’, linear and weakly continuous from E’ into ’.
u’ is the transpose of u and Fo can be expressed as thefamily ofimpulse responses of
u’ (equation (20)).

5. Continuous olerators in L’. Let u be a linear and continuous operator
from LP(R n) into Lq(Rm). Consider the restriction of u to fi(R") as a subspace of
LP(Rn). Certainly the restricted operator is continuous from (R") into Lq(R’).
Since is dense in Lp, 1 =< p < o0, we can uniquely reconstruct the given operator
from its restricted version. But the restricted operator enjoys a generalized
impulse response representation via Theorem 3. We can also view this representa-
tion as a kernel representation. Hence a generalized kernel representation has
been obtained for continuous linear operators which do not, in general, possess a
kernel representation in the ordinary sense.

In system theory it is fairly common for the operator u to be translation-
invariant. We refer to u as translation-invariant if it commutes with the shift
operator. A necessary condition for translation invariance is the requirement that
m n. In other words, u should operate between Lp(R n) and Lq (R’). We denote
by W_,, the Sobolev space of order m based onLq(Rn). Namely, Wq_,, is the’space
of distributions which are expressed as a finite sum of derivatives (in a distribu-
tional sense) up to order m of functions which are members of L(R").

If u is a translation-invariant operator from Lp(R ") into Lq(R "), then it is
well known (Schwartz [8]) that the family {F[y R"} can be expressed by the shift
of a single distribution F by means of

(22) (u4))(y) (F(y-x), b (x)) F. b.

Equation (22) represents the convolutional representation of the operator u
and F is called the convolutional kernel. We shall establish the following charac-
terization of the convolutional kernel of a translation-invariant operator.

THEOREM 6. Let u be a linear continuous and translation-invariant operator
from Lp(R) into Lq (R ). Then the convolutional kernel F can be expressed as

(23) F=
OXl OXn

where fl and [2 are members o]’ Lq (R") and the derivatives are interpreted in the
distributional sense. Namely, F Wq__,,.

Proof. Let h be the unit step function in R" and A a test function in N(R")
which is equal to unity in a neighborhood of the origin. Ah is a function in LP(Rn);
hence it is in the domain of u. Consequently

(24)

is in Lq (R "). Consider

(25)

u (Ah) F (Ah)

O’(F,Ah)
OX OXn
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By a well-known property of the convolutional operator, the operation commutes
with differentiation. Hence,

0 (F Ah)
(26)

Ox Ox,,
F

Oxl

But

O’Ah
(27)

Ox Ox,,
A8 + 3‘

where 3’ is a function in N and 6 is the impulse at the origin. The validity of (27) is
based on the fact that A was assumed to be equal to a constant in a neighborhood
of the origin. Since A6 6, we have that the right-hand side of (26) is equal to

(28) F (AS + 3‘) F+F 3’.

But the second term of (28) is an element of Lq(R n) by the hypotheses related to
u. Combining equations (26), (27) and (28) completes the proof.
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ON A NONLINEAR VOLTERRA INTEGRAL
EQUATION ON A HILBERT SPACE*

VIOREL BARBU?

Abstract. Nonlinear Volterra integral equations with singular kernels are considered. The
existence and the asymptotic behavior of solutions is studied in a special case.

1. Introduction. This paper concerns integral equations of the form

(1.1) x(t)+ E(t-s)g(x(s)) ds f(t), a.e. t>0,

on a Hilbert space/4. E(t): ]0, oo[ L(/4, H) is a positive definite kernel (see [16])
while g is a makimal monotone (multivalued) operator on H.

The special case, H R of this equation has been studied by many authors
and more recently by J. J. Levin [9] (see [6] and [15] for significant results and
references on this subject).

For comparison with other literature on Volterra integral equation on
Hilbert spaces, papers by R. C. MacCamy [13], S. O. Londen [10] and J. S. W.
Wong [16] may be cited. However, for the most part, these authors focus on
asymptotic behavior of solutions, which involve boundedness of g, thereby
excluding many interesting g’s which are partial differential operators.

In a recent paper [2] (on these lines see also [1]) the author has obtained some
results concerning the existence and asymptotic behavior of solutions in the case
in which E(t) is a monotone and convex scalar continuous kernel and g is a
cyclically maximal monotone (unbounded) operator in H. Recently S. O. Londen
[11] has extended these results to the case in which the kernel is not necessarily
decreasingly convex.

Our purpose here is to generalize these results to a class of operatorial
singular kernels of the form E(t)= a(t)S(t) where a(t) is a real-valued positive
definite function and S(t) is a continuous semigroup of linear bounded operators
on H. The original motivation for this case came from a class of partial differential
equations arising in the study of heat conduction and is outlined in the last section
of the. paper.

2. The main results. Throughout this paper the symbol/4 will denote a real
Hilbert space with norm I. and inner product (.,.). We first review some
definitions and basic results concerning maximal monotone operators and convex
functions in Hilbert spaces. For other results in this field relevant to the present
paper, we refer the reader to the books [3] and [4].

Let g be a nonlinear multivalued (possibly) operator from H into itself. We
shall use the following notations:

D(g)={uH;g(u):}, R(g)= U{g(u);uD(g)}.

* Received by the editors August 21, 1975, and in revised form December 11, 1975.
? Faculty of Mathematics, University of Iasi, Iasi, Rumania.
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The operator g is said to be monotone in HxH if

(2.1) (yl-y2, xx-x2)O forallxiD(g), yig(xg), i=1,2.

The monotone operator g is said to be strictly monotone if inequality (2.1) holds
with equality if and only if x X2 and y y2. A monotone operator g is said to be
maximal monotone if it admits no proper monotone extensions in Hx H.

Let g be a maximal monotone operator in Hx H. Then the range of I/hg is
all of H and for every h > 0 the operator (I + hg)- is well-defined and nonexpan-
sive on H.

An important class of maximal monotone operators in HxH is the sub-
differentials of lower semicontinuous convex functions defined on H. Let
H- ]-oo, + co] be a lower semicontinuous convex function, nonidentically +oo
on H. Let

D(q) {u ell; q(u) < +oo}

(2.2) &C(u) {y ell; q(u) <_- re(v) + (y, u -v) for all v ell}.

The multivalued operator u - Oq(u) is called the subdifferential of q. If q happens
to be Gteaux differentiable at u, then Oq(u) is reduced to a single point which is
just the Gteaux differential of o at u.

For every A > 0 let qx" H-]-oo, + oo[ be the convex function defined by

(2.3) q9 (u)inf{ [u-v[2 }+q(v)’vH uH.
2A

The function px is Fr6chet differentiable on H and (see [4], [5])

(2.4) 0qa a-l(I (I+ a 0q)-).
Furthermore, r (u) _-< q(u) for all > 0, u e H and

(2.5) lim qx (u) 0(u) for all u e H.
A

We shall denote by Lo(0, o0; H) the space of all H-valued strongly measur-
able functions u" ]0, o0[-H such that IorlU(t)l2 dt< +o0 for every T>0. Denote
also by Ho(0, o0; H) the space of all functions u S Ll2oc(0, oo; H) which are
absolutely continuous on every compact [0, T] and with the first derivative (which
exists almost everywhere) in L2(0, T; H).

A function u" ]0, o0[ H is called solution of (1,1) if u Lo(0, o0; H) and
there is a function w" ]0, o0[ H such that

(2.6) w L2oc(0, co; H), w(t)g(u(t)) a.e. >0,

(2.7) u(t)+ E(t-s)w(s) ds =f(t) a.e. t>0.

For the sake of simplicity we shall write g(u) instead of w.
It is assumed throughout that E(t) is of the form

(2.8) E(t) a(t)S(t) for t >0,
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where S(t): [0, oo[L(H,H) is a continuous semigroup of linear bounded
operators on H and a(t) is a real-valued function defined on R+ ]0, oo[. In
addition to this, the following conditions on a and $ will be assumed"

(i) a C(]0, oo[) f’IL a(0, 1).
(ii) (-1)a)(t) >-O for all t>0 and k =0, 1.
(iii) a’(t) is nondecreasing on ]0, [.
(iv) The infinitesimal generator A of the semigroup S(t) is self-adfoint and

dissipative (i.e., (Ax, x)<= 0 for all x /4).
It is well known that condition (iv) implies that, for every >0, operator

S(t) L(H, H) is self-adjoint and contractive, i.e., IIs(t)lk,,,--< . Furthermore,
the semigroup S(t) is everywhere differentiable on ]0, c[ and

(2.9) ]d/dtS(t)xl<-_lxl/t for all t>O andx ell.

We will impose the following two conditions on g"
(j) g o where o"H]- oo, + o] is convex, lower semicontinuous,

nonidentically + oo and

(2.10) inf {q(u); u e H}> -co.

(jj) q(S(t)x) <=o(x) [or every x eHand t>0.
Note that condition (jj) can be equivalently expressed as (see [4], [5])

(2.11) (Ax, gx(x))<=O forallxsD(A)andh>O.

The main result is
THZORZM 1. Suppose that conditions (i)-(iv) and (j), (jj) hold. Let f

Ho(O, ; H) be given such that

(2.12) f(O) e D(q), Afe Lo(O, oo; H).

Then there exists at least one solution u Loc(0, oo; H) of (1.1). If, in addition, g is
strictly monotone, the solution is unique.

Suppose further, that a (t) 0 for all t>0, f’-Af L2(O, o0; H) and

(2.13) lim qg(u)= +oo.

Then u L(O, ; H) and

(2.14) a(t) Ig(u(s)l ds bounded on [0, c[.

3. Proo of Theorem 1. Let [0, T] be any finite interval and let
L L(0, T; H)L(0, T; H) be the linear operator defined by

(3.1) (Lu)(t) = E(t-s)u(s) ds a.e. t e ]0, T[,

where E(t)=a(t)S(t). Since a eL(0, 1) and IIS(t)ll(,,m_-< 1, we may infer that
L is continuous from L(0, T; H) into itself.

We begin with the following simple lemma.
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LEMMA 1. Suppose that conditions (i)-(iv) hoM. Then the operatorL is positive,
i.e.,

(3.2) (Lu(s),u(s))ds>=O foralluL2(O, r;H)and O<=t<-T.

Proof. Let (Lu)(t)=oE(t+e-s)u(s)ds. Inasmuch as lim_oLu=Lu in
the strong topology of L2(0, T; H) for every u L2(0, T; H), it suffices to prove
that for every e > 0 the operator L is positive on L2(0, T; H). For the sake of
simplicity we set

E(t)=E(t+e) for t>0 and e >0.

As earlier mentioned (see (2.9)), condition (iv) implies that

ds(t)x =AS(t)x for all t>0 andxH(3.3)
dt

and therefore

dk

-S(t)x (AS(t/k))x for all > 0, x H and k 1, 2, .
In particular, this implies that.S(t) Ck (]0, oo[; L(H, H)) for every k and

( d2 )(3.4) (S(t)x, x) >- O, - S(t)x, x >- 0

Since A is dissipative, it follows by (3.3) that

Therefore

for all > 0 and x H.

d
]S(t)x z 0

dt
for all t > 0 and x H.

( )ldffS(t)x,x = -ls(t/2)xl2_-<0 for all t > 0 and x H.

Combined with (i)-(iii), relations (3.4) and (3.5) imply that

(3.6) (- 1)kEk(t) => 0 for all t > 0 and k 0, 1, 2.

(We have used the symbol _-> for the positiveness.) Corollary 4.1 in [12] can
therefore be applied to the present situation to conclude that L is positive ort

Lz(0, T; H) as claimed.
We now turn to the proof of Theorem 1. Let T> 0 be such that a (T) > 0. First

we shall prove that (1.1) has a solution u L2(0, T; H) on the interval [0, T]. This
will be proved in several steps.

Step 1. Suppose first that a (0) < +. Consider the approximating equations

(3.7) ux(t)+ a(t-s)S(t-s)ga(ux(s)) ds=f(t) a.e. t]0, T[,

where g A -1(I- (I+ Ag)-1) 0ox and A > 0. Since gx is everywhere defined and
Lipschitzian on H, it is obvious that (3.7) has a unique bounded solution
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u: [0, T] H. The next lemma collects some a priori estimates for u which are
needed in the proof.

LEMMA 2. Letu be the solution of (3.7). Then thefollowing inequality holds

2qx (ux (t)) + a(t) ]gx (ux (s))l2 ds _-< 2qx (riO))
(3.8)

+a- If(s-afl s

for all t e [0, T] and > O.
Proof. Since S e C(]0, oo[; L(H, H)), the equation

(3.9) u,(t)+ a(t-s)S(t+e-s)g(u,(s)) ds =f(t)

has a unique solution u, e CI([0, T]; H) for every e > 0. Furthermore, inasmuch
as g is Lipschitzian onHand lim_,o S(e)x x for every x H, we may infer that

(3.10) limu,(t)=u(t) for every t [0, T]
e-->0

and therefore

(3.11) gx(ux,,) ; gx(ux) stronglyinL2(0, T;H).

Next we differentiate (3.9) and use (3.3) to get

u’,(t) + a (O)S(e )gx (ux, (t))

(3.12) + a’(t-s)S(t+e-s)g,(u,(s)) ds

+A (fit) u, (t)) f’(t) a.e. t e ]0, T[.

Multiplying both sides of (3.12) by g(u,(t)) and integrating over ]0, t[, we
obtain, since

d
d-q(u,(t))=(Oo(u,(t)), ui,(t)) a.e. te]0, T[,

and by (2.11)

the inequality

(3.13)

(Aux,(t),gx(ux,(t))<-O forte[0, T],

qx(ux,(t))+a(O) (S(e)gx(ux,(s)), gx(ux,(s))) ds

Io Io+ (g(u,(s)), a’(s-()S(s+e-()g(u,(())) d() ds

o. q’(0ll+ I/’(sl-aflsl Ig.(u.,(sll s.
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This inequality combined with (3.10) and (3.11) yields

Io Ig(u(s))l as _<_(f(o))qx (ux (t)) + a (O)

(3.14) / Ig (u (s))l ds la’(s )l Ig (u ()l d

+ If’(s)-e(s)llg(u(s)lds for0-<-t--<T.

Then by applying Schwarz’s inequality in (3.14) and making use of condition (ii)
we obtain the inequality (3.8) as claimed. Since 0x (f(0)) -< q(f(0)) and qx (u)_->
q((I+Ag)-lu) for all A > 0 and u in H, condition (j) and inequality (3.8) imply that

{gx(ux)} bounded inL2(0, T;H).
From (3.7) it follows that

(3.16)
=< t 2

+ Ig (ux (t))l2 d Ila Ik’(o, >.

Now we may take weakly convergent subsequences. More precisely, there exist
{ux.} c {ux} such that A, 0 as n oo and

ux. u weakly in L2(0, T; H),
(3.17)

gx. (ux.) g weaklyinL(0, T; H).

Clearly,

u(t)+ a(t-s)S(t-s)g(s) ds =f(t) a.e. t]0, T[.

Moreover, the maximal monotonicity of the operator ug(u) together the
positivity of L imply that u(t) D(g) and g(t) g(u(t)) a.e. t ]0, T[. The argu-
ment is that used in author’s paper [2, Thm. 1] and it will not be repeated here.
Thus we may conclude as an intermediate step of the proof that under condition
a (0)< +oo, (1.1) has a solution u(t) on the interval ]0, T[. We note for later use
that this solution also satisfies the inequality

(3.18)
2o(u(t))+a(t) Ig(u(s))l2 ds =< 2q(f(0))

+-d ]f’(s)-Af(s)l as for t e [0, T].

This follows from (3.8) and (3.17), since

p (Ux) -> p((I+Ag)-lux), Agx (u),= ux -(I+Ag)-lux
and the function q is lower semicontinuous on H.
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Step 2. Now we shall prove essentially the same result as before but in the
general case a eLl(0, 1). For every e >0, we denote by a the function a(t+e).
According to the first step of the proof, for all sufficiently small e, the integral
equation

(3.19) u(t)+ a(t-s)S(t-s)g(u(s)) ds f(t) a.e. tel0, T[

has at least one solution u L’(0, T; H). Since a L(0, 1) and a(t+e)>O for
tel0, r], it follows from (3.18) and (3.19) that {u,} and {g(u)} remain in a
bounded subset of L2(O, T; H).

Therefore, without any loss of generality, we may assume that

Ue --.) U
(3.20)

g(u)g

weakly in L2(0, T; H),

weakly in L2(0, T; H)

as e 0. We will prove that u satisfies (1.1) on the interval ]0, 7[. The argument is
as before but with some simplifications. Define

Note that

(L,u)(t)= a(t-s)u(s) ds for u L2(0, t; H).

T

(u (t) u,(t), g(u (t)) g(u,(t))) dt

(u(t)- u,(t), (Lg(u))(t)-L,(g(u,))(t)) dt 0

while

lim sup (g(u,(t))-g(u,(t)), (a(t+e-s)-a(t+e’-s))

(3.22)
S(t-s)g(u(s)) ds) dt=O

because a L 1(0, T) and {g(u)} is bounded in L2(0, T; H). Since the operator L,
is positive on L2(0, T; H), it follows from (3.21) and (3.22) that

(3.23) lim sup Ior (u, (t) u,(t), g(u (t)) g(u,(t))) dt <= O.

Inasmuch as the operator u(t) (g(u))(t) is maximal monotone in L2(0, T; H), it
follows by (3.20) and (3.23) that g(t) g(u(t)) a.e. on ]0, T[ (see, e.g., [3, p. 42]).

Step 3. We complete the proof of existence by showing that the function u (t),
found before, can be continued on IT, +[. The argument is essentially the same
as that used in the proof of Theorem 1 in [2]. We reproduce it here. Consider the
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integral equation

(3.24) v(t)+ a(t-s)S(t-s)g(v(s)) ds fo(t) a.e. t]0, T[,

where [o(t) =f(T+ t)-o a(T+ t-s)S(T+ t-s)g(u(s)) ds. It should be noted
that fo Hi(0, T; H) and AfoL2(O, T; H). (The latter follows from the earlier
mentioned fact that S(t) is differentiable on ]0, oo[).

Moreover, since u(t) satisfies (1.1) almost everywhere on ]0, T[, no loss of
generality results assuming that Co(t) D((). Thus according to Step 2, we may
conclude that (3.24) has a solution v L2(0, T; H). A simple check with (3.24)
yields that t7 defined by

fu(t)(t) =1v (t_ T)

for0 <t<T,

for T< y <2T,

satisfies (1.1) on the interval ]0, 2T[. Thus by repeatedly making use of this
argument, one obtains a solution u(t)eLoc(O, oo;H) of (1.1) defined (almost
everywhere) on the whole half-axis.

If g is strictly monotone, then from the positivity of L it is immediate that the
solution is unique. The remaining part of Theorem 1 is a simple consequence of
(3.18). This completes the proof.

We now pause briefly to discuss the integral equation (1.1) with more general
kernels E(t) than (2.8). More precisely, we make the following assumptions on
E(t):

(a) For every > O, E(t) is a self-adjoint and bounded linear operator on H.
(b) E 6 L 1(]0, 1[; L(H, H)) f3 C(]0, o[; L(H, H)).
(c)(- 1)E(t) => 0 for all t>0 and k =0, 1.
(d) E’(t)-E’(s) >-_ 0 for t > s > O.
(e) There exists T>0 such that E-a(T) L(H,H).

The arguments used in the proof of Theorem 1 can be applied here, with only
minor modifications, provided one first use the results given in 11] to verify that
for every e >0, the. operator u(t)-o (E(t+e-s)-,I)u(s) ds is D-positive in
the sense of [16] on the interval [0, T] (3’ is a positive number). Despite the
generality of conditions (a)-(d), it should be emphasized that condition (e) is
rather restrictive, thereby excluding many interesting eases. In the particular ease,
E(t) a(t)S(t), studied before, this condition fails unless S(t) is a group of linear
continuous operators on H. We expect to give details in a later paper.

4. An example. We shall illustrate the general problem studied before on the
following nonlinear boundary value problem

au(t, x)- Au(t, x) 0 for x , t > 0
Ot

(4.1) u(O, x)= Uo(X) for x fZ,

OU
nO
-(t’ x) -g(u(t, x)) for x e F, > O,



354 VIOREL BARBU

where is an open subset of R with sufficiently smooth boundary F and g is a
maximal monotone graph in R lx R 1. Here A i=1 02/02xi and O/On is the
outward normal derivative to F. This problem occurs in the generalized heat
transfer between solids and gases and was studied by many authors (see [5], [8],
14]). There are other problems of physical interest which reduce to a problem of
the form (4.1), where g is multivalued and not everywhere definite onR (see [7]).

By using local charts we may restrict our attention to the case where
f {(x’, xn) 6 R n; xn > 0}. Thus in order to avoid a lengthy technical discussion,
we will consider only the special case of problem (4.1) where

OU
(4.2) Au 0 for xn > and > 0,

Ot

(4.3) u(0, x) 0 for xn >0,

(4.4)
OU

-g(u) for xn 0 and t > 0.

First, we observe that the linear problem consisting of (4.2), (4.3) and the
boundary condition

OU
(t,x’, O)=h(t,x’), t>0, x’sR n-l,

can be solved, for example, by Fourier transforms, and the result is

u(t, x)= (2’) Io (t-s)-"/2 exp (- (Ix.I2 +[x’-(Iz)/4(t-s))

h(s,(’)d(’ds.

Thus we are led to the nonlinear integral equation

(4.5) u(t)+(2’)-a I0 (t-s)-/2S(t-s)g(u(s)) ds 90, t>0

on the space L2(R "-) where u(t)= u(t,x’), (g(u(t)))(x’)=g(u(t,x’)) and
S(t): [0, oo[-.L(L2(Rn-a), L2(R"-a))is defined by

I (2x/)-"+t-("-a)/2 I,-, exp (-Ix’-(12/4t)h(() d(’
(S(t)h)(x’)

h(x’)

for > 0

fort =0.

The family of operators S(t) is known to form an analytic semigroup of linear
2contractions on L (R with infinitesimal generator A: Ah n-1 2Yi=I 0 h/Ox, and

domain D(A)= {h e L2(R’-I); Ah exists in the sense of distributions and belongs
to L2(R
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Theorem 1 can therefore be applied to the present situation, where a(t)=
(2)-1t-1/z and q "LZ(Rn-1)]-oo, +oo] is defined by

(u) I,,.-1 j(u(x’)) dx’

and/"R -a ]-oo, +o] is such that 0/" g.
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A REPRESENTATION FOR DISTRIBUTIONAL
SOLUTIONS OF PARABOLIC PROBLEMS*

HAROLD D. MEYERt

Abstract. A boundary-integral representation is derived for distributional solutions of the
parabolic problem

Ou(-1)lplO(apq(x, t)Du)+m=O
Itl, Iql_m Ot

in a finite cylinder, where the base of the cylinder is an analytic manifold. The method involves use of a
duality principle at the boundary and extends results in [12]. A corollary provides a version of the
result suitable for practical applications.

1. Introduction. The purpose of the present paper is to derive a boundary-
integral type representation for distributional solutions of parabolic problems
where the domain is a finite cylinder with bounded base whose boundary is an
analytic manifold. A corollary provides a more restrictive version of the above
which is suitable for practical applications. The problem considered is

0u
(1.1) (-1)lplDO,(apq(X, t)Du)+-=O,Ipl, lql<-m

where specifics about notation, domains and initial-boundary conditions will be
discussed later.

Work here extends results in [12]. Other representations in the literature of
related interest are found in [7, p. 32], [9], [13], [15], [16]. Our representations
are presented for two reasons. First, they provide a characterization for distribu-
tional .solutions; also and more important, the second of these can be used in
numerical continuation procedures similar to those in [2], [4], [5], [13], [15].

2. Preliminaries. Much of the discussion in this and the next section is treated
in great depth in Lions and Magenes [11]. The reader is referred there for
additional details.

Let 1 be an open, bounded domain in the n-dimensional Euclidean space R
and have boundary F, which is required to be an (n- 1)-dimensional analytic
variety with 1" locally only on one side. We take R R, to be the Cartesian
product of R and the one-dimensional Euclidean space Rt, with typical point
(x, t) (X l, ", Xn, t), and define O f x (0, T) Rx Rt, 0 < T< co, X
F x (0, T). Designate Q and f to be the closures of Q and 12, and OQ to be the
entire boundary of Q. Relative to other set later on, overbars will also represent
closures.

Let Dx O/Oxg, Dt O/Ot, andD D. D- where ce (ce. a,) andXr

the O are nonnegative integers. For n-tuples such as
All functions here will be complex-valued. Take N(O), N(O),
and C(F) to be the standard spaces of infinitely differentiable functions provided
with the usual topologies [11], [8]; ’(O) is the strong dual of @(O), i.e., the

Received by the editors February 28, 1975, and in final revised form October 6, 1975.
5" Department of Mathematics, Texas Tech University, Lubbock, Texas 79409.
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standard Schwartz distribution space. Let 2,,,1(Q), 2m,1() and 2m,l(G), for G
open, be the standard Gevrey spaces [11, p. 8] of order 2m in t and order i in x.

For functions defined on Q, we take

(2.1) a a (x, t, Dx) Z (- 1)lPlDx(apq (x, t)D),

(2.2) P=A(x,t, Dx)+D.

where p and q are n-tuples treated as a before. The operators A* and P*=
A*(x, t, Dx)-Dt are, respectively, the formal adjoints of A and P.

Concerning A, we require that
(I) the coefficients apq Nz,,,(O) and that there be a to>0 such that each

a.q (x, t) a. (x) for 0 -< t =< to;
(II) given any t [0, T] and any 0 [-7r/2, ,r/2],

A (x, ta, Dx) + (-1) ei/o2" is properly elliptic (see[10,._.yChap. 2, 1])in- X Ry (Ry is the analogue with respect to y of R,);
(III) -A (0) -A (x, O, Dx) is an infinitesimal generator (see [1, p. 9, 15]) of

an analytic semi-group.
In (III), -A(0) is regarded as an unbounded operator having domain

D(a(o))={ulDu eL2(f), Ip]--<Zm; Bi(x, O, Dx)u=O, /’=0,...,m-i, B’s
as defined below}L2(f). Note that (III) implies a parallel statement for
-A*(0) =-A*(x, 0, Dx). By our definition of A, the operator P is parabolic in
accordance with Petrowski [14].

Let {Bo, "’, Bm-} represent a system of boundary operators on X, where

(2.3) Bj B](x, t Ox) E b]h (X, t)Dh, ] 0,’’’, rn 1,
[h [<=m

and 0 <_- m <_- 2m 1.
It is required that
(a) the coefficients bib 2m,l(E) and that there be a to > 0 such that each

bih(X t) bih(X for 0-<t=<to;
(b) given any to[0, T], {Bo(X, to, Dx),"’,Bm-(X, to, Dx)} is a normal

system (see [10, p. 113]) on F;
(c) given any t[0, T] and any 0[-Tr/2,,r/2], {Bo(x, ta, Dx)," ",

B,,_(x,t,Dx)} covers (see [10, p. 113]) the operator A(x, ta, Dx)+
(--1)meiI2m_y on FRy.

In (c), A (x, tl, Dx)+ (-1)" eiDz’y is considered as an operator in R "x x Ry.
Corresponding to {Bo, , Bm-}, there exist [11, p. 209] systems of bound-

ary operators {Co,’", C,,_}, {So,"’, S,,_}, {To,"’, T,,_I} for which the
standard Green’s formula [11, p. 209] is valid. These operators have the same
form as (2.3). The coefficients Cjh, Sih, tih, which correspond to the bih, belong to
z,,,(X) 11, p. 209]. Further, the S]h may be chosen to be independent of t. The Cjh
and tih will then be functions of x alone for O<=t<-to [11, p. 212].

3. The problem. After a few more preliminaries, we shall specify precisely
the solutions for which representations will be given.

Let

(3.a) x= {u (0)le*u (O), u(x, 70 o, Gu o, f o,..., rn 1},
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(3.2) Y= (u 50’(Q)[Pu ,.’(Q)}.

The first of these spaces is provided with the inductive limit topology given by the
union of the Fr6chet spaces

(3.3) XK {u (O)lP*u ,,(o), u(x, 73 o, C,.u o, o,..., m 1},

where the K’s are an increasing sequence of compact sets. In (3.3), the tc(Q) are
the standard Fr6chet spaces made up of those functions in (Q) having support in
the respective K’s. Each of the Xr’s has the topology generated by the natural
seminorms for this situation. The topology onX is the weakest locally convex one
such that the linear maps u - u of X into (() and u P*u of X into (Q) are
continuous. The space Y is equipped with the weakest locally convex topology for
which the linear maps u- u of Y into ’(Q), and u Pu of Y into ..’(Q) are
continuous. Denote Y’ to be the strong dual of Y. In (3.2), E’(Q) is the standard
distributional space described in [11, p. 210].

Let us define V to be the image of X under the map

(3.4)

For any L > 0, take

/u (u(x, 0), Tou,"’, T,,_u).

(3.5)

VL {(u’, Uo,""", Um-1)-DL((A*)(O); k!) [([0, T]; (F))]ml
(a) ::IC>0 for which IID,u( t)ll <-Ctk!, when O<-_t<-_ /t, ]-
0,...,m-l,k=0,1,...

(b) Duj(x, O) T.(x, 0)((A*)k (0)u’(x)) for x F, /" 0,. , m 1,
k=0,1,...;

(c) =IC>0 for which lID k,u( , t)ll, --< Ct (k !)’, when 1/L <-_ t <= T,
]=O,...,m-l,k=O, 1,...;

(d) uj(t) 0 for T- 1/L <= t <- T, j 0,. ., m 1}.

When we refer to conditions (a)-(d) later, we shall be referring to (a)-(d) in the
brackets above.

In (3.5), as in [11, pp. 10 and 133],

au(x) }(3.6) Yt’L(F) u c(r)l Ilull sup tk <
r (2k)t

k=O, 1,...

(3.7) DL(A*(0); k!)= {u L2(O)I Ilullo,-- sup
=o, 1,... Lk!

for L > 0, where Ar is the Laplace-Beltrami operator on F [6]. Further, ([0, T];
Yt’(F)) is the standard Schwartz space of infinitely differentiable functions on
[0, T] with values in (F) ([11, p. 11], ([0, T]; Yt’L(F))= (5, [0, T]; Yt’L(F))
there, with [0, T] c
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A topology for VL is given by the norm

(3.8)

sup
IlDu(., t)lle

o<=t<-/L Lk!

+ sup -;-,:

making it a Banach space according to the discussion in [11, p. 214].
It is shown in [11, pp. 213-214] that V, as defined previously, is equal to

=,1 V with the inductive limit topology. We denote the strong dual by V’.
Define the boundary trace r" (Q)- (12) x [(E)]’ to be given by

tru (u(x, 0), Bou, ", B,,_lu)

for u (Q). We have the following trace result proved in [11, p. 218].
LEMMA 3.1. The map o’" (Q)- (1))x [(E)]" can be extended by con-

tinuity to a continuous linear map of Yinto V’. The topologies are the weak tr( Y, Y’)
for Yand the weak tr( V’, V) for V’. This new trace will also be designated

Next, let Yg(F) be the space of analytic functions on F [11, p. 10]. It is the
inductive limit of the spaces (F) from before. By ’(F) is meant the strong dual
of (F). Take -,2,((0, T); Yg(F)) to be the standard space of infinitely differenti-
able functions on (0, T) with values in (F) (see [11, p. 13], with Mk (k!)2").
Their support is bounded on the left of (0, T). Let, 2,,,((0, T); ’(F)) represent
the strong dual.

Further, define D(A*(0); k!) [11, p. 132] to be the inductive limit of the
spaces D (A*(0); k !). (Each of the D(A*(0); k !) has the Banach space
topology provided by the norms I1"

Remark. Note that the sequence {k I} in D(A*(O); k !) does not satisfy the
assumption of nonquasi-analyticity [11, (1.23), p. 91]. Thus as discussed in [11],
D(A*(O); k I) could degenerate into a trivial space. For our case, however, by
assumption (III) of 2, -A*(0) is the infinitesimal generator of an analytic
semigroup. Hence by footnote 1 of [11, p. 146], D(A*(O); k!) is nontrivial.

We further remark that, because D(A*(O); k I) is nontrivial, the represen-
tation [11, (7.74), p. 144], used in the proof of Lemma 4.1 below, is valid. The
same proof as used there carries over to (7.74) for the present situation. In view of
this, (4.1) will be nontrivial.

There exists no general description of elements in V’; however, we can
specify a subclass V* for which there is a description. We define V* to consist of
the functionals of form

m--1

(3.10) L(u’)-}- 2 t](u]) V(u’, Uo, Urn-l) V
/=o

where (L, Lo,. ",L,,-) denotes any element in (D(A*(O); k!))’x
[@-,2m((0, T); ’(F))]’. By the definition of V (in terms of the V.), clearly
VcD(A*(O); k!)x[_.2,,((0, T); (F))]’. Thus V*c V’. The description of
elements in V* will be given in the next section.
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Now we can prescribe exactly the solutions for which representations will be
given. These will be the distributions falling in the space

(3.11) P= {u ’(O)]Pu 0}.

For the corollary, they will be the solutions

(3.12) P* {u e N’(O)lPu O, ru V*}.

Clearly, solutions in P have their traces in V’.

4. Structure o| elements in V*. Let var (/x) denote the total variation of a
measure/x on its set of definition, which for our purposes will be either 1) or E.
Later we shall need the following characterization of elements in V*:

LEMMA 4.1. Let F V*. Then there exist measures tXk on II and sets of
measures I, ] O, ., m 1, on E such that

(4.1) F(u) A *k (O)u’ dlzk + Z Aoltui dlz kl(i)
=0 i=O k,l=O

The measures tXk satisfy the condition

(4.2) Y, Lkk var (/Xk)
k=O

Vu (u’, Uo,’’’, u.-0 e V.

VL >0.

The measures lz can be selected such that for some T* (To, ., T’m-l),

(4.3) /z{=0 fort<T, k,l=0,1,..., ]=0,..-,m-I,

(4.4) Lk(2k)!var(/x({(.,t))<oo VL>0, anyl=O, 1,...,
k=O

]=0,...,m-l, andanyt(O, T),

Also they can be selected such that for any continuous function X: (0, T)-->C
(one-dimensional complex space) having compact support,

(4.5)
M(/!)2"* Arvxdlx(<oo VM>0,

k,l =0

Vv @((0, T); X(F)) and] 0,..., m 1.

In (4.5), fl0((0, T); (F)) consists ofall continuousfunctions of (0, T) (F) with
compact support, provided with the usual Schwartz topology [11, p. 19].

Proof. Let (L, Lo,’’’, L,,-1) be as in (3.10). TakingE L(O) and Mk k!,
we have from [11, (7.74)-(7.75), p. 144] (see also the Remark here following
Lemma 3.1) that

(4.6) L(u’) , (ek, A ,k (O)u’)L=VU’ e D(A*(O); k !)
k=O
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for some sequence {ek}c L2(I"I), where

(4.7) Y’. tk tllellz < Yt > 0.
k=O

In the above, (., )L and I1" I1 = are the inner product and norm in L2(f).
Taking IXk(R)=R ek dx, where R is-any measurable subset of , we have

from (3.7) that

(4.8) L(u’) Z A*k(O)u dlzk(X).
k=O

By (4.7), the/Zk satisfy (4.2).
Next, let M/= (/!)2,, in [11, Thm. 5.2, p. 20]. Then

(4.9) Lj Z r-l (j)
L’t[.ll, ] 0," ", m 1,

/=0

for some sequence of measures/zj) in (fl0((0, T); ’(F)))’, the strong dual of
fl0((0, T); Y’(F)). These are measures on (0, T) with their values in ’(F) [11,
p. 19].. (Expression (4.9) should be taken in the sense that

Li(ui)= Y. (--1)t(I.t,i),Dltu1) VUj+,2,n((O, T); 09"(1-’)),
/=o

where (., represents the duality between (((0, T); ’(F)))’ and ((0, .T);
(F)).) By [11, (5.21)-(5.22), p. 20], the measures/zj) satisfy

(4.10) Z Ml(l!)Z’xvar(lzli)) <c VM>0,
/=0

and have their support with respect to t bounded on the left.
Since these measures have their values in ’(F), by 11, Thm. 3.1, p. 11], we

can write that

(4.11) li)(x, t) Z Av/z )(x, t), 1 0, 1, ,
k=O

where the k are measures on F satisfying (see [11, (3.7), p. 11]),

(4.12) Y’. Lk(2k)! var(tzk))< VL>0,
k=O

1=0,1,....

Combining (4.9) and (4.11) and writing the result in integral form, we have
that

(4.13) Vu e ,,((o, T); "(r)).

Further, (4.10) and (4.12) give (4.4) and (4.5).
Combining these results with those for L, the lemma is proved.
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$. e Green’s lnnetion. It is a standard result, for our hypotheses, that a
Green’s function G(x, t; , z) satisfying

P*G(x, t; , ) 6(x-, t-z), (,) Q,

(5.1) Ga(x, t; , )=0, (, z), i=0,..., m- ,
G(x,t;, =0, 6,

will exist. In the above, 6 is the Dirac delta distribution, while the operations P*
and Q. are performed with respect to and . From the above, for (x, t) O fixed
and G(, z) G(x, t; , ), G satisfies

P*G(, z) 0, (, ) O -{(x, t)},

(5.2) .G(, r) 0, (, r) , j 0,. , m 1,

G(, =0,

In terms of G, any solution u e (O) can be written as

u(x, t)= [ Biu((, ).G(x, t; , ) d
]=0

(5.3)
+ J, u(, 0)G(x, t; , 0) d,

where-the Bi, . operate with respect to and r, d d... d,, and the first
integration on the right is with respect to and z.

Remark 1. One way to see that (5.1) has a solution is to apply [11, Thm. 3.5,
p. 220]. To do this, take T-t in place of t in (3.41)-(3.42) there. Also, take

u (u(x, T), Cou," ", C_u),

and redefine the spaces X, Y, V, V’ accordingly. Then one is studying a problem

P*u =f in the sense of ’(Q),

U g,

in place of (3.41)-(3.42), with "initial" data now on t Z Taking f=8
and g 0, the theorem provides a solution G ’(Q).

Further, recall the first equation of (5.2) and observe that P* satisfies the
hypotheses of [11, Thm. 1.1, p. 192] on Q-{(x, t)}. Thus G (Q-{(x, y)}).

Expression (5.3) follows in the usual fashion using the Green’s formula [11,
(3.3), p. 209] along with our boundary information.

Remark 2. Note that G(, z) will be zero for t < r T. To see this, observe
that

P*G(, z) 0, (, r) x (t, ,
(5.4) (, ) 0, (, ) r x (t, T], / 0,. , m ,

(, =0, .
Problem (5.4) has a unique solution in Ox (t, (by [11, Prop. 3.1, p. 209], taking
Q x (t, there). Since u 0 is a solution, we thus have that G must be zero.
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LEMMA 5.1. As a function of (, ’), "yG(x, t; , ’)= (G(x, t; , 0),
ToG(x, t; , -), T,_xG(x, t; , z)) is a vector in Vfor any (x, t)e (2.

Proof. The proof is suggested by work in [11]. As before write G(:, z)=-
G(x, t; , ’). It is sufficient to show that yG e V for some L >0, where Vr is
given by (3.5).

First note that in a neighborhood No of " 0, by (5.2),

P*G(, z) O,
(5.5)

C.G(s, -) 0 on , /" 0,. ., rn 1.

By our assumptions on A, A* is independent of - here. Thus A*(z) A*(0). The
hypotheses of [11, Remark 7.11, p. 146] are satisfied. Using this, G is analytic
with respect to " in No and GeD(A*(O); k!). Thus for some La >0,
Dr(A*(O); k !), and, by the analyticity of G and the fact that the coefficients of
the T. are in ,,.(.), T.G,/" 0,..., rn- 1, satisfies condition (a) of (3.5).

Next, observe that by the first equation in (5.5), since A*0-)= A*(0),

D,G((, -)= A*(O)G(s, -) in No.
Thus

DG((, -) =A*(O)G(s, z) in No, k 0, 1,....

From this, we get

D(T.G(, 0))= T.(s, 0)(A*(0)G(:, 0))

for s F, 0,. ., rn 1, k 0, 1,.. , and condition (b) of (3.5) holds for some
L>0.

In a neighborhood N of E, we again have (5.5). By [11, Thm. 2.3, p. 206],
then G(, ’) ,,.(N). This means that G is an analytic function of sc in N.
Also the coefficients of T., as mentioned, are in ,.I(E), so that T.G (F) for
each r (0, T). Further, since both the coefficients of T. and G are in the Gevrey
class of order 2m in t, condition (c) of (3.5) now follows for TG,/" 0,. , rn 1,
for some L3 > 0.

From the above discussion, we also have that T.G is infinitely differentiable in
r, on . Thus each T.G ([0, T]; L4(l’)) for some L4

Lastly, since G(:, ’)=0 for t <r_< T, condition (d) holds for T.G, f
0, , rn- 1, with respect to some L5 > 0.

Picking L max{L, L, L3, L4, Ls}, then conditions (a)-(d) of (3.5) are
satisfied for this L. Further, 7G Dz" (A*(0); k !) [@([0, T]; L(F))]’, and we
are done.

li. An approximation theorem. Before obtaining the representations, we shall
need an approximation theorem. It is proved using methods suggested by work of
Saylor [15] and Lions and Magenes 11].

THeOReM 6.1. The space ((2) is dense in relative to the ((2) topology.
To prove this we shall first need a lemma.
LMMA 6.1. The subspace P*(O) is closed in (O).
Proof. It is clear that P*(Q) is a subspace of (O). It remains to show that,

given a sequence {v}c (O) such that P*v, - w with w (O), then w must be
in P*(Q). Take P*v w.
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Note that by [11, Prop. 3.1, p. 209], since Wk --> W in (Q), there will exist a
v X such that Vk --> V in X with P*v w. We must show that v fl(Q). Since
v a X, we already know that v is infinitely differentiable. We still need to prove
that v has compact support. To do this, we shall first show that each Vk has its
support in some compact set K c Q, where K is independent of k.

Recalling that P*Vk P*v in (Q), we have that there is a compact set K’
(see [8, Thm. 1.3.1, p. 5]) such that

(6.1) P*Vk 0 in Q K’

for all Vk. We proceed now as in [11, p. 211]. Note that, given any t, by (6.1) and
[11, Thm. 1.2, p. 202], each Vk is analytic with respect to x in II-K’,, where
K’ {(x, -) e K’I" t}. Further, since each Vk e N(Q), each Vk is zero in a neigh-
borhood of OQ. Thus using the analyticity result above, there are neighborhoods
No, Nr and N, respectively, of t 0, t T, and of E, where Vk 0. Since the
region of analyticity in x depends only on K’, the neighborhoods No, Nr and
also depend only on K’ and not on k. Thus it follows that each Vk has its support
contained in some compact subset K of Q, which is the same for each k.

Recall that Vk V in X. By the nature of the topology on X, then Vk - V in
N(Q). Thus since each Vk 0 in Q -K, the limit, i.e., v, is also zero there. Hence v
has compact support and the lemma is proved.

Proofof Theorem 6.1. Let us demonstrate first that P*N(Q) is closed in N(Q)
with respect to the @’(Q) topology.

Note that for some e > 0, by [3, pp. 197-201], we can extend the operatorsA
andA * to a domain Q II x (-e, T+ e), such that the operators retain the same
properties as before. In the above, I), is such that 1) c II,. Call the extensions A,
and A*. Take P, A +D and P* A* De. These operators will have the same
properties as P and P*. In particular, coefficients will be in .,,.(t,).

We need to show that if L is any continuous antilinear form on ’(Q) and if
L(u) 0 lu S (Q), then L(w) 0 Vw e S. Since (O) is reflexive, we can
write that

(6.2) L(u) (v, a) f f(x, t)a(x, t) dx dt 0 Vu e S CI (O)

for somef (O), where (., represents the duality between (Q) and N’(Q).
Let u be a solution of

Pu=O onO,

so that ulo S N(0). Let f be the extension of f to all Of O8 by taking it to be
zero outside of O. Then

(6.3) [ f (x, t)a (x, t) dx dt= O,

using (6.2).
Take P;-I(0) {u e N’(O)lPu 0}. Lemma 6.1 applies for P* and O. Thus

P*N(O,) is closed, and this implies that P*N(08) and the polar of P2I(0) are
equal. By (6.3), f falls in this polar. Hence f e P*N(Os), and there exists a
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v (O) such that

(6.4) P*v =L in Q.

Let OQ be the entire boundary of Q and if F is the boundary of Ill, take
E =F (-e, T+e). Since v(Q), there exists a neighborhood of 0Q in
which v 0. Also, by its definition, f has compact support in Q. Thus the same
argument that was used in Lemma 6.1 to show that each of the Vk had support in
Q K can be repeated here to show that v has compact support in Q (see also [11,
p. 211]). (Here, the neighborhoods No, Na andN are replaced by neighborhoods
N-s, N/7- and N., respectively, of t -e, T+ e and E. These can be chosen
so that their intersections with Q are, respectively, neighborhoods of 0, t T
and E.) Hence v (Q), and

(6.5) P*v =f in Q.

Now let w be any solution in S. Applying (6.5), we have that

L(w) =(, rv)= (P’v, v)= (f, Pw)= 0 Vw S,

since Pw 0. Thus S f’l C(O) is dense in S with respect to the ’(O) topology.
Next let us show that the topologies induced on S by ’(O) and Coo(O) are

the same. Let $1 denote the .space S with the C(Q) topology, and $1 the same
with the ’(O) topology. Let 111: S1-S2. and I21"$2"S1 be the respective
injection mappings. Let G. and G. be the respective graphs of I1 and

Take {(uk, Iluk)} {(u, u)} to be a convergent subsequence in GI. Then
u - u in $1 and u - v in $1 for some (u, v) S x $1. But uk - u in $1 implies
uk - u in $1. Hence u v and (u, v) (u, u) G12, and G12 is closed in $1 x
Thus I2 is a closed linear operator [18, Def. 2, p. 77].

By the closed graph theorem for Fr6chet spaces [18, Thm. 1, p. 79], then, 112
is continuous. A similar argument holds for I2. ThusS and $2 are homeomorphic
and the ’(O) and g(O) topologies are equivalent. Hence the theorem is proved.

7. The representations. We are now ready for the representations.
THrOREM 7.1. Let u @’(O) be any solution in P. Then for (x, t) (2, u has

the representation

(7.1) u(x, t)= (cru, yG(x, t; ", )),

where (., denotes the duality between V’ and V.
Proof. For any u P, by Theorem 6.1, there exists a sequence {uk} in

P f’l@(O) such that u u in g(O). Using (5.3) and the fact that yG V by
Lemma 5.1, then

u(x, t)=[ B,u(,, z)T.G(x, t; ,, -)&r+f u(,, O)G(x, t; ,, O)
i=0

(7.2)
(ruk, yG(x, t; ", )).

Let. k oo. The left-hand side of (7.2) converges to u(x, t) for all (x, t)e O.
Since u - u in g’(O), the same is true in Y relative to the o-(Y, Y’) topology. By



366 I-IAROD D. MEER

the continuity of o- (Lemma 3.1), then

(crug, yG(x, t; ", ))(ru, yG(x, t; ", "))

for all (x, t) (2. Thus (7.1) results.
As a corollary, we have the following representation which is suitable for

practical applications.
COgOLLAg 7.1. Let u ’(O) be any solution in * (i.e., a solution with

trace in V*). Then there existmeasures txg on fl satisfying (4.2) andsets ofmeasures
tx () on , ] O, 1,. , rn 1, each with support bounded at the right of (0, T) and
satisfying (4.3), (4.4) and (4.5), such thatfor any (x, t) (2, u can be represented as

f A*g(O)G(x, t; , O) dlzg()u(x, t)=
g=o

(7.3)
T.O(x, t; , -) d/x ((, ’).

j=0 k,l=O

In the above, the notation is the same as that used previously and the operations
A*(0), At, D, T. are performed with respect to (. ’).

Proof. In (4.1), take F= or(u), u G(x, t; ", ). Then (cru, yG(x, t; ", )) of
(7.1) is given by the right-hand side of (4.1). Combining this representation with
(7.1) then gives (7.3).
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SINGULAR PERTURBATIONS IN THE FIRST BOUNDARY
VALUE PROBLEM FOR PARABOLIC EQUATIONS*

CHARLES J. HOLLAND]"

Abstract. The first boundary value problem for singularly perturbed semilinear parabolic
equations is considered. The regular and ordinary boundary layer expansions are derived using
probabilistic methods.

1. Introduction. In this paper using estimates from the theory of stochastic
differential equations we derive the regular and ordinary boundary layer expan-
sions for a class of singularly perturbed semilinear parabolic partial differential
equations in two independent variables. The approach taken here was also used in
[4] to establish the regular and ordinary boundary layer expansions for semilinear
elliptic equations. Previous treatments of singularly perturbed parabolic equa-
tions include the work of Aronson [1] in which the zeroth order expansion for
linear equations was established.

2. Development. Let x (Xl, x2) t R2. For e > 0 consider the equation

(1) ,’ exlx,+ a(x),,1-b(x)x:z +F(x, ) =O

in the open rectangle R (0, 1) (0, 1) with boundary data b A along the
bottom Sl={(xl., 0)’0_-<Xl_-<l}, and lateral sides Se={(O, xe)’O<=x2<-l}, $3
{(1, xe)’0_<-xe-< 1}. Denote the top of the rectangle by $4={(Xl, 1) 0 -< Xl -_<1}.
The expansions will be established on certain subsets of R denotes closure) in
which the solutions to (1) are uniformly bounded and the method of characteris-
tics yield a C solution to (1) when e 0. The characteristics of (1) are solutions of
the differential equations

-b(x).(2) x’ a(x), x2

The definitions are made to allow for a precise statement of the theorem.
Definition i is a modification of the definition of regular multilateral given in 1].

DEFINITION 1. Let I be a closed subarc of $2 $3 $4 such that no charac-
teristic of (2) is tangent to $2, $3, or $4 and such that every characteristic which
starts on I enters R, for increasing t, and first leaves R via a closed subarc
J $1 $2 U $3. In addition let no characteristic starting on I be tangent to Sa, $2,
$3 at J. The closed region bounded by I, J and the characteristics joining their
endpoints is a regular multilateral D.

DEFINITION 2. For r positive, let

Vr {X "X D and dist (x, I 0 $2) -<- r},
Wr {x "x D and dist (x, 1 71Sa) _-< r},

and let Mr D Wr I,.J Vr).

* Received by the editors, January 17, 1975.
]" Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
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DEFINITION 3. For each e >0, let 5 c R2 and let Z" be defined on
Then Z converges uniformly to Z on 5e if, for any/. > 0, there exists y > 0 such
that if x 6 5, and e < y, then

IZ(x)-Z()l<.
We shall use three regular multilaterals D, D’, D". Let us use the notation

that if w is a quantity defined with respect to D, then w’(w") is the corresponding
quantity defined with respect to D’(D").

THEOREM 1. Let there existpositive constants eo, K*, q, and m with 0 < m <
such that the following hold:

(A1) D, D’, D" are regular multilaterals with I" c interior I’, I’ interior I.
(A2) a, b are C funcions on D, F is a C function on D x (-, ).
(A3) b > q > 0 on D.
(A4) e method o[ characteristics defines a C solution o to (1) with e 0

on D taking boundary data o= A on J.
(A5) For 0<e <eo there exists a Cz solution to (1) on R with A on

S U $2 U $3 satisfying [ K* on D.
(A6) 6(e)= e.
en there exists funcons 0, 02,"" bounded on D and functions o, X1,

X2, bounded on [0, ) x I’ $2 and o, , 2, bounded on [0, m) x I’ f? $3
such that for any positive integer n,

()
+ O(x) +x x + x + o
j=l

uniformly for x on D".

(4) (ii) 0(x)=(x)+ Oi(x)ei+o(e)

uniformly for x onM).

O(Xl)(iii) (x)=(x)+O T, x2

+ O(x)+x ,x +o
]=1

uniformly for x on Mg( U Vg().

(6)
(iv)

uniformly for x on M( U W’().
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ffD fq S2 is the empty set, then thefunctions po, Xl, ,’2, are identically zero.
IfD fq $3 is the empty set, then the functions o, )1, 2, are identically zero.

Remarks. Equation (4) is the regular expansion in the theory of singular
perturbations. The functions po, Xl, X2, are a result of the ordinary boundary
layer along D $2; the functions o,,1,)2,. are a result of the ordinary
boundary layer along D f3 $3. Equations for the functions appearing in (3) are
described below.

The coefficient 0k in (4) satisfies the equation to make the coefficient of e k

identically zero in the formal expansion of (1) in powers of e. By direct calculation
0k satisfies

(7) (Ok)+F(x, qb(x))Ok

0o 4 o, with boundary data 0k 0 on J. F1 0 and in general Fk is a polynomial in
01," , 0k-1 of degree k, with coefficients F64, F646, evaluated at (x, b(x)). If
F(x, 4) is linear in 4, as is the case in [ 1], then Fk 0 for any k.

Equations for the functions 6", X1, Xz, are found by formally substituting
the expansion (5) into (1). This technique for elliptic equations was demonstrated
in Appendix A of [4]. One finds that qo qO(x satisfies on [0, c) x I f) $2

(8) x,x, + a(0,/2)X01-- 0
with boundary conditions

(0, x2)= A(0, x2)-b(0, x2),

(, x) 0.

Note that for fixed X2, (8) is an ordinary differential equation in the variable
with solution

(9) I/t0(Xl, X2)--" [A(0, x2)-4(0, xz)] exp [-a (0, Xz)Xl].

Henceforth write 0 for 01 and X for/’1 Then X X(x) satisfies

(10)
XXlXl + a(O, xa)XXl + [Io

with boundary conditions

F,(0, x, 6(0, x:) +a4,(x)) ]o
+ axl(O, xz)xlO- b(O, x2)2 0

x(O,x)=-O(O,x),

,/(00, X2) 0.

It is easy to show that the functions b,/’k satisfy an exponential decay in x as

The equations for o, k are found similarly.
Proof of the theorem. Let the positive integer n in (3)-(6) be fixed. First, the

expansion (4)is derived on M). L.et -1., o, 21,.""’, ,,n be regular multilater-
als with the properties that D Z-1 Zo’" Zn D’ and there exists some
positive constant/ such that distance (,k, D--,k-1)>/, k 0, 1,’" n. Define

Zek--Zk Vt(k+l)6(e)/(n+l) and 01 e-l(b b), Ok--e-l(Ok-l--Ok-1),
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k 2, , n. Then to prove (4) we show that 4 b0 uniformly onZ and 0 0k
uniformly on Z,, k 1, 2,. , n. We note that 0k satisfies

(11)

Here

L (0) +AO+F+ (Ok-1)x,x, O.

A= F+(x, b+A(b b)) dA, F]=0,

F 010 F+,(x, qb+Atz(ch-dp)) dtzdA,

We now make a probabilistic connection between 0 and Ok. Redefine the
functions a, b outside D so that there exists a constantMwhich is both a bound for
]a[, ]b[ and a Lipschitz constant for a, b on 2. Let be the solution to the Ito
stochastic differential equation

dl a() dt,
()

d= -b() dt +(2e)/2 dw

with initial condition (0)= x. An application of Gronwall’s inequality and
standard estimates on Brownian motion yields

Pr >=6(e)/2(n + 1)}

(13) _<4(n+ 1)eMt (el) ,/2

()

where I1- :xllt supo=<c=<t I:(t’)- :x(t’)l.

exp
\ 4et(n +i

For x e Z; let - denote the exit time of : from the interior of Ze__I and let
y min (-, (l/q) + 1). From the Ito stochastic differential rule one obtains

O(x) E Dx(t)(qb)x,x,((t)) dt

(14) }+ Dx(Yx)O((yX))
Let tl -> 1/q + 1 be fixed. For all sufficiently small e, if x Z and II:- SCxll,1 <

6(e)/2(n + 1), then s(-) J. Hence, from (13) since 6(e)= e with 0<rn <1/2,
(15)

in probability uniformly on Z;. Since if sC(y2) J, 0(:2(y)) 0 and 107(sc(y))] _-<
Ce -1 otherwise, then using the estimates (13) and (15), one obtains that
lim_.o 14 4)1 lim_.0 le0l 0 uniformly on

Now for each k 1, 2,..., n and x e Z, let - be the exit time of sc from
Z7,-1. Then applying the lto stochastic differential rule with y=
min (r, (l/q) + 1), we obtain

(16)
D(t)[F((t)) + (Ok_l)XlXl((t))] dt

+ D(,/)0(sc(7)) }
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with D(t) exp It0 A (:(s)) ds. Similarly the method of characteristics yields

(17) Ok(x) Dx(t)[F((t))+(Ok_l)XlXl((t))] at

since 0k =0 when x eJ. When x(y:)J, 0,(:(y:)) 0 and
otherwise since b is bounded on D by assumption. Using the estimate (13) we
obtain Ex{Dx(yx)O,(,(T))}-O uniformly on Z,. By induction one shows that
F, o Fk uniformly on Z7,_1. Using (13) and the definition of - one obtains that
(15) is valid uniformly for x Z[. Therefore 0, o 0k uniformly on Z,. This proves
(4).

The verification of the boundary layer expansions (5) and (6) is similar to the
proof of the corresponding boundary layer expansions for elliptic equations in [4].
We only prove (5) with n 0 to illustrate the necessary changes from the proof in
[4].

Choose e* sufficiently small so that for e < e*

and

Define

[k+k" k;+k’]x[O, 6(e)] V(),n

2 2

+2k;
3 3

x[0,(e)] v.

o =[(kl + k)/2, (k; + k)/2] x [0, 6()-],
( [(2k + k)/3, (k + 2k;)/3] x [0, ((/)/--1],

and (x) b (eXl, x2)- (ex, x2). Then to establish (5) with n 0 it suces to
show that fro uniformly on O.

Let (Xl, x2). Define the operator M by

=XlXl+a(ex, x2)Xl-eb(eXl, x2)x2.
Then satisfies the equation

+eV(x, e)=0(18)

with

W(x, e)= [-F(eXl, x2, b (/x1, x2))--F(ex1, x2, b(8Xl, x2))

+’Oxlxl(’XI, X2)]o

We may also rewrite the equation (8) for @o in the form

o+ell(x, e) 0(19)

with

H(x, e)= b(eX l, xa)Ox(x) ( fo oax,(aex, x) da Xx,(X).
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We now make the probabilistic connection between and o. Consider for
x e O the stochastic differential equation

(20) drl= _eb(erll T]2),]
dr+ dw

with initial condition ?(0)- x. By assumption the characteristics intersect I’
nontangentially; hence there exists e**< e*,. e**> 0 and a constant P so that
a(exl, x2) > P for x Q. Let d < (k"- k)/6. Then if t < dieM, "q cannot have
exited through the lower boundary of Q. Consider the problem for e < g where
g < e** and (28(g))/(gP) < d/(gM). Define r to be the first time => 0 that
?(t) 0, or 6(e)/e, and y min [r, 28(e)(ep)-l]. Then

(21) 0(x) Ex[Io:
and

eV(n(t), e) dt + (7(),))]

(22) 0(x) =E,, eH(q(t), e) dt+(/(y;))

We show that 0 0 uniformly on O through use of the representations
(21) and (22). Recall the form of V(x, e), H(x, e) and 0. Since / <-26(e)/(eP)
and the functions H(x, e), V(x, e) are uniformly bounded on O x [0, g], then the
expectations of the corresponding integrals in (21) and (22) converge uniformly to
zero on O. We now need only show that

E] (n (T))-(n(T))] 0

uniformly for x Q. Since , o are uniformly bounded on, o along/’,

uniformly for x2 6 [k , k ], then we need only show that

(23) Pr {n(Y) e 0 or 8(e)/e} 0

uniformly for x O. The estimate on O(6(e)e-l, x2)-O(6(e)e-,x2)follows
from the exponential decay in x of 0 and the result from the regular expansion
(3) that O(6(e)e-a, x2) eO(6(e),x2)+o(e) as e 0.

We now establish (23). Now

n(26(e)(eP)-) >x + 26(e)/e + w(26(e)(eP)-).
If (;)0 or 6(e)/e, then w(26(e)(eP)-l)-6(e)e -. From standard esti-
mates we have that

Pr {w(26(e)(eP)-) N-6(e)e <4 P6(e) exp (-6(e)P/(2e)).

e last inequality implies (23) and therefore the result is proved for 0 0. The
higher order expansions follow by induction using the estimates derived above in a
manner similar to the corresponding expansion in [4] for the elliptic case.
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The boundary layer expansion (6) is derived in a similar manner. The details
are omitted. Equation (3) now holds on D" due to the exponential decay of the
boundary layer functions. This completes the proof of the theorem. [3

Remark. The assumption of the domain being a rectangle is not as severe as
it first seems. Suppose that the domain R has boundary Sa U $2 U $3 U $4 with

S {(Xl, c):alx =<bl},
S4 {(Xl, d) a2 -< Xl =< hi}, where c < d, and
S2 {(g(x2), X2) C X2 d},
$3 {(h (x2), x2) c =< x2 --< d} where g and h are smooth functions with g < h.

Then the change of variables

(Xl--g(x2) __2.Z._(x 1, x2) - h-:2 g(x2)’ d c

transforms the region R into the rectangle previously treated. Equation (1) is
transformed into a similar equation for which Theorem 1 is valid.
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ON A CONCEPT OF A DERIVATIVE AMONG FUNCTIONS
DEFINED ON THE DYADIC FIELD*

JENO PAL-

Abstract. In papers 10], 11 ], P. L. Butzer, H. J. Wagner and F. Pichler examined the concept of
a dyadic derivative for functions defined on [0, ). In this paper, a corresponding inverse operator is
defined for such functions, namely, the dyadic integral operator, and a dyadic calculus is developed. It
is shown that the analogue of the fundamental theorems of the calculus holds for dyadic differentiation
and integration.

1. Introduction. P. L. Butzer and H. J. Wagner ([1], [2], [3], [10]) introduced
a concept of a derivative among real-valued functions defined on the dyadic group
and the dyadic field, respectively. They proved among other things that the
characters of the group (the Walsh-Paley functions and Walsh functions of
continuous index, respectively) are arbitrarily often differentiable. Furthermore,
they showed that the inverse operation of the derivation introduced on the dyadic
group is a convolution with a certain function W6 L(0, 1). In this paper, we are
going to give the inverse operation of the derivation defined on the dyadic field.
On the basis of Theorem 4.2 to be established, an explicit procedure of determin-
ing the Walsh-Fourier transform of functions in L2[0, ) is to be found in [18].

This paper is connected with a number of results in dyadic analysis based
upon the Walsh system achieved so far. In this respect, it must be pointed out that
Walsh functions play a dominant role in a series of applications. For the (more
theoretical) applications of dyadic analysis to Walsh-Fourier analysis and approx-
imation theory see [1], [2], [3], to dyadic partial differential equations see [10]; in
the latter paper a dyadic analogue of the wave equation is solved, the solution of
which is interpreted by H. F. Harmuth [17] in a speculative way. For the more
practical applications, such as to system theory see [11], [13], [14], to nformation
theory see [15], to hardware see [19], to digital signal processing see [20], to
sequency multiplexing of digital signals, two-dimensional sequency filters for TV
image processing and to radar see Harmuth [21].

The survey type papers by Gibbs and Ireland [16], Gibbs [23], Harmuth [21],
H. Hiibner [22] as well as the annual conferences on Walsh functions held in
Washington, D.C., Hatfield, England and elsewhere give comprehensive accounts
of most of these applications.

2. The essential notions and theorems employed. Let I+ denote the set of
nonnegative real numbers. Arbitrary x / is available in dyadic form:

(2.1) X-- Y, Xi/2y+l (Xj{0, 1}, KEN={0, 1 2,’’" })

If x is not a dyadic rational number, then expression (2.1) is unambiguous; if x is
dyadically rational, then we consider the expression in which, from a certain index

* Received by the editors March 25, 1975, and in revised form December 1, 1975.
t Department II of Analysis, E6tv6s Lorind University, Budapest, Hungary.
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on, all O’s stand. If the expansion of y R+ is y Y,j-t Yj/2+1, then let

(2.2) x S y Y (Ixi- yil)/2j+l, L max (K, M).

The generalized Walsh-Paley functions introduced by N. J. Fine [5] are defined by
the following equality"

The following assertions are easily provable (cf. [5])"
1.

(2.3) ,y(x) 4,x(y), (x, y R+).

2.

(2.4) y(x) ,yl(x)Oxl(y), (x, y +),

where {O,’n N} denotes the Walsh-Paley system, and [x] the integer part of
x E+.

3. Mappings x -> ,y (x) are the characters of the additive group of the dyadic
field, i.e.,

(2.5) py(X $Z)= Oy(x)Oy(z), (x, y, z +).

Let L I(N+) denote the class of functions absolutely integrable, with the usual
norm I[fl[1 I If(x)[ dx. We define the Walsh-Fourier transform ] of function f as
follows (cf. [5])"

(2.6) f(y) f(x),y (x) dx, (y e [+).

The fundamental properties of the Walsh-Fourier transforms are the following"
1. The Walsh-Fourier transform is a bounded linear operator mapping from

L I(N+) into L(N+), whose norm is 1; namely,

(2.7) lim ][f-fn[ll 0::)lim n(y)=f(y)), (y+).

2. Let (’f)(x) := f(x$ t). Then

(2.8) (Ttf) 0," f (f e L I(R+), t e N+).

3. The dual of the statement (2.8) also holds true"

(2.9) ([" ’t) t]
4. If f, g L I(N+), then

(2.10) (f y)^(y)= ](y)g(y)
where (f g)(x):=’0 f(u)g(x+ u) du.

5. Let

I0Sw(f; x):= f(t)O(t) dr,

(f LI(+), +).

(y +),

(x +, f (+)).
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Then

(2.11) lim o (cf.

We remark that we may also interpret the Walsh-Fourier transform of the
functions in L2(+) in the usual way (cf., e.g., [9]). This transformation is a linear
isometry mapping from L2(+) into L2(1+). Moreover, the convolution theorem,
the inversion formula and the analogue of the Parseval formula hold true.

3. Definition of the concept of a derivative. Let X(+) comprehensively
denote the class of w-continuous functions f:I/--> (cf. [7]) and the class of
functions absolutely integrable on pth power (1 =< p -< oo), consecutively, with the
usual norms. Let I1" I1,, denote these jointly.

DEFINITION 3.1 (cf. [ 10]). We say function f X(+) is D-Xdifferentiable, if
there exists a function g X(/) for which

(3.1) lim Z 2iDe--q’2-q+l)f] 0.
X

Function g we call the D-Xderivative off" and denote it by Dtl[. The r-th (r p)l
derivative of]unction f X(+) is defined by the equality

(3.2) Did/:=Dr’I(D[-’]/).
It is clear that the operation of derivation is a linear operator.

THEOREM 3.1. The generalized Walsh-Paley functions are D-C differenti-
able arbitrary often, and

(3.3) D[dOy yrdy, (y ff+).

For the proof the reader is referred to F. Pichler [11]. The proof of the
theorem is based upon the identity

1
(3.4)

and on the property (2.5) of y.
The relationship of the derivation and of the Walsh-Fourier transform is

given by the following
TI-IEOREM 3.2.
(a) Iff, Dtrf L1(+), then

(3.5) (D[r]f)^(y) yr,(y), (y N+).

For proof see P. L. Butzer, H. J. Wagner in [10].
(b) Iff L2(+) is r times D-L2 differentiable, then

(3.6) (D f) (y)= y’f(y), (Y +).

’P={1,2,3,- }.
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Proof of part (b) is analogous to that of part (a). One has only to make use of
the isometry property of the Walsh-Fourier transform concerning functions in
L2(+), instead of (2.7).

4. The inverse operation of derivation. In this section we shall prove an
analogue of Butzer and Wagner’s theorem: the inverse operation of derivation is a
convolution with a certain function Wa.

Before coming to the actual subject of this section, we are going to state some
notions and lemmas, interesting in themselves. Let us introduce the kernel
function Do,, analogous to the Walsh-Dirichlet kernel function, by the following
definition:

(4.1)
Do(t) := py(t) dy, (t 6 [0, co)).

Let us apply for this the transformation as follows, employing (2.4):

[o,-I I i+1

Do, (t) qti(t
i=0

p,](y) dy

+ o,l(t)
o,

L0(Y) dy.

With the same method, Do, (t) may be written in the form

[o,](t)o%,](w- [w]), (t -> 1),
(4.2) Do,(t)= i[o,](t)+[o,l(t)o%L,](w-[w]), (0t< 1),

where Dido, is the Walsh-Dirichlet kernel function of order [to]. Moreover
/(u) := (v) dv is the integral function of the/th Walsh-Paley function. We
remark that ot,l(to)= ttj(to-[to]) if t-> 1 and ottj(to to if 0 _-< t < 1. With the
help of this remark, (4.2) may be written as

(4.3) Do,(t)-- [o,](/)T[t](to)’ (t >-- 1),
/Sto,(t)+(t0--[tO]),(t), (0--<__t< 1).

From this expression it is obvious that if to 6 N, then

o(t) g (t 1),
(t), (0_-< < 1).

Define the kernel function Ko, analogous to the Fej6r kernel function by

(4.4) Ko, (t) := Du (t) du,

This is affected by the following
LEMMA 4.1. IIgll-- O(1) (,o - o).

(t e [o, o)).
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Proof. (i) Let us investigate first K,o(t) in the interval [1, oo). Then using the
expression of D,,(t) in (4.3), we arrive at the result that

1[,,,]-1 Ii+1 1_ i,o, qti(t) t](u) du +-- t](u) du

(2)=- I,;2(t) +I (t).

(1)Taking into account that function u -?(u) is 1-periodic, let us express K., (t) as

--. i=O I]ti(t .-[,](U) du

=[,o](t) Io [t](u) du.

Since

(4.5) Io
([t] 2k),

(It] (k =0, 1,2," "),

again,

(cf. [6]) for this reason:

I22‘+1 [/[o)](/)1 dt O(ln (k=0, 1,2,. .)

(4.6)

Investigate now the order of magnitude of the integral ’,o]tt](u)du=
-t,oj tt](u) du occurring in K(,oz)(t). If [t]= 2k +2k’+ "+2k% where k >kl >

> ks -> 0, then

(4.7)
1

2k+k,’

which may be simply verified. Employing this we find that

(2) 1 1[Ko, (t)[ <-
o 2k +k,,
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where the dyadic expansion of [t] is of the above form. Making use of this, we can
easily give an upper estimation for the integral 1 (2)Ko, (t) dt as follows:

(4.8) (2) 1 2k+1--1 1IK,, (t dt<-- y’. 2k+k,,tOk=0 i=

where ki) is such that 2k +2ki" +...+2k’’, k >ki)> > k)>O.= Forming
the sum providing the upper estimation further, we obtain that

(4.9)

again

2k+’-- 1 1 , 2k+1--1 1_1 2 2k+kq,) 2 2k60 k=0 i= tO k=0

2k+l--1 1 kl 1 kil 1 2J=k.(4.1O) i=2k j=O Ei j=O -2 +2 +---
k >j

hence

I, (2) 1 1
[K (t)l dt <-_-- 0

tO k=0

Comparing this with (4.6), we find

fl (IntO)(4. a IK (0l d O,-L---(ii) Further examinations will concern behavior of K(t) in [0, 1). For
development (4.3) of D,(t) we may set

K(t) =f (D.(t)+(w-[wJ).j(t)) du

1
(D.j(t) +( []).j()) du

1+- (o.(t) +( [])0.(t)) du
m []

(1) "(2)n (t)+n (t).

We may express (t) as

-() 1 []-1
(t)=- Z (o(t)+(-[]),(t))

i=0

1f[w]Nj(t) +--( [w])D(t),

where K denotes the Fej6r kernel function concerning Walsh-Fourier series.
UsingI ic(t)l dt= o(a) (el. [83) andI IO()[ de O0n (cf. [6]) we obtain

01, (lnw)(4 2) ()[ dr= O(+O,.
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~(2)Writing Ko, (t) in another form, we get that

~(2) 1 1
=-(,o

for this reason

(4.13) (2) (lnK,o (t)[ dt 0,----/ + 1.

Taking (4.11), (4.12) and (4.13), the statement to be proved is evident.
Let W, denote the function whose Walsh-Fourier transform is

{0, (0=<y <a),
(4.14) Wa(y) :=

i/y, (a -<_ y < oo),

where a > 0 is an arbitrary number to be fixed later. (See similar construction in
[12].) Since I’, eL2(0, o), by the inversion formula there actually exists a
function W L2(0, oo) for which (4.14) is fulfilled. Now we show that there holds
the following

LEMMA 4.2. W e L(0, oo).
Proof. Let

(4.15) W,,"(x) := (y) dy, (x e[0, oo)).

Let us investigatein case of n > mdifference

W,. (x) W,,,,. (x) q,. (y) dy.

Partially integrating twice, we obtain

D2" (x) D2" (x)
Wa,,,(x)- W,,,(x)= 2" 2"

(4.16) K2- (x) K2,- (x)
2" 2"

1
K+2 }- y(x) dy.

Since IID2,11 1 (/" N+) and IIg ll O(a) -, oo), it follows that

For this reason the sequence of functions Wa,m(m G [+) is convergent in norm

I!" ill;let us denote the limit function by W. We shall show that W= Wa. By (1.8)
the Walsh-Fourier transform is continuous, so

Let us introduce function

lim I’," (t) ff’(t), (t 6 [0, o)).

L,"(b/) :"- ’/[a’2m)(U’-’) (U >0, m e N+)
U
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Now we may set Wa, =a,,," AS fa,,, L2(0, oo). according to the inversion
formula concerning the Walsh-Fourier transform of functions in L2(0, oo),

/a,m(t) (L,.,)^(t)= fa,,(t)
0, (0-<_t<a),
1
7’ (a<=t<2")’

0, (2m<=t<oo).

Employing this, we may write

l(t) ,,-oolim l’a,,n (t) /0_lt (0=<t<a),

(a =< <oo),

that is, W W, which was stated.
LEMMA 4.3. Let d,W denote the n-th "difference quotient" function of

function Wa; that is, let

2ifW r2-,+,, Wa].

Then IId W ll 
Proof. We carry over the proof of the assertion for the case a 1; if a # 1,

then the lemma may also be proved by similar argument. Value of the constant in
O(1) depends on a.

Let n be an arbitrary fixed number; moreover, let m > n. Let us decom-
pose the function WI,m defined under (4.15) as follows:

2" 1 I2
2m 1

Wl,m(X _---. I//x(y dy + -p,,(y) dy
Y y

(I)I(X) "-I- (I)2(X)

Since lid. WI,, ]11 lid. Wl111 (m --> oo) and by (4.16)l]2ll o(1/2") if m oo, thus

1

-1

-<-E 2’11"2111 2 2’11"211,+
/=-n j=0



CONCEPT OF A DERIVATIVE 383

Now we are going to show that [[d, CDllll--- 0(1) also holds. By the definition,

1 2j lo,,(y) dydn(l(X)=-
j:_ y

(4.17) t $2-(,+1)(y) dy
Y

2J[1 2-,,+,(y)]),,(y) dy.

Introducing notation

(4.18)
1

2i ( n-1

r.(y) := [1-g2-,,+-(y)] E
j=--n k =-n-1

yk/2k+l),
(4.17) may be written in the form

nl
d,,l(x) -o,,(y),,(y) dy.

Let us decompose this integral into two members as follows:

zn

Y

=

As

2-1 f
k+l

2)(x) g (x) Oral(Y) dy
k=l "k

_fD2"(x)-l, (0<x<l),
O, (l_-<x < oo),

SO

I](I)2)Jll--n (2n- 1)+ (1--) O(1).

Convert (l)(x) in the following way:

]a)(x) k (x) (y o’, (Y))[x](Y) dy.
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By this we may write

I/+1
(4.19)

/=0 k=l

If we prove that

k=l

k+l 1
(y-o’,,(y))tPl(y)dy

-(y o’,, (y))qtl(y) dy

(4.20) ,=oY" (y-r,(y))l(y) dy O

(k 1,2,..., 2"- 1),

then from this by (4.19), I[(I)l)l] 0(1) follows. Since y e[1, 2"), thus by (4.18),

1 r/(y)
y o-, (y) Y yff2 + Y. 2+----.j=n j=n

Replacing this into (4.20), we have

(4.21)

/=0 /--

]=n 1=0

+2
=0

=2
j=n /=0

ft/+l 1 (_nl-+(-ffY))l(y)dy
fk:k+ll(l_ri(y))l(y)dyl)

-fil Y dy

+1 __1 0"-2’*I (Y) dy
Y

I,’+al(y) dy

Let us form integral I+1 (1/y)l(y) dy by partial integration done twice; we get
that

p,(y) dy -l(Y) dy

1 [+, + 1
Lt(y) +2 L,(y) dy,

where l is an integral function of q’l and L is that of l, that is,

Ol(y) Ol(t) dt, Ll(y) (t) dt.
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Using (4.5) and the fact that the function t- ol(t) is 1-periodic in case of _-> 1, for
the absolute value of the integrated part,

L,(y)]
/1

is obtained if O, and in case of ->_ 1,

=0

(k / 1)2
(k + 1) l(t) dt --5" k t(t) at

0

k(k + 1) U+2’ (l 2J), (/" O, 1, 2,..-);

thus

(4.22)

1 1

"o 2j+2k(k +1),
1 1

-2 k(k + l) <’ (k 1,2,--., 2n--l).

As in case of 0, LI(y)= IYo t dt y2/2; thus
k+l

(4.23) 2 y.Ll(y) dy
1

if 0. In case of _-> 1, let us consider the following decomposition of L/(y):

lYe-I-1 Ii+l I[
y

Ll(y)-- (t) dt + (t) at
i=0 y]

fO IOy-[y]=[y] ,(t) dt + l(t) dt.

Employing this and (4.7), we get for => 1,

k + 1

-5L/(y)dy 2k IO
(4.24) +2

k+ 1
Ol(t) at. dy

p (t) d dy

2 I01 2
k 2 ,(t) dt +-5
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where 2kg’ + 2k’’ +. + 2"’ k(01) > k]l)> > kl) > 0. On the basis of (4.9)
(4.10), (4.23) and (4.24),

(4.25)

k+ 1
2 -5Ll (Y) dy

1 2 1

y=O

2 j

]=0
(k 1, 2,- ., 2k-l)

follows. Taking (4.22) and (4.25) into consideration, we obtain

(4.26) l=o Ik+lY 2"_-7. ,(Y) dr < oo, (k 1, 2,. , 1),

which by (4.21) proves (4.20). We have therefore proved the lemma.
By the convolution theorem it is easy to prove
LEMMA 4.4. (a) Let f L(O, oo) be an arbitrary function for which (y) 0

(0 <- y < a), and g L(O, oo) be a function, for which

(4.27) (y) yf(y), (y e [0, )).

Then f= W * g.
(b) Let f L2(0, ) be an arbitrary function for which )(y) 0 (0 -< y < a);

moreover, g e L2(0, oo) be a function for which ,(y) y f(y) (y e[0, oo)). Then
f=W*g.

The following theorem shows that inverse operation of the derivation defined
in (3. l) is the convolution with a function Wa.

THEOREM 4.1. (a) Let f L(O, oo) be D-L differentiable, and let (y) 0
(0-<_y <a). Then

(4.28) W * D[1]f f.
(b) Let fL2(O, oo) be D-L2 differentiable, and again, let f"(y)=O

(O_-<y <a). Then

(4.29) Wa * D[1]f f.
Proof. Applying Lemma (4.4)retaking Theorem 3.2 into consideration--to

function g Dtl]f, we obtain the required assertion.
In the following we shall show that an equivalent of the well-known theorem

concerning differentiability of an integral function also holds.
This is stated in
THEOREM 4.2. (a) Letf L(O, oo) be an arbitraryfunction. Now W * fisD-L

differentiable, and

(4.30) D[1](W * f) f.
(b) Letf L2(0, (30) be an arbitrary function, for which f(y) 0 (0 <= y < a) is

satisfied. Then W f is D-L differentiable, and

(4.31) /911](Wa * f)=f.
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Proof. (a) By the definition

dn(Wa * f)(x)= W,(x; y)f(y) dy

1
2 U[%(x;y)

that is, d.(W )= dW f W d. Let us define sequence of operators
T "L(0, ) L(0, ) (n e N) as follows"

By this definition validity of (4.30) is equivalent to the equality

(4.32) lim IIT,,f f]la O.

Since

T,fl[1 --lid, Wa : flla -<-lid. Wallallflla,

that is, IITII <-IId Wll--considering the assertion of Lemma (4.3)--it is sufficient
to prove (4.32) for the elements of a class of functions everywhere dense in
L(0, oo), as by the Banach-Steinhaus theorem fulfilment of (4.32) follows from
this in case of arbitrary f L(0, oo). Let

l-(x) := era(x), (x el0, 1)),
(m

0, (otherwise),

We shall prove that

(4.33) lim lid.w G Gll, lim Ilwa * d.G &Ill 0.

The "difference quotient" function dn6,, may be expressed in the following
manner:

U[,. (x)-,(x 2-0"+))]

1 2.[ (x)-& (x 4- 2-’+’’)]
2,=0

-11
Z U[m(X)-.,(x2-+a))]-’t-- j=-n

=O(x)+Oz(X).
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Considering the definition of ff,, O, (x) may be obtained in the form

1 U[1_4S,,(2_(+))], (x e[0, 1)),
( (X)

O, (otherwise).

Since

1-- m(2-(j+l)

mj= 2

(where m k=o mk 2 is the dyadic expansion of m), thus

Im. p,,,(x), (x el0, 1)),
(4.34) Ol(x)

0, (otherwise),

if n > [log2 m].
By a simple change of indices O2(X) may be changed to

1 2[,.(x)_.,(x2_o.+l))]O(x) =___.
=l[m(X)--m(X*2k)].

According to this, we may write

1 "-1 1

O2(x)
1
7

,,(x; 2),
(x [0, )),

(x [U, 2 + 1)), j=0, 1,-..,n-1,

or,

(4.35) 02(x) l 21m(--2),
(x [0, )),

(x e [2j, 2+1)), j=O, 1,--.,n-1.

Comparing this with (4.34), we obtain that in case of n > [log2 m],

(4.36) d,q,, (x)
2n+1 I-m qt,,(x), (x 6[0, 1)),

1
7ff,. (x 2), (x e[2*, 2 + 1)),

Let us observe the function
L(0, 00)("IL2(0, o0). Since

(m) =x,+,),

j=0,1,...,n-1.

wo : .Wa

(d,,Wa) tr,, Ire’a,
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(where o-, is the function defined in (4.18))--which are easily provable--the
Walsh-Fourier transform of this function may be put in the form:

(W, d,,m-m)^(y)=(d,,Wa , m--m)^(y)
(V.(y)tr.(y)- 1)X[m,m+l)(Y), (y [0, )).

Let us now apply the inversion formula (1.11) concerning the Walsh-Fourier
transform. It follows that

(t e [0, oo)).

Employing lim._,oo r. (y) y (y [0, oo)), by Lebesgue’s theorem, we arrive at the
result

(4.37) lim (d, Wa * m)(t) m (t), (t [0, OO)).

By the presentation of d,ffm in (4.36),

(4.38)
m+l

1
2+2’

(x e [0, 1)),

(x e [U, 2 + 1)), j e I%1+,

in case of arbitrary n > [log2 m]. Denote by Mm the majorizing function on the
right-hand side of (4.38). Since Mm L(O, oo), moreover,

](d.W 7,.)(x)l- I(w d.m)(X)]

W,(x;y)d,m(y) dy <-(IW.i.

(x e [0, oo), n > [log2 m]),

and Wal, Mm eL(0, oo), we see that functions d,,Wa * & have a common
integrable majorant. From this and (4.37), equality (4.33)--whic.h was to be
proved--follows. As the class of functions arising from functions Om (m e I1) by
translation is everywhere dense in L(0, oo) and lid, W,, *rh,,--rh,n]ll
IId,,W, g,,,,- g;lll in case of arbitrary h [0, oo), the proof of part (a) of the
theorem is complete.

(b) To verify equality lim,+oo Ila,,w f-fll 0, the isometry property of
the Walsh-Fourier transform sumces to show that lim,+oo II(dn Wa) ^" f-fq[2--0.
But

1
(d,,Wa) (y)= E U[W.(y)- rta(Y)2-’,+a)(y)]

r. (y).(y),
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so that

ll(d.W) /-/I- I/(y)l o’,(y)- I

From this, (3.4) and Lebesgue’s theorem, it follows that

lim II(d, Wa)^" :-12 O,

2

which was to be proved.
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EXTENT OF THE LEFT BRANCHING SOLUTION
TO CERTAIN BIFURCATION PROBLEMS*

W. E. OLMSTEAD"

Abstract. A special class of nonlinear eigenvalue problems which exhibit branching to the left of
(below) the smallest eigenvalue is considered. This particular class serves to illustrate a procedure for
bounding the leftward extent of a nonnegative solution branch. The procedure relies upon a
well-known result about upper and lower solutions associated with a monotone operator. In the
situation of left-branching bifurcation, the more difficult determination of a suitable lower solution is
achieved by using an explicit solution to a simpler nonlinear problem. A physical example relative to
the buckling of a nonlinearly elastic rod is worked out in detail.

1. Introduction. The purpose of this paper is to demonstrate a procedure that
can provide some global information about certain birfurcation problems which
exhibit branching to the left of the lowest eigenvalue. While the method suggests
some general applicability, we will only be concerned here with a limited class of
problems which illustrate the idea.

Consider the nonlinear boundary value problem

(1.1) u"(x)+Af(u(x))=O, 0<x <l, , >0,

(1.2) u’(0) u(1)=0, u(0) _->0.

We take f(z) to be thrice continuously differentiable with respect to z and,

(.3) f’(z)>-o, z->0; f(0)=0, f(0)>0.

Additional conditions on f(z) will be imposed as needed.
This problem has the equivalent and sometimes more convenient formula-

tion as an integral equation,

(1.4) u(x) g(xl)f(u()) d =- Au(x),

where g(xl l- +(-x)H(x ) >= O.
For appropriate choices of f(u), it is well known that this problem can have

nontrivial solutions which branch from u -= 0 at the eigenvalues ,,,, n 1, 2, ,
of the linearized problem. The local behavior near the branch points is explicitly
known (cf. Keller [3]). The existence and gross characterization of the solutions
away from the branch points has also been investigated (cf. Rabinowitz [6],
Wolkowisky [10]).

We will be concerned with the situation in which a bounded, nonnegative
solution exists on some interval, 0 < A’ =<, < ,

1, where M is not particularly close
to zero. A typical case is depicted in the bifurcation diagram of Fig. 1. The branch
corresponding to the nonnegative solution bifurcates from the trivial solution at
the smallest eigenvalue , and extends to the left as far as some A’ before winding
back to the right.

* Received by the editors October 6, 1975, and in revised form November 10, 1975.
f The Technological Institute, Northwestern University, Evanston, Illinois 60201. This work was

supported by the National Science Foundation under Grant GP-44027.
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Umax

FIG. 1. Bifurcation diagram

Generally it is difficult to obtain the kind of detailed information about the
entire bifurcation diagram which is shown in Fig. 1. Fortunately some limiting
features of the diagram can frequently be determined. Results on the local
behavior near A indicate how the branch starts. A boundedness result, 0 -< u U,
can often be obtained to limit the upward extent of the branch. The leftward
extent of the branch is limited by a uniqueness result which establishes u 0 as the
only solution for 0 < A =< A**. Also, a stability analysis would reveal the solution
on the upper part of the branch as stable and the lower part as unstable.

Our main interest here is to determine more information about the leftward
extent of the branch. While uniqueness provides some bound A ** =< A ’, we rarely
know how accurate this estimate is. We will show that, for certain problems like
(1.1)-(1.2) some A * can be determined such that a nonnegative solution exists for
A* _<-- A < A 1. This result together with the uniqueness results yields the estimate

This inequality provides some useful information about the location of ’.
A result like (1.5) can be important in many problems of physical interest. As

one example, we will treat the buckling of a rod with a nonlinear compressibility
property. The first buckled mode of the rod can be described with a bifurcation
diagram like that of Fig. 1. The parameter A is inversely proportional to the
bending stiffness of the rod. For sufficiently small only the unbuckled state
(u -= 0) of rod is possible. However, for values of A which are significantly below
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the classical critical value A 1, it is possible for the rod to buckle. An estimate, like
(1.5), gives some indication of the true critical value A’ where the buckling can first
occur.

The procedure described here for determining an appropriate A* relies in
part on certain monotone methods which have been widely used in the analysis of
nonlinear problems (cf. Keller and Cohen [2], Krasnosel’skii [4], Sattinger [7],
[8]).

Under the conditions indicated, the operator A of (1.4) is monotone with
respect to the cone of nonnegative, continuous functions. Moreover, for such
monotone operators it is known that if some V-> 0 and v _-> 0 can be found such
that AV=< V and Av >= v with v -_< V for all A, h * =< h _-< h 1, then (1.4) has at least
one solution u, v -< u _-< V.

When the branching is like that of Fig. 1, it is relatively easy to find a suitable
V. Often, some positive constant will suffice. It is less easy to find a suitable v. A
principal feature of the work here is the choice of v as the solution of a simpler
nonlinear problem, closely related to (1.1), (1.2). For the class of problems
considered, v is explicitly given in terms of elliptic functions. Thus fhe require-
ments that v <-_Av and v -< V can lead to an explicit value of A*.

2. Basic results. We will use several basic results relevant to that branch of
the nonnegative solution of (1.4) which emanates from the smallest eigenvalue A1
of the linearized problem. Collectively, these results provide a qualitative
description of the bifurcation diagram of Fig. 1.

The bifurcation behavior at A requires some knowledge of the linearized
problem

(2.1) /’(x)+Af’(O)O(x)=O, O<x <l, A >0,

(2.2) ’(0) (1)= 0, (0) 1.

We only use the eigenfunction corresponding to the lowest eigenvalue, namely
2

7rX 7/"
(2.3) /,l(x) cos --, 11 412/,(0--.
Now the local branching at A is summarized in the following result.

THEOREM 1. There exists a left-branching, nonnegative solution of (1.4) forA
sufficiently near A if

(i) f"(0) 0, f’"(0) > 0; whereupon,

(2.4) u(x)=[v’(O) --7 ]I.f"’(O) (1 A) 1,2

or if
(ii) f"(O) > O; whereupon,

(2.5) u(x) I. 4f"(0) \1 -11 cos -2-}-+ o 1 -11
This theorem follows as a special case of that due to Keller [3].

cos -+ o 1-
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To limit the leftward extent of this branch, we must impose some additional
condition on f(z) which will allow us to prove a uniqueness result for the trivial
solution. It is clear from (1.4) that the operator A maps the space of nonnegative,
square integrable functions into itself. Therefore for any continuous function u(x)
which is a solution of (1.4), we have

(2.6) Ilul[L2 Ilmulk= f’(0)A
Suppose there exists a constant y > 0 such that f(u) <- yu, u >-_ 0; then clearly

(2.7) IlullL==f,(O)
If A’y<ff(0)A1, then (2.7)implies that Ilulk==0, Thus we have established the
following result.

THEOREM 2. Let there exist a constant y >0 such that f(z)<-_ yz, z >-_0. If
A <A** =f’(0)Aly-a, then the only continuous nonnegative solution of (1.4) is

This theorem provides some sufficient value A**> 0, which limits the left-
ward extent of the branch.

The upward extent of the branch is often limited by a boundedness property
on f(z). For example, it is easy to establish a result like

THEOREM 3. Let there exist a constant fl > 0 such that f(z) <-_ fl, z > O. Then
any nonnegative, continuous solution of (1.4) satisfies

flr2(2.8) u(x) <-U= O<-x <-_l.
8f’(0)’

This result follows immediately from (1.4) upon replacing A by A and noting that

It0 g(x 1:) d <-1/21.
We now turn our attention toward the determination of a suitable A* which

will help delineate the extent of the leftward branch. We will rely upon the
following result.

THEOREM 4. Let Vand v be nonnegative, continuousfunctions which satisfy

(2.9) A V<- V, Av >- v, v <- V.

Then there exists a solution of u Au such that

(2.10) v -< u _-< V.

Here V and v are called, respectively, an upper and lower solution of (1.4).
Theorem 4 is a special case of Theorem 4.1 of Krasnosel’skii [4]. Essentially

all that needs to be verified is that A is a monotone operator on the cone of
nonnegative, continuous functions. That property does hold because if u and u2
are each continuous and nonnegative functions with u => u2, 0 =< x =< l, then

IO(2.11) Aua-Auz=A g(xl)f’(O())[u()-u2()]d, O<-u<-O<-u.

Since g ->_ O, f’ => 0 and h > O; this representation clearly implies that Au Au2.
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It should be pointed out that while f’(z)>-_ 0 is convenient for the approach
presented here, this condition is not a necessary one for dealing with problems like
(1.1)-(1.2). Indeed, Sattinger [7] has developed results with monotone methods
under much weaker conditions on f(z).

The proof of Theorem 4 involves the construction of certain monotone
sequences which converge to a solution of Au u. The results of Sattinger [7]
indicate that this convergence is always to a stable solution. Thus the existence
statement actually refers to the upper portion of the solution branch in Fig. 1.

Our task remains to find suitable functions V and v such that (2.9) holds for
0 < A* _-< A _-< A 1. It is relatively easy to find an upper solution V. The determination
of an appropriate lower solution v is more difficult.

Under the assumed condition on f(z) in Theorem 3, it is straightforward to
show that the constant U, defined by (2.8), provides an acceptable upper solution.
For A _--<h 1, we find that

A If(U)l:z ]’n":
(2.12) AU: hf(U) g(xls) ds --<

2
--<

8f’(0)
U.

Therefore V U can be used, although a better choice may follow in certain
individual examples.

To obtain candidates for a lower solution, we will introduce two nonlinear
boundary value problems. In essence, these problems represent the two possible
limiting forms of (1.1)-(1.2) where there is branching to the left of the smallest
eigenvalue. First we consider

(2.13) 1,"(x)+A[1,(x)+a3(x)]=O, 0<x <1, A>0,

(2.14) if’(0) if(l): 0, if(0) >0.

Here a > 0 is a constant to be specified later. As an equivalent integral equation,
this problem takes the form

(2.15) if(x) A g(xlsC)[(s) + a3(sc)] dsc,

where g(xls) is the same as in (1.4).
The nonnegative solution of (2.13)-(2.14) or (2.15) which exhibits left-

branching at the smallest eigenvalue Aa 7r2/412 of the linearized problem (a 0)
is given by

cn xlm O<=x<=l,(2.16) (x) a(1---2m 1 2m

where A depends on rn through the relation

A 2K(m) (1-2m) 0<m<1/2.(2.17) a---
Here cn (zlm) is the Jacobian elliptic cosine function with parameter m, and K(m)
is the complete elliptic integral of the first kind. In (2.17) it can be shown from the
properties of K(m) that A is a monotonically decreasing function of m, 0 _-< m < 1/2,
with A A1 when m 0 and A -> 0 as m --> .
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As the other candidate for a lower solution, we consider

(2.18) ff,"(x)+A[ff,(x)+bff,Z(x)]=O, 0<x <1, A>0,

(2.19) if’(0) if(l) 0, if(0) > 0.

Here b >0 is a constant to be specified later. Again we have the equivalent
integral equation

(2.20) ,(x) A g(xl)[ff,()+bZ()]d.

The nonnegative solution of (2.18)-(2.19) or (2.20) which exhibits left-
branching at the smallest eigenvalue A1 "r/’2/412 of the linearized problem (b 0)
is given by

(2.21) ff(x)= sn2 llm --sn2 xlm O<=x<--l,

where r (1-m + m2) 1/2, and A depends upon m through the relation

A l_l_16f(sn_a([1 + m + ,/.]-1/2)}2, 0 < m < 1/2.(2.22)
A1

Here sn (xlm) is the Jacobian elliptic sine function with parameter m, and sn-l(y)
is its principal inverse. In (2.22) it can be shown that A is a monotonically
decreasing function of m, 0-<m=<1/2, with A=A1 when m=0, and A=
(0.77...)A1 when m 1/2. The limitation here on the range of A is apparently due
to the choice of functions used to express the solution.

In order that and 3 can be used as lower solutions of (1.4), we must make
an appropriate selection of A, a and b. An obvious choice which corresponds to
the two cases of Theorem 1 is

(i) A=2f’(0); a=f"’(O)/6f’(O), f"(0)=0, f"’(0)>0.
(2.23)

(ii) A= Af’(0); b =f"(O)/2f’(O), f"(0) >0.

Under (2.23) we find that as m 0, A -+ A while v(x) and if(x) have precisely the
bifurcation behavior indicated in (2.4) and (2.5), respectively. That is, for a near
,tl, u(x)’--. (x) in case (i) and u(x)-(x) in case (ii).

In case (i), we have from (1.4), (2.15) and (2.23) that

(2.24) A1- 1 a f01 g(xl)[f(())-f’(O),() -f’’’(O) 13(:)] d.6

Analogously in case (ii), we have from (1.4), (2.20) and (2.23) that

(2.25) AI1 12 I fO f"(0) (()] a(.g(xl()[f(ff’(g))-f’(O)ff’(()- 2

In either case if the integral is nonnegative, we clearly have Aft, -> ff or Aft -> ff
and hence a lower solution. This provides the basis for the following results.
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THEOREM 5. Let f(z) <-_ , z >-_ 0 with f"(O) 0 and f’"(O) > O. Suppose some
A * > 0 can be found such that

(2.26) f()>f’(O)+f"(O) and </3r2 O<=x<l,
6 8f’(O)’

for all A, A * <- A < A 1" Then there exists a left-branching, nonnegative and continu-
ous solution u(x) to (1.4) satisfying

(2.27) (x) < u(x) <-_ 3r2
8f’(0)’

0_-<x_-<t,

forallA, A*<--A <A1.
THEOREM 6. Let f(z <=, z >= 0 with f"(O) > O. Suppose some A * > 0 can be

found such that
f"(o) 3r(2.28) f() =>f’(O) +/-
2

v and -<
8f’(O)’

0 =x< l,

for all A, h * <= h < h 1" Then there exists a left-branching, nonnegative and continu-
ous solution u(x) to (1.4) satisfying

(2.29) if(x) < u(x) < 3r2 0 < x < 1,
8f(0)’

for all A, A * <= A < A .
The proof of Theorems 5 and 6 follow as an application of Theorem 4. In

(2.12), U flcrz/8f’(O) was established as an upper solution. A lower solution,
in Theorem 5 and in Theorem 6, follows from (2.24) and (2.25) when the
integrand is nonnegative. This is in fact provided by the conditions (2.26) and
(2.27), respectively.

In practice, A * is determined as a constraint under which both inequalities in
(2.26) or in (2.28) will hold. These conditions are trivially satisfied as m --> 0, since
/ "-’)/ 1, while ff - 0 and ff - 0. When some m*, 0 < rn * < , can be found such that
(2.26) or (2.28) holds, then (2.17) or (2.22), respectively, yields the desired

The results of Theorems 1, 2, 3 together with either Theorem 5 or 6 yield
considerable insight into the nature of the bifurcation diagram, Fig. 1. The local
branching behavior near A1 is given by Theorem 1. Theorems 2 and 3 yield h**
and U to limit the leftward and upward extent of the branch. Theorem 5 or 6 is
intended to provide A*, and hence bound the leftward extent of the branch by
(1.5).

Finally, it is worthwhile to comment again that many of the conditions
imposed on f(z) are only sufficient to obtain the stated results. In many places they
can be replaced by weaker conditions. In individual problems, there may also be
other, simpler conditions which yield the equivalent results.

3. Application to a nonlinear buckling problem. As an example of a
left-branching bifurcation problem, we will examine a model problem for the
buckling of a pin-ended slender rod subjected to end loading. The rod material is
assumed to have certain nonlinear compressibility properties. The problem
considered here is a particular case from a class of buckling problems examined by
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Stakgold [9] and Olmstead and Mescheloff [5]. The work in [5] and [9] is based
upon a general theory of rods due to Antman [1].

The boundary value problem is posed in terms of the tangent angle u(x) of
the deformed rod as a function of the material points x on the rod in its originally
straight position. We will consider the example

PeF[Pcosu(x)]-_e’(o) (x) O, F(z) 1/2 tanh [5(3 5z +222)],(3.1) u"(x) +- sin u -=

(3.2) u’(0) u’(2) 0, 0 -< u(0) < rr.

Here P>0 is the magnitude of the end load, and for convenience we set the
original length as 2. The bending law has been assumed linear in this example
with k > 0 as a measure of the stiffness. The compressibility effects are reflected by
the exponential function; while the sine function arises from purely geometrical
aspects of the formulation.

As it stands, the problem (3.1)-(3.2) is not quite the type to which the
procedure of 2 can be applied. First, the boundary conditions are different, so
that any nontrivial solution is somewhere negative. This is easily remedied by
considering only the first buckled state of the rod which has a shape that is
symmetric with respect to the midpoint. Thus, the first buckled state can be
examined for u (x) -> 0 on 0 _-< x _-< 1 with u (1) 0. The other difficulty is that the
physically natural choice of P as the bifurcation parameter puts this problem into a
slightly more complicated class than (1.1)-(1.2). To avoid this technicality, we will
examine the problem from another viewpoint. The end load will be fixed at P 1,
and the stiffness k of the rod material is allowed to vary. Then with ,
k-P exp I-F(0)] (0.818...)k-, we can reformulate (3.1)-(3.2) as an appro-
priate integral equation for the tangent angle u(x) on one-half of the rod. This
gives

(3.3) u(x) , g(xl ec’(el sin u(,) d =- Au(x).

Here g(xl) 1 + (-x)g(x ) >- 0.
With the buckling problem expressed in the form of (3.3), we can follow the

general procedure of 2. For the local branching behavior near the smallest
eigenvalue i -/4, case (i) of Theorem 1 applies. The nonnegative solution has
the form

(3.4) u(x)=2[(1--l)] /2
cos --+orrX[( 1

/ )1/2],/1
when is near , .

It is easily shown (cf. [5]) that all solutions of physical interest for this type of
buckling problem are bounded in absolute value by rr. Thus the nonnegative
solution which branches from , must satisfy

(3.5) O <-_ u(x) <-_ rr.

This ad hoc result does provide a bound on the upward extent of the solution
branch. We cannot however use rr as an upper solution of (3.3).
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To limit the leftward extent of the branch, we can follow Theorem 2 to find
that

(3.6) u(x)=O, 0 < A < A ** A e -F() (0.818...)h .
In order to determine some A * to which the solution brand must extend, we

will employ the results of Theorem 5. Since this does require that the operator A
in (3.3) be monotone, we must necessarily restrict our analysis to the cone of
nonnegative and continuous functions truncated by 7r/2.

In this truncated cone, we in fact find that V 7r/2 is an upper solution of
(3.3). That is, for all A -<A 1,

e (1/5)tanh(15)
7r eF(O A1 7I"

(3.7) A A g(xl) d <- <-
2 2"

To construct a lower solution of (3.3) we consider rb(x), the solution of
(2.13)-(2.14) with A= A and a 1/3. Then, to satisfy (2.26) we require that

(3.8) rb(x) -<-, 0-<x-< 1,

and

(3.9) f(l)=e(1/5)tanh[5(3-Scs+gcs2)]sin 1 > 1, q-1/21 3 0<X<l

To have (3.9) hold, it is sufficient to require that

(3.10) 0-< (x) _<-0.550, 0-<x _-< 1.

We see that (3.10) is more restrictive than (3.8). To satisfy (3.10), we refer to
(2.16) and determine that we must take m -<0.0457 In turn from (2.17) this
implies that (3.10) holds, and hence the solution branch exists for

(3.11) A =>A* (0.919...)A.

Thus we conclude from (3.6) and (3.11) that the leftward extent of the
nonnegative solution branch is bounded by

(3.12) (0.818...),1 -<,’-<(0.919...)/1.
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ON AN INTEGRAL TRANSFORM OCCURRING IN THE
THEORY OF DIFFRACTION*

D. NAYLOR?

Abstract. This paper considers an integral transform adapted to the solution of certain boundary
value problems connected with the Helmholtz equation in cylindrical or spherical polar coordinates
when the radial variable varies over some infinite interval 0 < a =< r < oo. At infinity a radiation type
limiting condition is imposed. A formula of inversion is derived which does not involve any
summability factor, despite the singular nonself-adjoint nature of the expansion problem.

1. Introduction. In a previous paper [3] the author considered the problem
of finding a formula of inversion for the integral transform defined by the equation

(1) G(u) [Ju(kr)H(ul(ka)-Ju(ka)H(,(kr)]f(r) -,
r

where a > 0, k > 0 in which the function f(r) is supposed to belong to a certain
class of functions which at infinity satisfy a radiation condition

(2) lim r/[f’(r)- ikf(r)] O.

The actual formula obtained in [3] is

1
]i.m I.., uH(l)(kr)G(u)du(3) f(r) =- H)(ka) cos (hu3/2)"

The trigonometric function appearing in this formula is a summability factor,
the parameter A tending to zero through positive values. The path Wdenotes the
wedge arg u + in the complex u-plane, the angle being chosen small enough
to ensure that none of the zeros un of I-l(2(ka), regarded as a function of the order
u, lie inside W. The form of the above formula raises the question of the
possibility of the existence of an alternative formula of inversion not involving a
summability factor. A formula of this type, which is useful in connection,with the
solution of certain problems associated with the Helmholtz equation, is developed
in this paper. Although this formula can be used to construct the kind of expansion

l)(krinvolving the eigenfunctions/-/(. which appear in such problems, it is not
especially adapted to derive this expansion, and in fact it generates an expansion
of a different form.

The formula in question together with a set of conditions sufficient to ensure
its validity are stated in the following theorem.

THEOREM. Suppose that f(r) is twice continuously differentiable for r >-a,
r-/:(rf,r+fr+krf)L(a, oo), lim,_.oorX/f(r) e -ir exists and limr_.oor/(fr--
ikf) O, where k is real and positive. Let G(u) be defined by (1); then, if r > a,

-1 "L[- uJ_(kr)G(u)j_,(ka) du uJ_(kr)G(u)
(4) f(r) + (O/Ou)J_u(ka)’

* Received by the editors June 16, 1975, and in revised form October 10, 1975.

" Department of Applied Mathematics, University of Western Ontario, London, Ontario,
Canada.
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where L denotes the imaginary axis of the complex u-plane and the summation is
extended over all of the positive zeros u’ of the function J_u(ka), regarded as a
[unction of u.

2. Proof of the theorem. A proof of the expansion (4) can be obtained by
following the procedure developed in [4] to derive a related expansion theorem.
Let f(r), the function to be expanded, satisfy the conditions of the theorem and let
the function g(r) be defined by means of the equation

(5) r2frr + rfr +(k2r2-t)2)f g(r),

where r > a and v is some positive number which is not a zero of J_,(ka). It is
known [1] that there is an infinite number of such zeros, all real and simple, and [5]
that they all lie in the interval -ka =< u <. Furthermore, the large u-zeros are
asymptotic to the positive integers.

The equation (5) is now regarded as a nonhomogeneous differential equation
for f(r), which will be inverted in terms of a suitable Green’s function. Since all the
Bessel functions of real argument are O(r-1/2) as r , there are infinitely many
Green’s functions that can be used for this purpose, each giving rise to a different
representation or expansion formula for f(r). In the author’s previous discussion
of this problem, that Green’s function was chosen which satisfied the radiation
condition at infinity. The resulting Green’s function contained the Hankel func-
tion H)(kr) as one of its factors, and this gave rise to the expansion involving the
eigenfunctions H). (kr).

In this paper a different Green’s function is adopted, as defined by the
equations,

(6) G(r,p)=

where

(7) v(k, r)

--,n.d,, (k, r)J_ (kp)

2J_v(ka)

a <-r<-p,

a <=p <-r,

J(kr)J_o (ka ](ka)J_v (kr)
sin vTr

The equation (5) may now be inverted to yield the formula

(8)

J_(kr) Ia dp
f(r) =f(a)

J-v
G(r, p)g(p)--

P

+ lim[pf(p)Go(r, p)-pf’(p)G(r, p)].
0-->o0

The value of the limit appearing in the preceding equation can be obtained
as follows. Upon substituting the Hankel asymptotic expressions for the Bessel
functions of large argument, it follows that

(9) lim [rf’(r)J(kr)- krf(r)J’v(kr)] c ei’/2,
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where

(10) c i(2k/Tr) 1/2 e i/4 lim [rl/Z[(r) e-ikr].

The limit in (8) may be determined by substituting the first of the expressions
appearing in (6) and using the result (9). This gives the formula

(11) f(r) G(r, o)g(p)
dp+f(a)

J_(kr) cr@o k, e-W/2
p J-v(ka)

+
2J_(ka)

To obtain the desired formulas, it is necessary to represent the Green’s function
defined by the composite expression (6) by means of a single formula, which will
be substituted in (11). The required formula is given by the equation

1 f u,(k, p)J_u(kr) du
G(r, p)= t JL (uZ-vZ)J-,(ka)

(12) . uJ (ka)J_, (kr)J_, (kp),,; (uZ-v 2) sin uTr(O/Ou)[J_,(ka)]"

In this formula, L denotes the imaginary axis of the complex u-plane and the
summation includes all those zeros u’,, of the function J_,(ka) which are located in
the half-plane Re (u) > 0. The validity of (12) may be demonstrated with the aid of
the calculus of residues, and for this purpose, it is necessary to determine the
behavior of the integrand when u is large. This may be estimated with the
asymptotic expression

(13) Ju(x) (x/2)[1+ O(u-a)],
F(u + 1)

which holds when u is large compared with x and bounded away from the
negative integers. Since the zeros of J_u(ka) tend as u - oo to the (large) positive
integers, it is convenient to close the contour of the integral in (12) in the
right-hand half-plane by means of a sequence of semicircles C,, of radii (n + 1/2) and
let n oo. The asymptotic behavior of the function q% defined by (7) can be
obtained after estimating the Bessel functions by means of the formula (13) and
then using the identity F(1 + u)F(1- u) sin ur u’. This procedure leads to the
estimate

(14) O(k, p)= l--[(p/a) -(a/p)"][1 + O(u-)].
ur

The expressions (13), (14) show that on the semicircle C,, the integrand in (12) is
O[u-2(p/r)] where u- + is, t > 0, which tends to zero as u oo provided that
a _-<p _-<r. For such values of r, p the contour integral in (12) may be evaluated by
closing the contour on the right and taking the residue at the pole u v and at all
the zeros u ’,, lying to the right of L. When this procedure is carried out, the series
appearing in (12) cancels out with the series of corresponding residues, and the
formula (12) for G(r,p) reduces to the second of the two expressions on the
right-hand side of (6). The validity of the representation (12) for the complemen-
tary range a <- r _-< p cannot be established directly by the above method since for
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such values of r, p the integrand does not tend to zero as u oo, except on L itself.
In this case, the formula can be verified by decomposing the integral into two
parts, corresponding to the two terms in (7), and evaluating the resulting integrals
by closing the contour on opposite sides of L as appropriate. Since this procedure
introduces the residues at the zeros of the function sin ur, it is shorter to proceed
indirectly as follows by verifying that the expression proposed in (12) is a
symmetric function of r, p. By means of (12), (7), it follows that

1 Ic u[J(kp)J_u(kr)-Ju(kr)J_.(kp)] du
G(r, p)-G(p, r) -f (u2-v :) sin urr

The integral appearing on the right-hand side of the above equation is zero since
the integrand is an odd function of u. Thus the value of the expression on the
right-hand side of (12) when r <O may be found by interchanging r, p in (12) and
evaluating the resulting integral as before, a procedure which leads to the first of
the two expressions stated in (6). Thus (12) is established for all values of r, p.

3. The integral theorem. The integral formulas sought are obtained by
inserting the expression (12) for the Green’s function into the formula (11) for
f(r). This procedure leads, after an interchange in the order of integration in the
repeated integral and of integration and summation in the series, to the equation

(15)

1 UJ_u(kr) du
.(k, p)g(p)dp

(ka)J_(kr) Ia-rr =;, (u a vaJin urr[O/OuJ_(ka)] J-(kp)g(p)dpp
J_(kr) crr(k, r) e -iw/2

+[(a) +
J-(ko) 2J_(ka)

To justify the above formula, it is necessary to verify that the repeated
integral and the series are absolutely convergent, and for this purpose a suitable
bound must be found for the p-integral appearing in (15). Such a bound is
obtained in the Appendix where it is shown, equation (A.8), that on the imaginary
axis where u is (s real),

(16) I do< ClJ,s(ka)l
,s(k, p)g(p) -0-= [sinh (srr/2)l’

where C is a constant. The repeated integral in (15) is in absolute magnitude less
than

Isl. ]J-,,(kr)l ds
C (s2-7-;ln-}T/2)"

This integral is absolutely convergent since for s real, !F(1-is)l
[rrs/sinh (rrs) /a so by (13), ]J_.(kr)l O[1"(1-is)-] O{Is-’ sinh (rrs)] 1/2} as

To discuss the convergence of the series appearing on the right-hand side of
(15) care is needed since the large u-zeros of J_.(ka) tend to the positive integers
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so that sin uTr--> 0. The necessary bounds and inequalities that are needed to
discuss this series can be deduced from certain representations of products of
Bessel functions as integrals. These bounds are obtained in the Appendix to this
paper where it is proved that, if u _is a zero (positive) of J_u(ka),

0__jJu(ka)ou _u(ka) -> 2-]sin ur](2/ka)Z[F(u)]2,

IJu(ka)J_.(kr)l <- sin ur (r/a) u,

J_u(kr)g(r) 0(u3/2) as u

Also, if u is a zero of J-u (ka), then from (A. 10) of the Appendix, it follows that

1
Ju(ka) Yu(ka) tan urr-----(2/ka)UF(u) tan uTr,

as u -> o0. On collecting these results, it follows that for u large, the corresponding
term in the series in (15) is

o[ul/Z(kr/2)u]J
Since the u-zeros are asymptotic to the positive integers n, it follows that the series
in (15) is absolutely convergent, so that (15) is itself established.

To obtain the form of the expansion theorem quoted in the theorem, it is
necessary to insert the following expression:

dPu(k, r)g(r)
dr

(U 2 D2 u(k, r)f(r)
dr

(17)
c[e=/2j_ (ka e-=/2J (ka )]+

sin u

This formula can be obtained from (5) by multiplying by dPu(k, r) and integrating
by parts. If u is a zero of J-u(ka), then (17) reduces on multiplication by
-sin ur/Ju (ka) to

dr

(18)

f,,o 2_.f(a(/-g2-- ;02) J_u(kr)f(r)--r--crdr sin uTr --iu’rr/2

J.i a + c e

Upon inserting (17), (18) into (15), there results the equation

l I uJ_(kr) duf dp
f(r)

J_,(ka)
Ou(k, p)f(p)--

(19)
P

UJu(ka)J_u(kr) j_u(kp)f(p)dP+Af(a)+Bc,
sin ur(O/Ou)J_,(ka) p
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where

(20)

J_v(kr)
J_o(ka)

1 IL uJ_u(kr) du
t-i--- (u2_v2)j_,(ka) +2

UJ_u(kr)
u=u;, (u2-v2)(O/Ou)J-,(ka)

--iv’n’/27rally(k, r) e

2J_,,(ka)
1 IL uJ_,(kr) e+i=/2du+ (u2-v) sin uTr

1 f uJ_(kr)J(ka) e

2i

--iuTr/2 du
(uZ-v) sin uTrJ_.(ka)

--iuTr/2uJ(ka)J_u(kr) e
--"ff =u (/,/2__/.)2) sin urr(O/Ou )J_. (ka )"

It will now be shown that A B 0.
The integral appearing in the expression for A can be evaluated by closing

the contour on the right by means of a sequence of semicircles of radii (n + 21-)
where n is a positive integer which tends to infinity. On such a sequence of
semicircles, the integrand is O[(a/r)n] which tends to zero as n oo. Upon
evaluating the integral by taking the residues at those poles of the integrand which
are positioned in the half-plane Re (u)> 0, it is found that A 0 as required.

The quantity B can be shown to be equal to zero by a similar argument, the
first integral in (20) being evaluated by closing the contour on the left and the
second integral being evaluated by closing the contour on the right.

Since

(21) J-u(X) J,(x) e -iu= + iHa)(x) sin uTr,

the function G(u) defined by (1) can be expressed by means of the equation

1
[J(kr)J_(ka)-J.(ka)J_u(kr)]f(r)

dr
G(u)

sin uTr

-i d.(k, r)f(r) --dr

If u is a zero of J_u(ka), the above expression reduces to

Ju(ka)
j_u(kr)f(r) dr_G(u)=-; sin ur r

When the above substitutions are made in (19), it is found that this formula
reduces to the formula (4) stated in the theorem.

Appendix. It remains to derive the bounds used in the paper.
(i) A suitable bound on the product J.(ka)J_(kr) valid when u is a zero of
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J_u(ka) can be deduced from the following formula due to Dixon and Ferrar
[2, p. 207]:

Ju (X)J_, (x) Jo[/X2 +x 2 + 2Xx cos 0] cos uO dO

1 fX/x --1)+-- sin uTr pu-Jo[n/X2+x2-Xx(p+p ]do

for X->x. It follows from this result that

(x)y_. (x) _.(x)L (x)

sin ucr fo
1" (X/x)

Jo[/X2 + x2- 2Xx cosh 0] cosh uO dO.

Since IJo(x)l 1 for any real x and Icosh uOI cosh tO where u + is, then it
follows that, for > 0,

(A.1) [L(x)y_.(x)-L(x)y_.(x)l <-_ sin urrl [(X/x ), (x/X)’].
7rt

In this formula X, x are replaced by kr, ka, respectively, and u is taken to be a zero
of J_u(ka). Since all such zeros are real, it follows that

(A.2) IJ.(ka)J_(kr)] <= sin uTr
(r/a)".

(ii) The boundrequired on the quantity (O/Ou)J_u(ka) may be obtained
from the following formulas of Watson [6, p. 444]"

(A.3) 82oJu (x) + Yu (x) Ko(2X sinh 0) cosh 2uO dO,

aYe(x) OL(x)L(x)-- Yu(x)
Ou Ou

4
Ko(2X sinh 0) e-2u dO.

Upon setting J_, (x) J (x) cos uTr Y(x) sin uTr, it is found after some reduc-
tion that

(A.4)

o:_.(x) o:.(x)
J, (x)-J_(x -’rrY. (x )J_, (x

Ou Ou

4
sin uTr Ko(2X sinh 0) e2u dO.
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It follows that

(A.8) I is(k,r)g(r) dr<(2/rk)l/2lJ(ka) csch()r

Since r-3/2g(r)_ L(a, oo), the inequality (16) is established.
A bound valid when u is a zero ofJ_ (ka) can be obtained with the aid of (18).

AN INTEGRAL TRANSFORM

Now cosh 0 _-< e o and 2 sinh 0 -_< e for 0 ->_ 0 so that, if u > 21-,

Ko(2X sinh 0) eu dO Ko(2x sinh O) e("- eo dO

-> Ko(2x sinh 0)(2 sinh O)u- cosh 0 dO

(A.5)
1 I0x-’ Ko(y)yu-1 dy

=!(2/x)"[F(u)]2,
8

by [-6, p. 388]. If we set x ka in (A.4), where u is a zero of J_(ka), and use the
inequality (A.5), we find that

O [sin uTr[(A.6) J(ka)-u J_ (ka >- (e/Ica)U[F(u)],
whenever J_(ka) O.

(iii) Finally, it is necessary to establish suitable bounds on the function

I(k, r)g(r)
dr

A bound valid on the imaginary axis where u- is (s real) may be found from
Watson’s formula (A.3) which can be written as

8 Ioe ]H((x)l"a=r Ko(2x sinh 0) cos 2sO dO

N Ko(2x sinh 0) cosh 0 dO

2
x

Since 2(x) "(" . (x), it follows from the, tx) +H(x) and H(x) e (

above inequality that

(1.7) IJ, (x) N (2/x)/ cosh (s/2),

so that the function defined by (7) is such that

I*,(k, r)l N[2/(kr)]/,(ka) csch (s/2)l.
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First it is noted that if u is a zero of J_(ka), then the identities

(A.9) Ju ka )J’_u(ka J_ ka)J’.(ka
2 sin ur
7rka

(A.10)

show that

J_u(ka) Ju(ka) cos uTr- Yu(ka) sin uTr

kaJ’u(ka)
2 sin uTr 2 cos uTr

7rJu(ka) 7rY(ka)"

This last expression tends to zero as u oo since Yu(x).--(1/Tr)(2/x)"F(u) as
u co. It follows from (18) that

(A.11) J_.(kr)g(r)dr=(u2-v2 J_.(kr)f(r)dr+o(1),--

for u u ;, co. A bound on the integral involving the function f(r) in (A. 11) can be
obtained by means of the Schwarz inequality which gives the bound

(A. 12) J_.(kr)f(r) <= J_,,(kr)dr If(r)l=

Now the Bessel function integral present in the above inequality can be obtained
from Watson [6, p. 135] which gives, when u is a zero of J_.(ka), the formula

2u J_,(kr)2d---r=-I + kaJ’u(ka) O--J (ka)
r Olg

(A.13)
2 sin uTr(O/Ou)J_u(ka)

-1-
7rJu ka

while from (A.3) and (A.4), since Yu(ka)= J,(ka)cot uTr (cf. (A.10)),

j(ka)2=
8 Io---g sin2 uTr Ko(2ka sinh 0) cosh 2uO dO,

O__j (ka) __4 sin uTr Ko(2ka sinh 0) e2u dO.Ju(ka)ou
Upon substituting these results in the right-hand side of (A. 13) and simplifying the
resulting expression, it is found that

j_u(kr)2d__r= o Ko(2ka sinh 0) sinh 2uO dO
2u

r o Ko(2ka sinh 0) cosh 2uO dO"

Since sinh 2uO < cosh 2uO, it follows that

1--
r 2u’



AN INTEGRAL TRANSFORM 411

whenever u is a positive zero of J_u(ka). Upon utilizing this result in (A.12) and
then (A. 11), it follows that

dr 0(u3/2),

when u is a large zero of J_u (ka).
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AN EXPLICIT SOLUTION OF THE CENTRAL CONNECTION
PROBLEM FOR AN nth ORDER LINEAR ORDINARY

DIFFERENTIAL EQUATION WITH POLYNOMIAL COEFFICIENTS*

HERBERT WYRWICH"

Abstract. We consider a differential equation of the form (-1)"y(")(x) (x" + Q(x))y(x), where
Q(x) is a polynomial of degree rn -[m/n]- 2. For a particular recessive solution Y(x) of this equation,
uniquely determined by an asymptotic expansion about x , we derive explicit representations of its
n initial values Y(k)(o), k 0, , n 1. These representations have the form of multiple sums, whose
coefficients themselves are hypergeometric sums of several variables. To obtain our results, we apply
the Mellin transformation to our differential equation and are led to a system of difference equations,
which can be solved explicitly, and whose solution provides the representation of the initial values.

1. Introduction. Solutions of differential equations with polynomial coeffi-
cients have recently been studied with special regard to their behavior in the large.
A method due to Hsieh and Sibuya [4] and Braaksma [2, pp. 1-15] brings a new
idea for solving the central connection problems for such equations (cf. Wasow
[8]). In these papers the original connection problem is reduced to the solution of
the analogous problems for the components of a recursive system of differential
equations.

In [9], we studied the differential equation

(1.1) (--1)ny(n)(X) P(X)" y(x),

where

(1.2) P(x) X + alx
m-1 + a2xm-2 +... +a

is a polynomial of degree m. It was our intention to get representations of the first
n initial values

k 0,..., n-

for a particular recessive solution Y(x) of (1.1). This would, of course, give us
knowledge of all Taylor coefficients of Y(x). The central connection problem of
Y(x) would then be solved completely. Because of simple symmetry relations, this
would imply the solution of all other central connection problems for the equation
(1.1) (for the case n 2 cf. [4, p. 87]). In this paper, we consider the special case

(-1)"y(")(x) P*(x) y(x)(1.4)

of (1.1), where

(1.5) P*(x)-- X "3t- akxm-k
m + n

k =[]+1 n

This case is characterized by the absence of parameters in the leading exponential
factor of the asymptotic expansion of Y(x), and we shall call it the undercritical
case of (1.1). In the same sense, we call x the critical value of (1.1) and a

* Received by the editors July 3, 1975.

" Gesamthochschule 41 Duisburg, Mathematik, Lotharstrasse 65, West Germany.
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polynomial parameter ale undercritical, if [x] < k =< m, and overcritical otherwise.
We shall aim at explicit representations of the initial values (1.3). This will be

achieved by adding some supplementary techniques to the Hsieh-Sibuya-
Braaksma (H-S-B)-method.

First we make use of Mellin transforms to get a recursive system of difference
equations. We then solve this system by summation and determine a special
solution so that its components are the Mellin images of the components of the
recursive system of differential equations obtained by the H-S-B-method. The
image components prove to be meromorphic functions, whose residues are closely
interrelated with the coefficients of the power series expansion of the initial values
(1.3), considered as entire functions of the undercritical parameters.

We calculate these residues and finally obtain the desired representation of
the initial values (1.3) in the form

Y<k)(0; aa, ., a,,)= Y, _(k) p..Ppx,...,pmaa a
(1.6) Px"’"pm=O

a =[x]+l, k=O,... ,n-l,

where the p-coefficients are hypergeometric sums of several variables.

2. The ltsieh-Sibuya-Braaksma-method. Our analysis of the central con-
nection problem of (1.4) is based on the following theorem, which is a special case
of a theorem of Braaksma [2, pp. 1-15] (cf. also Hsieh and Sibuya [4] for the case
n=2).

THEOREM 1. Let a differential equation
(2.1) (-1)"y(")(x) P*(x)" y(x)

be given, where 2 <= n I1,

(2.2) P*(x) x" + axxm-x + ax+lxm-X-l +" + am,

and the ak are complex parameters.
Then (2.1) possesses a uniquely determined solution

(2.3) Y(x; aa, a,,)

such .that

(i) Y(x aa, , a,, is an entirefunction ofx and theparameters a,, ,
(ii) Y(x aa,..., am) admits the asymptotic representation

(2.4) Y(x,aa, am) =,exp ( n
m+n

-(m/(2n))(n-1) 2 AkX-k/n,
k=O

with Ao 1, uniformly on each compact set of the (aa, , am)-space, as x tends to
infinity in any closed subsector of

n+l }(2.5) S= x;largxl<rrn+m
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The A, are polynomials of a, , a,, and

X exp {r(log Ixl + arg x)}

for any r C.
Following [4], we now represent Y(x; a;,,..., a,,) as a power series of

ax," ", am with coefficients that are entire functions of x. We have

(2.6) Y(x; a;, a,,)= Y. qp,...,p..(x) a aP,v,
PA,’" ",Pro 0

or, using vector and multi index notation with _a (a;,, , a), p (p, , Pro),

(2.6’) Y(x ) E ne (x) ee.
This series is uniformly and absolutely convergent on each compact set of the
(x, a,. , a)-space, so we can differentiate (2.6) termwise. Inserting into (2.1)
we get the following system of differential equations for the coefficient functions

(2.7) (-1)"--"),-
"e X

pjl

Here is the th unit vector.
Clearly this system is recursive with respect to the order

(2.8) IpI +"+pro

of the multi index p.
We now express Wp(x) by Taylor’s coefficient formula in the form

1
(2.9) f(x) Dg[Y(x, )]=0,

where Dg means the differential operator

Oa, Oakum
and

P! P; Pm

Applying a theorem on differentiation of asymptotic expansions with parameters
(cf. Wasow [7, Thm. 9.4] and [9, Lemma 2]) to the representation (2.4), we get the
asymptotic expansion

(2.10)

IX -(m/(2n))(n-1) ( n (m+n)/n)n,(x)_. exp -Xm+n
Z Dff(Ak)_=_0 x
k=0

-k/n

as x c in any closed subsector of (2.5).
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The system (2.7) of differential equations together with the asymptotic
expansions (2.10) of its components now constitute a new central connection
problem. This problem is parameter-free and can be solved principally by the
method of variation of parameters (cf. [4] for the special case n 2).

The disadvantage of this procedure stems from the following fact: For n > 2,
a fundamental system of solutions for the homogeneous part of (2.7) is no longer
available in terms of Bessel functions (e.g., n 2), but in terms of Meijer’s
G-functions (cf. Braaksma [1]). Therefore, the successive integrations cannot be
carried out explicitly. It is evident that an asymptotic analysis of these integrals to
determine the unknown n integration constants (by comparing with expansion
(2.10)) would be a hopeless task.

We shall circumvent this difficulty by adding a new idea, which provides some
supplementary techniques.

3. Mellin transforms and the system of associated difference equations. Let
Ma,b be the class of functions on (0, o), which are summable in the sense of
Lebesgue on each compact set of (0, c) and which, with a < b, satisfy the two
boundary conditions

F(t) O(t-), t - 0,

F(t) O(t-b), t - +.Then for each F Ma,b, the integral

f(s) F(t)ts-1 dt

exists in the strip a < Re s < b and represents there a holomorphic function. We
write

[(s) [F, s]

and call f the Mellin transform (-transform) of F and the mapping )d: F-f
Mellin transformation 0)2-transformation) (cf. Doetsch [3, vol. I, p. 60]).

Now the solution Y(x, _a) of (2.1) is an element of M0, for any b > 0, so its
rJ-transform

(3.1) H(s, _a) [Y(x, _a), s]

exists as a holomorphic function in the right half-plane Re s > 0. Moreover, we
have

THEOREM 2. The 3-transform H(s, _a) of Y(x, _a) has the following proper-
ties:

(i) It is a meromorphic ]:unction of s with at most simple poles in s =-k,
k O, 1, 2, . The residues ofH are given by

(3.2) Res H(s, _a)=
1 yk

s=-k
(0, a_), k O, 1, 2,....

(ii) It is a solution of the difference equation

(3.3) H(s+n+m)+ Y’. akH(S+n+m-k)=s(s+l) (s+n-1).H(s).
k=
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(iii) For each sE,s0,-1,-2,..., H(s,_a) is an entire function of the
parameters ax, , am.

Proof. (i) and (ii) are consequences of elementary properties of the
transformation (cf. [9, Lemma 10, 11, 12]) and the principle of analytic continua-
tion. (iii) is a consequence of the uniform convergence of the -integral for
H(s, _a) with respect to the parameters, which follows itself from the uniform
validity of the asymptotic expansion (2.4). For details cf. [9, pp. 22-24].

By virtue of formula (3.2), the central connection problem for Y(x, _a) is
reduced to the determination of the residues of the function H(s, _a). Now
property (iii) permits us to expand H(s, _a) like Y(x, _a) into a Taylor series with
respect to the parameters:

(3.4) H s, _a Y o_p s _a -p.
p=O_

For the coefficients of this expansion we have
THZORZM 3. The coefficient functions roe(s of (3.4) are meromorphic func-

tions. They are connected with the qp(X) by

%(s) s](3.s)

and

1
(3.6) Res o%(s) _, rl(o(O), k O, 1, 2,...,

s=-k I

and they satisfy the following system of difference equations"

e(s + n + m)= s(s + 1)... (s+n- 1). we(s
(3.7) Y %-_e,-+l(S + n + m --j).

pi:>l

Proof. For (3.5) and (3.6), cf. [9, Lemma 15]. Formula (3.7) readily follows
by inserting (3.4) into (3.3).

Like system (2.7), the new system (3.7) is recursive with respect to the order
Ipl.

We shall call (3.3) the associated difference equation (with (2.1)) and the
system (3.7) the system of associated difference equations (with (2.7)). Similarly,
we shall call connection problems for H(s, _a), resp. for the system (3.7), associated
connection problems.

4. An associated connection problem. We will now derive asymptotic
representations for the associated coefficient functions o@(s). We have the
following lemma concerning direct Abelian asymptotics for the -transformation
(cf. Lemma 18 in [9]).

LZMMA 1. Let F(t) be summable in the sense of Lebesgue on each compact
subset of (0, oo) and satisfy the two conditions"

(a) F(t) O(t-), t--> O, c

(b) F(t) exp (-att) -v, -, a, fl > O, y C.
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Then the 21-transform f(s) of F(t) exists in the half-plane Re s > c and satisfies
1 _(,_,_1 (s-,,,)/(4.1) f(s)-a F

as s -. c in any half-strip

(4.2) Zc,a {s C, Re s > c, [Im sl < d}.

Now we can state
THEOREM 4. The associated coefficient functions admit the asymptotic rep-

resentations

1 N

(4.3) oop(s) =-.(nu)+/2"--’ 2 D_’[Ai(_a)]_a=_O" (nu)"
]--=0

where

(4.4)

F(nus-(mu/2)(n- 1)-]u)+Ru(s),

Rr(s) O[(nu)-""F(nus-(mu/2)(n- 1)- (N+ 1)u)],

as s c in any half-strip No,a, d arbitrary. Here N is an arbitrary nonnegative
integer and , 1/(m + n).

Proof. If we truncate the asymptotic expansion (2.10)for Rp(x)after the Nth
term, transform termwise and apply Lemma 1 to the remainder of the expansion,
we immediately get (4.3) and (4.4).

System (3.7) together with the asymptotic representations (4.3) constitute a
connection problem for the associated coefficient functions op (s). This problem is
well-defined, for we have (cf. [9, Satz 2 1]).

LEMMA 2. The system (3.7) has a unique solution {tOp(S)} whose components

0% (s) are analytic in a common right half-plane and admit the asymptotic represen-
tations (4.3).

5. Solution of the associated connection problem. We start with the equation
of order 0 of system (3.7):

(5.1) OOo_(S + n + m)= s(s + 1) (s + n 1)O_o(S).

A special solution of this equation is

n-1

(5.2) 12o(S) ,-" 1--I F[u(s +])], , .
=o m+n

As the general solution of (5.1) is the product of l)_0(s) and an arbitrary periodic
function p(s) of period n + rn, we can put

(5.3) O_o(S) ao_(s)p(s)

and have to determine p(s) from the asymptotic representation for OOo_(S).
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Theorem 4 with N 0 provides

[ my ](5.4) OOg(S),-(nv)l+(mu/z)(n-1)-ns r nus----(n- 1)

as s c in Xo,a. This gives

[ my ]p(s)--.(nv)+("/("-n r nvs---(n- 1)

n-1

II r[ (s
=0

as s oo in Xo,a.
Applying the multiplication theorem of the F-function and the asymptotic

expansion of F(z +a)/F(z +b) (cf. Magnus-Oberhettinger-Soni [5, pp. 3 and
12]), we get

(5.5) p(s) vl+(mv/2)(n-1)(2"a’)(1-n)/2n 1/2

as s in X0,a.
As p(s) was supposed to be periodic, we even have equality in (5.5) and finally

obtain

n-1

(5.6) W_o(S) (27"r)(1-n)/2nl/2v l+(mv/2)(n-1) v 1-I F[v(s +j)],
]=o

where v 1/(m + n).
We now introduce new functions Op(S) and Ap(s) by

we [s(n + m)]
(5.7) (i) 0e(s) Wo_[s(n + m)]

(5.7) (ii) Ap(S) Z (.O_p--_ej--A+l[(S + 1-jv)(n + m)]

= O)o[(S + l)(n + m)]

Then we can rewrite (3.7) in the form

O_p(s + 1)= O_p(s)+Ae(s).

This is an inhomogeneous difference equation of first order and we can apply the
following lemma to it.

LEMMA 3. Ifq(S) is holomorphic in a half-strip Xc,a defined as in (4.2), and if

with e > O, then the difference equation

f(s / 1) f(s) / q (s)

has a solution

(i) fo(S) ’, qg(s + k),
k=0
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which is holomorphic in Zc,a and satisfies
(ii) fo(s) O(s-).

Proof. The series (i) is uniformly convergent on each compact subset of Ec.d-
For (ii), cf. Meschkowski [6, Satz 8, p. 49).

Now (4.3) provides Ap(s)= O(s-") in Ec,a, and as

nu, nu + 1 ->nu\+ 1 + u,

we can apply Lemma 3 with e u to (5.8). By this we get a solution O*_p(S) of (5.8) in
the form

O*p (s E Ap (s + k ),
k--O

which is holomorphic in Z0,d and satisfies O*e(s O(s-) there. Since the general
solution of (5.8) is the sum of the special solution O(s) and an arbitrary periodic
function of period 1, it is clear that O*p(s) is the only solution of (5.8) with this
asymptotic property. On the other hand, since A0(_a)= 1, we have from (4.3) for
p 0_, Op (s) O(s-), s NO,d, and this implies

(5.9) Op(s) O*p(s) Ae(s + k) for p _0.
k=0

Rewriting 0_p(s) and Ae(s) in terms of We(S), we have
THEOREM 5. The associated coefficient functions toe (s) with _p O_ admit the

recursive sum representation

(5.10) wp(s) =w0(s) Z Y W_p-_e,-+,[S +(n + m)(k + 1)-1]
,=0 =, o0[s +(n + m)(k + 1)]

pi>=l

where w_0(s) is given by (5.6).
At this point the associated connection problem is solved. What remains to

do, is to give an explicit representation for op (s) and the initial values of Y(x, _a).

6. An explicit representation of the initial values lk)(0, _a). If we replace in
(5.10) the functions we__ej_,+ themselves by their recursive sum representation,
we get

(6.1)

* tOo[S +(n + m)(kl + 1 -jlu)]
,%(s)=,O_o(S) Z Y. E

kl=Ok2=Ojx,jz=X OOo_[s+(n+m)(kl+l)]

o)_q(hd2) [s + (n + m)(kl + k2 + 2--jlu --jzu)]
O)_o[S + (n + m)(ka + k2 + 2-fl u)]

where q_ (jl, ]’2) _i19 _eh-x + _ej2-x + and the *-sign means that the finite sum has
to be taken over all jl, j2 with Ph >-- 1, pi- 6h,i2 _>- 1, 6i, the Kronecker symbol.

Thus we have expressed the coefficient functions of order I_Pl by such of order
I_Pl- 2. We can repeat this process I_Pl- 2 times and doing this we finally obtain a
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[_pl-fold infinite sum over a I_p[-fold finite sum. This final sum contains only terms
of to_o(S) and is therefore, by virtue of (5.6), explicitly given in terms of F-functions.

Before we state this explicit representation of top(s), we introduce the
following.

Notation. Let I_pl > 1 andj0(_p) be given by

o_p:,+,..., + ,..., lel.
Px-times px/l-times p,,-times

Then we denote the set {j (/’1,/’2," ", flpl)} c I11-pl of all arrangements ofjo(_p) as
A(p_).

Moreover, we shall use the following abbreviation:

(6.2) yn (a, b; v)
F(a)F(a + u)F(a + 2u) F(a + (n 1)u)
F(b)F(b + v)F(b + 2v) F(b +(n 1)v)"

Now we have
THEOREM 6. If_p 0_, then

%(S) C 1
n’(Apx +(A+I)pa+I+’’’+mpm)

(6.3)

n-1

v-"vs" 1-I F[v(s +r)]
r=O

_jsA() i1=1 i2=1 ilel---1

I-I "Yn[ts + (il + i2 + + ik)-- V(]l +]2+’’" +jk),
k=l

us +(il +i2 +’" "+ik)--V(jl +j2 +’" +jk-1); V]

for all s C. except the points Sk --(n + k), k O, 1, 2,. . In the case p 0_, we
have

n--1

(6.4) too(s) C v l-I F[v(s + r)].
r=O

In both cases, the constant C is given by

(6.5) C= (27"g)(1-n)/2n l/212 +(mv/2)(n-1)

and
1

m+n

We omit the proof which is based on induction. It is not difficult but requires
formulas taking up too much space. We refer to [9, pp. 54-56].

We can now immediately state our main result, namely the explicit sum
representation of the initial values Yk)(0, _a). We have the following.

THEOREM 7 (Main theorem). The solution Y(x ax, aa+l, ", a,,) of the
differential equation (2.1) which is uniquely defined by the asymptoticproperty (2.4)
has the following initial values:

L apAx aP(6.6) YL)(0; ax,""", a,,)=
Px,’",Pm 0
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L =0, 1,. , n-l, with

PPx,’",p,(L) L !(2,tr)(1-n)/zn 1/21](mv/2)(n--1)+n(Apa +...+mpm+L

(6.7)

L #r=O

Up,...,p are given by

(6.8) (i)

PA ,Pro

(6.8) (ii)

(L)r[(r- L)] r,...,.

(L) 1,O’0,...,u

jeAn_) ia=l i2=1 ilpl=l

1-I y,[(il + i2 +’’" + ik)-- u(L +]1 +/’2 +’’" +]k),
k=l

(ia + i2 +... + ik)- u(L +/’l +/’2 +’’" +/’k-l); v]

[or(p,,’’’,pm)e(O,...,O) and v=l/(m+n).

Proof. According to (2.6) and (3.6), we have

p(L L Res .,p,,(s).Px,"’,Pm (.0 Px,’"

These residues can easily be calculated from (6.3) and (6.4) and provide the
expressions (6.7) and (6.8).

Remark. The quantities rp,,...,p can be interpreted as I_pl-fold hypergeomet-
ric series with unit argument. In particular, we have for

if we write _(L) instead of

o.(L) nIl F[1 "1- u(j-L-/x)]
" i=o r[1 + v(j- L)]

(6.9) nFn_l[1-v(L +/z), 1-v(L+/x-1),..., 1-v(L+tx-n+l);

1-vL, 1-v(L-1), , l-v, l+v,. ,
l + v(n-L-1); 1]

(cf. [5, p. 62]).

7. Remarks on the general case. In the more general case of differential
equation (1.1), an analogous procedure leads to a similar connection problem for
a somewhat larger system of functions oop(s) which contains the old "undercritical"
we(s The additional "overcritical" functions unfortunately have more compli-
cated asymptotic representations than (4.3) and the series (5.10) no longer
converges (cf. [9, Satz 19]).

Our farthest reaching result for the overcritical functions is a recursive
integral representation obtained by combining certain results from function
theory with difference equation methods (cf. [9, Satz 36]).
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A further extension towards explicit representations of the initial values in
the overcritical case, similar to the main result (6.6)-(6.8) of this paper is,
however, not yet in sight.
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POSITIVE SUMS OF THE CLASSICAL ORTHOGONAL
POLYNOMIALS*

GEORGE GASPER?

Abstract. An expansion as a sum of squares of Jacobi polynomials P"’t)(x) is used to prove that if
0<_--A a+/3 and/3 >_--1/2, then

2 (h + 1),,-k (A + 1)k
k=O2" (n-k)! k! Pk’")(1) =>0’

and the only cases of equality occur when x for n odd and when A 0, a -/3 1/2. Additional
conditions are given under which (,) holds and some special uses, limit cases, and important
applications are pointed out. In particular, the case A a +/3 of (*) is used to prove that if
a,/3 _>- 1/2, then the Ceshro (C, +/3 + 2) means of the Jacobi series of a nonnegative function are
nonnegative. Also, it is shown that

d , (A+I),,_k(A+I)k sin(k+l)0- (n k) k (k+l)sin(O/2)
<0’ 0<0<r, O=<h=<l,

k=0

which extends a recent result of Askey and Steinig.

1. Introduction. In [12] Askey and the author conjectured that if 0=<A
and/3 -> 1/2, then the Jacobi polynomials P"’t)(x) satisfy the inequality

(1.1)
, (a + 1),-k (X + 1)k P(k"’t)(X)
k=O (n-k)! k! >0, -1 <x =< 1,

except when A 0, a -/3 1/2, when the sum is nonnegative and there are
cases of equality. Here (a)o=l and (a),=a(a+l)-..(a+n-1)=
F(a + n)/F(a) for n 1, 2,-... It was shown that this conjecture holds for/3
for 1/31 =< a =</3 + 1, for 0 =< A =</3, and for some other special cases; and applica-
tions of (1.1) to summability theory, location of zeros of trigonometric polyno-
mials, mechanical quadrature, univalent functions, etc., were pointed out (also see
Askey’s recent book [9]). In particular, it was pointed out that the case
of (1.1) would yield the result (conjectured in [5]) that the Cesro (C, a +/3 + 2)
means of the Poisson kernel for Jacobi series are nonnegative when a,/3 -> 1/2.
It was also conjectured in [12] that if A ->0 and/3 => 1/2, then the Laguerre
polynomials L(x) satisfy the inequality

(1.2) (A + 1),-k (A + 1)k (- 1)kL(x)
k:O (n-k)! k! Lk(O) >--0, x >=0,

and this inequality was proved for the case fl ->_ A ->_ 1/2. Note that (1.2) is a limit
case of (1.1) since

(1.3) lim p(,,-,t)(_ 1 + 2x/a)= (- 1)"L(x)

and P’(1)= L(0).
* Received by the editors September 24, 1975, and in revised form January 30, 1976.
f Department of Mathematics, Northwestern University, Evanston, Illinois 60201. This work was

supported in part by the National Science Foundation under Grant MPS71-03407 A03. The author is
an Alfred P. Sloan fellow.
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Recently the author [27] used a sum of squares of Bessel functions with
nonnegative coefficients to prove that

(1.4) (x-t)t//J(t) dt>=O, x >-0, 0<- <-a- 1/2,

which is a limit of the case fl 1/2 of (1.1), and this suggested that it might be
possible to prove (1.1) for 0 =< A _-< a 1 /2, fl 1 /2, by using a sum of squares of
Jacobi polynomials. Then Bateman’s integral [11, (3.4)]

P(.-’+")(x) F(/3 +/z + 1) f P(.’a)(y) (1 + y)
p+u.,,-u.) J_ P(") +u..(x y)U.-1 dy,

(1.5)
(1) r(/]+l)r() (1) (l/x)

-l<x<-l, /x>0, /3>-1,

could be used to give (1.1) for the conjectured values of a,/3, , which would then
yield the other conjectures mentioned above.

However, the extension in [28, (8.22)] of the proof of (1.4) for 0 led to the
result

O(c -1/2)((1/2)( + 1/2)(c/2 + 5/4) .’ ,x)
=0. k!(a+l),(a/2+l/4), P-/2’")(1)

_4n + 2a + 3 (1/2)(a + 3/2)(a/2 + 3/4)(a/2- 1/4)
2c+3 ; ]!(n-])!(]+a+l/2)(a+l)(off2+5/4)(off2+7/4)

(n-j)’ pq+o/2+1/4.j+o/2+i/4)((!+x)l/2)}2

>0, -l_--<x=<l, a > 1/2,

which, although strong enough to give the positivity of some generalized Cotes’
numbers [10], [28], is unfortunately a weaker inequality than the case , 0,
a > 1/2,/3 1/2 of (1.1), as a summation by parts shows. Also, there did not
seem to be any way to use expansions of the types

In/2]
(aa) 1/2 2,Y. A(n,I){P,,"_2,((!+x)

i=o 2

[n/Z] ,.,2jl o(2j+a,2j+a) 12,, B(n,])(1-, t. n_2, ((l+x) 1/2)
i=O 2 J

(which have been used to prove (1.1) for some special cases [12], [28]) to prove
(1.1) for the case A 0, a > 1/2,/3 1/2, and so a new type of expansion was
needed.

By concentrating on the simpler Laguerre polynomial case the author was
able to find an expansion which not only gave (1.2) under the less restrictive
condition.,,/3 =>- 1/2, but could also be extended to give (1.1) for the conjec-
tured values of a,/3, , and for some cases in which , < 0 or a +/3 < 0.

Since the motivation for our proof of the Jacobi polynomial case comes from
the Laguerre polynomial expansions, we first consider the Laguerre polynomial
case in 2 and then the Jacobi polynomial case in 3, 4 and 5. In particular, the



SUMS OF POLYNOMIALS 425

case ce 3/2,/3 1/2, 0-< A _--< 1 of (1.1) is used to derive the inequality

d (a + 1)._, (, + 1),
dO k=o (n-k)! k!

sin (k + 1)0
(k+l)sin(O/2)

<0, 0<0<Tr, 0=<A-<_I,

which for 0-<A -< 1 is stronger than the result in [12] that

Y.
(A + 1),-k (A + 1)k sin (k + 1)0

=o (n-k)! k! k + l
>0, 0<0<Tr, -1<1.

A projection formula derived in 5 is used in 6 to prove that

Io (X t)+2’-l/2t+gJa (t) dt >-_ O, x>=O,

when 0=</z-< 1 and a +/z => 1/2, which was conjectured in [27]. Some new
absolutely monotonic functions (i.e., functions with nonnegative power series
coefficients) are derived in 7. Related results and open problems are discussed in
8, which also includes the observation that if a =>/3, 1 </3 < 1/2 and h > 1,

then inequality (1.1) cannot hold for all n.

2. Laguerre polynomials. The expansions derived n this section arose in
trying to find a proof of (1.2) similar to the following proof by Al-Salam and
Carlitz [1, (4.6)] of a Turin type inequality for Laguerre polynomials:

{L:(x)/2 L:-I(X) L:+I(X)
(2.1) L(0)J -L_I(0) L+a(0)

(n-1)t (c+2k)(n-k)! 2k

-(ce + 1).+1 k=l (O + 1).+
"X {L_+,(x)}2

->0, -oo<x <oo, c >- 1.

This expansion will clearly have to be modified since it has a double zero at
x 0, while the sum

(2.2) S,(x;/3, A)=
(A+l)n-k(A+l)k(--l)kLk(X)

k =0 (n k)! k Lk(0)

has a (simple) zero at x 0 only for n odd when/3, A > 1. Also, since [12, (6.5)]

(1/2),,_k (1/2)k (-- 1)kL-I/2(X)_{H,,((x/2)l/2)}2
(2.3) kY"o= (n-k). k. L{1/2(0) 2,n.

x _->0,

where H,, (x) is the Hermite polynomial of degree n, any expansion of (2.2) as a
sum of squares of Laguerre polynomials will have to reduce to (2.3) as A and/3
tend to 1/2. Thus; in view of the relations [33, (5.6.1)]

(2.4)
H2, (x) (- 1)"22"n !L-l/2(x2),

Hz,+l(X) (- 1)" 22"+1n !xLl,,/Z(x2),
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one is led to conjecture that the sums (2.2) have expansions of the forms

(2.5)
$2,(x;/3,)= A,,,ix2{La+_.(x/2)}2,

j=0

S2n+l(X [3, i) Bn,]x2.i+l /,+2] 2{L,_i (x/2)}
]=0

with a a(/3, A) and b b(/3, A). Consideration of these expansions for small
values of n shows that in order for them to exist it is necessary that a =/3 and
b =/3 + 1; so that on reversing the order of summation of the right-hand sides of
(2.5) we are led to consider the combined expansion

In/2]
(2.6) S, (x;/3, A) Y, C,,,,ix"-zi{Lt+"-Z](x/2)}2.

]=0

In order to show that there is an expansion of the form (2.6) and to compute
the coefficients we first use the formula 18, (92)]

2r +2rz,.F(a + 1 + n) {_, x L,,-r tZX)
(2.7) {L(x)}2

n z !F(a+l+r)r=or
to observe that if there is an expansion of the form (2.6), then there is also one of
the form

[n/2]

(2.8) S,(x;/3, A)= E c,,,ix"-ZLf+"-Z(x),
]=0

which is computationally much easier to handle than (2.6) since it does not contain
any squares of Laguerre polynomials. Multiplying both sides of (2.8) by x and
using the Laplace transform formula [19, 10.12(32)]

e-’Xx3L(x) dx
F(n +/3 + 1)(s- 1)"

n!s +/3+1 S >0, > l,

we find that (2.8) is equivalent to

(2.9) F[ -n’ A + 1; 1-s s] n!(/3+1), tzj c,.,,.i(s_s2).
(, + 1).s" =0 j)(-8-n)i’--A --n

where F is the hypergeometric function [19, Chap. II]. From the quadratic
transformation formula [19, 2.11(34) and p. 2]

F[-n,A + l;z] =(l +z)’F
-n/2, (1-n)/2; (1;)2

-A -n -h -n

it follows on setting z (1-s)/s that (2.9) and hence (2.8) hold with

(A + 1)n(-/3 n)i(- n)2i
Cn, n!(/3 + 1),(-A-n)i

where, as elsewhere, it is assumed that j =0, 1,..., [n/2]. Then, using the
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Burchnall and Chaundy [18, (91)] inverse of (2.7)

(2.10) L(2x)= o (n-r)!(ce+2r)r(a+r) 2\rfr +2rz

r!F(c + 1 + n + r)
(- X tLn_r tX)}2

on the right side of (2.8) we find that (2.6) holds with

(2.11)

j!(x + 1).(13 + 1 + n-j)j
(n 2j)!(/3 + 1).( + 1 +n-j)(13 + 1 + n 2j)j

3v2[J-n/2,j+(1-n)/2,j-n-;]j-n-A, 2j-n + l-
22J-2/" !(2, + 2), (2/3),_2i(/3 + 1 + n-J)i

(n- 2j)!(/3 + 1), (/3),_2i(, + 3/2)i(/3 + 1 + n-2j)i

3Fz[j--n/Z,]+(1--n)/2, + 1/2;]j +, + 3/2, +1/2

by means of the third transformation formula on page 85 of [16].
As usual, the argument in the hypergeometric series is not displayed when it

equals 1.
Clearly C,, >0, j=0, 1,... ,[n/2], for ,_->-1/2, /3>-1/2, since then

each nonzero term in the second 3F2 in (2.11) is positive. Also, consrderation of
the limit case/3 -1/2 of (2.11) shows that if A _->- 1/2 and/3 -1/2, then
C,,,j =>0, j 0, 1,. ., [n/2], with equality only when , =/3 1/2 and j < [n/2].
Hence, from (2.6) we have

THEOREM 1. If,, >= 1/2, then inequality (1.2) holds and the only cases of
equality are at the endpoint x 0 for n odd, and at the zeros ofHn((x/2) 1/2) when, =/3= -1/2.

In 8 we shall show that the restriction/3 _-> 1/2 in this theorem cannot be
relaxed and that if 1 < , </3 1/2, then inequality (1.2) cannot hold for all n.
It should be noted that, in view of (2.4), it follows from the cases/3 + 1/2 that for
the Hermite polynomials we have, for , => 1/2,

(2.12) 12
(A + 1),_k (, + 1)k.

=o (-k)! .]i ,(x) _-> 0, -<x<,

(2.13)
>0, x>0,

’oZ ( + a)._ ( + )."+(x), 0, x 0,
(n-k) (2k+l)

<0, x<0,

and the only cases of equality in (2.12) occur when 1/2 and for odd n when
x=0.
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Another derivation of the expansion (2.6) can be given by using the formulas
[8, (98), (97)]

F2(c + 1 + n) rn (2n 2r)!x 2r

{L(x)}2

F(c + 1 + 2n) Z"o r!(n r)!(n r) !F(ce + 1 + r)
(2.14)

r+2rL2n_2rtX),

n!n!F(a+l+2n)
L2,(x)

(2n)!
(2.15)

(a + 2r)F(c + r)(-x2)
r=o F2(cr + 1 + n + r) L+2rzn-rt,X)}2

in place of (2.7) and (2.10). This reduces the problem to a computation of the
coefficients in the expansion

[n/21
(2.16) S,(x;/3,,)= Z c(n,])x"-ZiLzf"-2i(x/2),

y=0

which can be done by using the above Laplace transform method and the
transformation formula 19, use 2.10(1) and 2.11 (4)]

to show that (2.16) holds with

(2j) !(2a +2)n(-n)2j
c(n’)=2"n!j!( + 1),,( + 3/2)i"

The identities (2.8) and (2.16) can also be derived by using the series representa-
tion

L(x) (/3 + 1),,F
n!

[-n; /3 + l; x]

to write both sides of the identities as polynomials in x, and then comparing
corresponding powers of x to show that these identities are equivalent to certain
transformation formulas between generalized hypergeometric series. For
instance, it then turns out that to compute the coefficients in (2.16) one needs the
transformation formula

F[k-n, k+ + l; -1]k-n-

(2.17)
(- 1)+"k !(2, +2),(1/2),,

2(, + 1)(I + 1),_ (, + 3/2),, (k +2m-n)!

F2[ m + (n k)/2, m + (1 + n k)/2, m I 1/2 ;]
-m+l/2, n-2m+l/2 J’

where m [n/2]. Formula (2.17) can be derived by first using a limit case of [16,
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4.7(1)] to write the left side of (2.17) as a multiple of a 3F2(1) series and then
applying a transformation formula for the 3F2(1) series [16, p. 18].

3. Extension of formula (2.6) to.lacobi polynomials. First observe that since
[33]

Pl/z’-l/Z)(cos O) sin (n + 1/2)0
P-1/2’1/2(1) sin (0/2)

(3.1)
P1/z’1/Z)(cos O) sin (n + 1)0
P1/2"/2)(1) (n + 1) sin 0’

it follows from the identity

(3.2)
sin(2n+l)0 {sin(n+1)0} 2

k=O sin 0

that, denoting the sum in (1.1) by S,, (x;a,/3, A), we have

{p(nl/2’-l/2)(x)} 2s,.(x; 1/2, /2, 0)- p.-1/2,/2()
(3.3)

i/p(nl/2"l/2)(X)} 2,S2n+i(x 1/2, 1/2, 0)= 2(n + 1)2(1 +X)kl/2)(1)
Therefore, in view of the identity (2.6) and the limit relation (1.3), one is led to
conjecture that there is an expansion of the form

In/2]
2 (o-/3(3.4) S,(x;a,/LA)= Dn,j(l+x) {Pj’+n-2J)(x)}2

j=0

with tr o’(a,/3, a). By comparing powers of x on both sides of (3.4) for n 2 it is
found that a necessary condition for this expansion to exist is that

(3.5)
2

We shall use a modification of the methods of 2 to show that (3.5) is also a
sufficient condition for there to exist an expansion of the form (3.4) for n
0, 1, 2, . To obtain an extension of (2.8) to Jacobi polynomials, observe.that in
[18] Burchnall and Chaundy derived [18, (92)] as a special case of [18, (43)],
which they had derived as a limit case of their formula 17, (51)]

(3.6)
F[a, b; c; x]F[a, b; c; y]

)rxryy. (a)r(b)(c-a)r(c-b F[a+r,b+r;c+2r;x+y-xy].
r=O r!(C)r(C)2r

Using the series representation [ 19, 10.8(16)]

(- 1)"(/3 + 1),F[(3.7) p,,’,tS (x -n, n +c +/3 + 1;/3 + 1; (1 +x)/2]n!

in (3.6), we obtain an extension of (2.7) to Jacobi polynomials which shows that if
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there is an expansion of the form (3.4), then there is one of the form

(3.8)
In

S.(x; a, fl, a)= Z E.,,(1 +x)n-2jp)’O+n-2J)(x +(1-x2)/2).
j=O

Formula (2.8) is clearly a limit case of (3.8). However, since the Laguerre
polynomials on the right side of (2.8) have the variable x and it is difficult to
compute the coefficients in (3.8) due to the presence of the quadratic variable
x + (1-x2)/2, one is tempted to look for another extension of (2.8) in which the
Jacobi polynomials on the right side have the variable x. Such a formula can be
discovered by using [18, (23)]

(3.9)

a),(F[a, b; c; 2x-x2] Y. (a)(b)(c- _x2)
r=0 r!(c)2

F[a+r, 2b+2r; c+2r; x]

and (3.7) to find that if (3.8) holds with =(a-fl +a)/2, then there is an

expansion of the form

(3.10)
[n/2]

S.(x" c,fl, 1): Y G.,i(1 +X)n-2]P(+A+l+n-L+n-2])(X)
]=0

which also has (2.8) as a limit case.
Since the Laplace transform method does not seem to be particularly well

suited for deriving (3.10), we shall use another method. Reversing the order of
summation in the series (3.7) and using [19, 2.9(4)]

F[a, b; c; z]=(1-z)-F[c-a, b; c; z/(z-1)]

gives, for x > 3,

(3.11)
n! \---] + 1

-n-cr-fl, -n-fl- i
-2n -a -/3

Thus, using (3.11) in (3.10) and setting t=2/(1-x), we find that (3.10) is
equivalent to

E (A + 1).-k (A + 1)k (k + a + fl + -F
=o (n-k)tkt(fl. +1)

-t)" -a-fl-k,_a_fl_2k-fl-k,
[./2 (2n 2] + a + fl + A + 2)G.=X i(--t)
i=0 2-’

F
]-2n-a-fl--I

which, by reversing the order of the first sum and comparing powers of t, is
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equivalent to

(3.12)

-n,A + 1, -k; ]
A-n, k-2n-a-fl
n!(a+ + 1),(/3 + 1),(- ----2n)k
( + 1), (c +/3 + 1)2,(--ce--fl--n)k
t-/Z1 2"-2J (-- k )j(n 2] +/3 + 1)j(k 2n ce -/3 1)iG,
j=0 j n -/3)2j

Now use [ 16, 4.5(1) and 7.2(1)] to obtain

(3.13)

-n,, + 1,-k;
-A-n,k-2n-a-

(k--n--a--)k
(k -2n- --)k

[ n-k +a +1 + 1,-n/2,-)t -(1 + n)/2,-k;
4F3_ -A -n, -k+(n +a +/3 + 1)/2, -k +(n +a +/3 +2)/2

_.(5o----2nn.)k4F3[--n/2,(1--n)/2 -k,k-2n-od--l-l"](- -/3- )k , --n, --n --(a +/3)/2, --n +(1--a --/3)/2

which gives (3.12) and hence (3.10) with

(3.14)
22i-" (, + 1), (ce +/3 + 1)2,(- n)zj(n - +/3 +
n!(/3 + 1),(a +/3 + 1),(-a-/3 2n)2i(- -n)i

The main advantage of using the series representation (3.11) instead of (3.7)
is that it was easier to derive (3.13) than to derive the transformation formula for
the 3F2(- 1) series which arises when (3.7) is used, because most of the transfor-
mation formulas given in [ 16] and elsewhere are for series with unit argument.

To return to (3.4) it suffices to observe that the inverses [17, (47)] and [17,
(50)] of (3.9) and (3.6) can be combined to give [18, (16)]

(3.15) F[a, 2b; c;x]= Y (a)r(b)r(b)r(c-a)xZr{F[a+r,b+r’’ c+2r" x]}2,,
r--o r!(c + r- 1)(c)2

which can then be used in (3.10) to show that (3.4) holds for r (a -/3 +,)/2 with

22i-"/’!(, + 1),(a +/3 + 1)2,(n-j +/3 + 1)i d,,,(3.16) D,,j =(n 2j)!(/3 + 1),(a +/3 + 1),(n -j +A + 1)j
(2n 2j + a +/3 + 1)2(n 2j +/3 + 1)j
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where

d,t,*dn,.i
(3.17)

j- n/2, j + (1- n)/2, j-n-, j-n -(a++)/2,

=5F4 j-n +(a+ +a)/2;

2j-n + 1-, j-n-a, j-n-(a +/3)/2,
j-n+(1-a-)/2

This formula can also be derived by using the Jacobi polynomial analogues of
(2.14), (2.15), (2.16) which follows from the Burchnall and Chaundy formulas
[17].

4. The cases A a +/ and A = 0. Since So(x; a,/3, A) 1 and

SI(X C, j,/.)
(/ "[" 1)( "[- +2)(1 +x)/3+1

inequality (1.1) clearly holds for n 0, 1 when a +/3 > 2,/3 > 1, A > 1; and
a +/3 >-2 is a necessary condition for (1.1) to hold for all n when/3, A >- 1.
Also note that S,, (x; a,/3, 1) 0, n 1, 2, , and that the coefficient of d,.j in
(3.16) is positive for n >-2 when a +/3 >= -2,/3 > 1, A > 1. Therefore we may
assume that n _-> 2 and in considering the sign of the coefficients Dn,j in (3.4) for

d,t,aa +/3 => -2,/3 > 1, a > 1, it suffices to only consider the sign of ,,,
For a =a+/3 the terminating Saalschiitzian (or balanced, see Askey

[9, p. 56]) sF4 series in (3.17) reduces to a 4F3 series to give

d,/3,, +t3- 4F3 [ j-n/g,j+(1-n)/g,]-n-B,j-n-a-B;](4.1) ,,i 2]-n+l-13,]-n-(+B)/2,]-n+(1--B)/2
In the three cases a =/3, a =/3 + 1, and a -/3 this series reduces to a 3F2 series
which can be summed by Saalschiitz’s formula [16, 2.2(1)]

(4.2) 3F2[ -n, a, b; ] (c-a),(c-b),,
c, l +a +b-c-n =(c),(c-a--5-,"

To avoid having to consider separately the cases when n is even or odd we let
rn [n/2], so that

]_n ]+ =(J’-m),(j’+m-n+1/2)g

and application of (4.2) to (4.1) gives

(4.3) dt’O’zt= (/"+ + 1)_( + 1/2)_
"" (n-m+ + 1/2)m_(n-j-m +)_’

(4.4) t’//3 + 1’/3’2/3 +

(4.5) d2,’t’

(/+/3 + 2)m-(/3 + 1/2)m-
(n m +/3 + 3/2)m_i(n --j-- m +/3)m-i’

m !(/3 + 1/2)m_i
]!(n-m + 1/2)m_j(n--]--m +8)m-,’

each of which is nonnegative for/3 _->-1/2, assuming the value zero only when
d,,t,+t/3 =-1/2 and/" < m. To show that , > 0 for a +/3 > 0,/3 _->-1/2 and for
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a+/3>-l, /3>a we need but apply Whipple’s transformation formula
[16,7.2(1)]

(4.6) 4f3[x, y, z, n]u, v, w (v),(w), 1-v+z-n, 1-w+z-n, u

where it is assumed that u + v + w x y z + n 1, to (4.1) to obtain

,,+ ( +)_
dd (2n 2m + a + + 1)2_2i

[ j-m,j-m-+l/2,j-n--,j+l; ]4F3 2j-n+l-,j-m+(1-a-)/2,j-m+l-(a+)/2

( )2m--2j
(2n 2m + + + 1)2m_2i

[ j-m,j-m-+l/2,j-n-,j++l; ]4F3 2j-n+l-,j-m+(l+-)/2,j-m+l+(-)/2"

(4.7)

Clearly, the nonzero terms in the first 4F3 in (4.7) are positive when a +/3 > 0,
/->_- 1/2, and those in the second 4F3 are positive when a +/3 >- 1,/3 > c.
These positivity results could also have been obtained by using Whipple’s 7F6
representation [ 16, 7.1 (1)]. From (3.4), (3.16) and these observations we have

THEOREM 2. If a + >--O, 1 >= 1/2 or a + >= 1, >= a, then

(4.8)
(a +/ + 1)"- (c +t3 + 1) e’(x) _-> 0, l_-<x <o,

k=O (n-k)! k! P(k’)(1)
and the only cases of equality occur when x -1 for n odd, when a +/3 -1,
n >- 1, and when A 0, ce -/3 1/2 as given by (3.3).

It should be noted that the case c =/3 1/2 of this theorem gives Lukfics’
inequality [20, Satz XXIII]

(4.9) Y (n + 1 k) sin (k + 1)0 > O, 0 < 0 <
k=O

while the case a 3/2,/3 -1/2 (which, by means of (4.14) is equivalent to [22,
Satz II]) gives the stronger result that

d (n+l_k)sin(k+l)O(4.10)
dO k=O sin (0/2)

< 0, 0< 0 <

since, from (1.5),

(4.11)
19(1/2,1 1 /9(3/2,- 1/2)[---d(1 +x) (1 +x)- =.-ii)dx P(1/2’1/2)(1)

by
Now recall that the Cesro (C, y) means of a formal series ,=oa. are defined

n! (,+ 1)._
(,+ 1). =o (n-k)! ak.
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In his work on the Lp convergence of Lagrange interpolation polynomials at the
zeros of Jacobi polynomials Askey [4], [5] was led to conjecture that if
a, fl _->- 1/2, then the (C, a +fl +2) means of the Poisson kernel

(4.12) E th(’)’(’)’r txlr"(’)’ty),
n=0

where

h(2’)= [P’)(x)]2(1-x)(1 +x) dx

2--t-ln !F(n +a +fl + 1)(2n +a +fl + 1)
F(n + c + 1)F(n + fl + 1)

are nonnegative for -1 _-<x, y _-< 1, 0-< t_-< 1. This conjecture is known [5] to be
best possible in the sense that not all of the (C, 3’) means of (4.12) are nonnegative
when 3’ < ce +/3 / 2. We shall show in 8 that it is also best possible in the sense
that the restrictions on a, fl cannot be relaxed. Using the relation P(,,"’)(x)=
(-1)"P’)(-x), the positivity of the sum (4.12), and the convolution structure
for Jacobi series [23], [24], Askey showed [5] that to prove his conjecture it is
sufficient to prove it for c ->_ fl ->_ 1/2 with y 1, i.e. it suffices to prove that

(4.13)
(a +/3 + 3),,-k (2k + ce + fl + 1)(a +/3 + 1)k Pk’’t)(X) >= O,kYO= (n k)’. k .’(a +/3 + 1) Pkt")(1)

-l=<x_<l,

for a_->/3 >_--1/2. The cases c =fl =-1/2 and a =-fl 1/2 of (4.13) are,
respectively, Fej6r’s results [21], [22] that the (C, 1) means of 1 + 2k= COS kO
and the (C, 2) means of ,,=o(2n + 1)sin (2n + 1)0 are nonnegative; and the
ultraspherical polynomial case a fl > 1/2 is due to Kogbetliantz [29]. These
classical results, generating functions, and Bateman’s integral (1.5) were used in
[5] to prove (4.13) for some other special cases, and in [12] the identity

(4.14)

(a + fl + 3),,-k (2k + a +/3 + 1)(a / fl / 1)k Pk"t)(X)
k=O (n-k)! k!(a +fl + 1) P(kt")(1)

(C+fl+2)"-k(a+fl+2)kP(k+"t)(X)
=o (n-k)! k! P(t’ +’)(1)

was used to point out the equivalence of the nonnegativity of the sum (4.13) for
a +/3 => 1, fl => 1/2 with the nonnegativity of the sum (4.8) for a +/3 ->0,
/3 => 1/2. Hence, Theorem 2 gives (4.13) for a + fl => 1,/3 => 1/2; so that in
addition to the application of (4.13) in [6, Thm. 1 to the construction of nonnega-
tive measures we also have

THEOREM 3. Let a, fl >-- 1/2. Then the (C, a + fl +2) means and hence the
(C, 3/) means for 3/->a+fl+2 of the Poisson kernel (4.12) are nonnegative for

1 x, y 1, 0 1. Thus if 3/>= a + fl + 2 and f(x)), 1 <-_ x <- 1, is a nonnega-
tire measurable function with l_lf(x)(1-x)(l+x dx<, then the (C, 3/)
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means of the Jacobi series off(x) are nonnegative, i.e.,

(Z-+--I)-"7--’ t’’)P’)(x) >0, 1 <x < 1
k=O (n-k)! Jk,,

where fk 1_, f(x)P(k,,,t(x)(l_x),,(1 + X)t dx.
Let us now consider (1.1) for , O. Proceeding as in the case , a +/3 we

have

/3+1,/3,0(4.16) d,,j

(4.17)

where m [n/2]. From (4.5), (4.15), (4.16) and (4.17)it follows that if a +/3 _->0,
,,o > 0 and the value zero is assumed for/3 _-> 1/2 or a +fl -> -2,/3 >-0, then d,,i

n _-> 2 only when a fl 1/2, ] < m or a 2, fl 0, ] 0. Hence using (3.4),
(3.16) and, when a -2, fl -0, the fact that [33, (4.22.2)]

’,,, n-j(x-1)p},-2i,(x),P)- -2i(x)=--\ 2

we obtain
THEORFM 4. If a + fl >--_ O, fl >= 1/2 or a + fl >-- --2, fl >--_ O, then

,o P’’t)(x
>- 0 1 < x < oo,(4.18)

P(’")(1)

and the only cases of equality occur when x 1 for n odd, when a -fl 1/2,
when a + fl -2, n 1, and when a -2, fl =0, x 1, n >= 1_.

Note that the case a fl 1/2 of (4.18) gives the F.ej6r-Jackson-Gronwall
inequality [20, Satz XXVI]

(4.19) y sin (k + 1)0> O, 0 < 0 <
t,=o k+l

and the case a 3/2, fl 1/2 gives, by means of (4.11), the stronger inequality



436 GEORGE GASPER

Of Askey and Steinig [15]

d sin(k+l)0
(4.20)

dO k =o (k + 1) sin0/< 0, 0 < 0 < r.

The case c 5/2, fl 1/2 was proved in [12] and it was shown that this case is
equivalent to

(n + 1)
sin (n- 1)0

(n- 1)
sin (n + 1)0 ( sin nO)

sin 0 sin 0
-_<: (3 + cos 0) n ln /’

which is stronger than the inequality

( sin nO(n + 1)in (n 1)0_(n 1)sin (n + 1)0<4 n
sin 0 sin 0 n/

that Robertson proved and used in his work [32] Oil univalent functions. For other
known special cases of Theorem 4 and their applications see [2], [3], [9], [28].

The 5F4 representation for n,] also reduces to a 4E3 in the three cases ce =/3,
ce =/3 + 1 and )t , so that (4.6) then gives

(4.21)

(c-A/2)m-](( + 1)/2),n-i
(n-m +A + 1),,_1(n m +c + 1/2),,,_

[j-m,j-m-ce+l/Z,j-n-a-,/Z,j+l+A/2; ]4F 2j-n+l-o,j-m+(1-,t)/2,j-m+l-a+M2_l’

d.+l,a (i/2),,_i (/3 + (1 I)/2),,_i
’" (n m + A + 1.),_i (n m +/3 + 3/2),,_

(4.22)

4F.3[J--m,]--rrl---I- 1/2,]-- r$ -- (a + 1.)/2, ] + (/I. +3)/2;]2]-n-fl+l,j--m+l-M2,j-m-B+(,t+l)/2

"" (2n 2m + + fl +
(4.23)

2j- n + 1 --3, j- m +(1-B)/2, j-- m + 1 -B/2
where m [n/2]. From these representations it follows that

-,i >0, -1 <A <2,
+,,a(4.24) d,,i > O, 0 < A <2 + 1,

d,,i >0, --2, >0,

which can be combined with (3.4), (3.16) and our above results for the cases
a a +3 and Z 0 to show that inequality (1.1) holds for the three cases

(i) =, -i<a2,
(ii) =+1, Oa2fl+l, >-l/2,
(iii) A=, -2, >0,



SUMS OF POLYNOMIALS 437

each of which was proved in [12, Thms. 1,2,7] by other methods. It was also
pointed out in [12] that the case ce 1/2 of (i) above gives

(4.25)
(A / 1),-k (A / 1)k sin (k 4-1)0

k---0 (n-k)! k! k + 1
>0,

0< 0 <7r, -I<A<_-I,

which includes inequalities (4.9) and (4.19).

5. The ease 0 < A < +. To prove (1.1) for the case 0 < A < ce +/3,/3 >=
-1/2, it suffices to prove the positivity of the 5F4 series in (3.17). Unfortunately,
there do not seem to be any transformation formulas for 5F4 series in the literature
which will show this positivity. The method of projection formulas described in
[26], [28] suggests that we look for a formula of the type

d,i a,/,i,
=0

where F, is a Saalschiitzian F3 series to which the transformation formula (4.6)
could be applied. To find it the author observed that by starting with the formula
[16, 4.3(3)] and reversing the proof given in Bailey [16, 4.3 of Whipple’s
transformation formula [16, 4.3(4)] we obtain

al a2 ap+l;]p+Fp+
b, b2," ’, b+

(- 1)g(- n) (b +b2-a- 1).(b- a)
(b2- al), (ae), (%+),

k=O k! (bl +be-a,.- 1)ek(b,),(be)k

I k-n,k+aa, k+a3’",I+ap+l; ]"t’+FP 2k+b+be-a,k+b3, k+b4,’",k+bp+
which can also be obtained as a limit case of [16, 4.3(6)]. This formula has the
property that if the p+eFp+ series is Saalschiitzian, then so are the p+iFp series.

Application of (5.1) to (3.17) gives
m-j

,,t,x (- 1)’(j--m),(j-n +(A --c .-/3- 1)/2),
=o k tq n + (A B 1)/2) (i- n --(a + B)/2)
(A/2) ((A + 1)/2) (j + m n + 1/2) q- n )q- n ( + +A )/2)

(5.2) (f-n + (1-ce-/3)/2) (2/’- n + 1-t)(f-n-A)

4F3[k[ +]-m, k +j +m-n + 1/2, k +]-n-, k-t--j-n-(oe +B +A)/2;]2k+.i-n+(l+A-a-t3)/2, k+2j--n+l-/3, k,+j-n-a.

with m [n/2]. By (4.6) the above 4F3 equals

(k +A + 1/2)m_y_:((ce +i-A)/2)m_y_g
(5.3) (2k +j-n+(1 +h-a-8)/2)m__,(k +j-rt-A)m._._

[ ]-m-[3+l/2,]+l,k+f-n-(oe++A)/2, k+j-m;
4F3

j-m-A +l/2, k+j-m+l+(A-ce-13)/2,1+2i-n+l-fl
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When 0 < A < a +/3,/3 -> 1/2, each nonzero term in this 4F3 is positive and the
d,t,positivity of .,j follows by using (5.2), (5.3) and the relation (a).=

(- 1)" (1 a n).. This, combined with our observations in {} 4, gives the following
result.

THEOREM 5. If 0 <--A <-_ a + >-- 1/2, then

(5.4) (1 + 1),-k (I + 1)k P’)(x)> 0, 1 <x < oo,
k=o (n k)! k! P(’)(1)

and the only cases of equality occur when x 1 for n odd and when 1 O,
a =-/3= 1/2.

In particular, it should be observed that from (4.11) and the case c 3/2,
/3 1/2 of this theorem we have

d (a+l),_(a+l) sin(k+1)0
(5.5) dO k=O (n-k)! k! (k + 1) sin (0/2)

<0,

0< 0 < rr, 0_-<a _-< 1,
which includes both (4.10) and (4.20) and for 0 =< I -< 1 is stronger than (4.25).

From (4.6) we also have that the 4F3 in (5.2) equals
( 1 )m-j-k(J + 1)m_]_k

(k +j--n--1)m-i-k(k +2]--n + 1 --/3),n--k

4F3[ -m[ +(i -a-)/2, k +i + 1/2, k +j-n-,8,.k +j- m ;]jk +j-m +1+I-/3, k-m, 2k +j-n +(l +1-a-5)/2
which, with (5.2) and (4.23), shows that d,, > 0 when 0 < N min (, a + + 2).
This and our previous observations give the previously known result [12, Thm. 8]
that if 0 Na Nmin (, a+ + 2), then inequality (1.1) holds except when
a+ -2 and either n 1 or x 1, = =0, n g 1.

It was proved in [ 12, Thm. 1 that (1.1) also holds when a, 1 < < a +.
To obtain this result from (3.4) and (3.16), it suffices to note that the positivity of
d,,,,,, in this case follows from

d,,,- (-1)(]-m)(j-n-(a + 1)/2) ((a +-a)/2)((a + )/2)
=E

q-n-(a +/ +a)/2)(/-n-/) (j+ m-n + 1/2)k
(2j n + a )k(j n (a

rk +j-m, k +j-n-(oz +8 +I)/2, k +j-n-e, k +j+m-n + 1/2;]
4F[ 2k+j-n+(1-a)/2, k+2j-n+l-5, k+j-n-(a+)/2

m-i (n 2j- 2k + 1)2k (n -j- k +(I + 3)/2)k ((a +/3 -1)/2)k ((1 + 1)/2)k=E
k=0 k!(n-j-2k +(1 + 3)/2)2k(n--2j--k +8)k(n--j--k +I + 1)k

(n --]- k + (a +/3 + 2 + I )/2)k (n --j- k +/3 + 1)k (J" + 1),._i_k ((/3 a )/2)m-j-k
(2n 2j 2k + a +/3 + 1)2k (n m + 1 + (a +/3)/2)m_._k (n m --j + 8)m-j-k

4F3[k-m-I/2, k +(a +/3 + 1)/2, k +]-n-, k +j- m;]
2k +j-n+(1-1) k +j-m +1+(a-/3)/2, k-m3"
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Similarly, it follows from

d.t.,
n,j

m- (_ 1)(j_ m)(2j_ n_/3 +(a + 1)/2)(j + 1 + (a-/3 + a)/2)k
=E
k=O k!(2j-n- +(a + 1)/2)2k(2j--n + 1 --/3)k

((a + 1)/2)(j-- n --(a +/3 + a)/2)q-- n --/3)q + m n + 1/2)k
(]’-n +(1-a-)/2),q-n-a),q-n-(a +fl)/2)k

k +j-m, k +j-n-(o+ +1)/2, k +j-n-fl, k +j + m-n + l/2;]4F3 2/ +2j--/’ -- +(/ +3)/2, k+j-n-A,k+j-n-(+)/2

(n-2j-2k + 1)2,(n-2j-k+ + (1--a)/2)k
,,_j (/" + 1.+(a -/3 + a)/2)/,((a + 1)/2)k
=E
k=O k!(n-2j-2k +fl +(1-a)/2)zk(n-2j-k +fl)k(n--j--k +a + 1)k

(n-j-k+ + 1)k(n--j--k + 1 +(a+ +A)/2)k(--a).,-j_k((--a)/2).,=j-k
(2n-2]-2k +c+ + 1)2k(n-m +A + 1)m-j-k(n-m + 1 +(a + fl)/2).,-,-k

k+j-m-fl+l+a/2, k+j+a+(a-fl+3)/Z,k+j-n-fl, k+j-m; ]4F3 k+j-m+l+A-fl, k+j-m+l+(a-fl)/2,2k+2j-n-fl+(A+3)/21
and the cases c =/3 and A =/3 considered in {} 4 that we also have

THEOREM 6. Let fl >-- a, fl >-- A > 1 and 2fl >-_ A >-_ fl 2. Then inequality
(5.4) holds and the only cases of equality occur when x 1 for n odd, when
a -2,/3 =A =0, n 1, and whena -2, fl =A =0, x 1, n>_-l.

Note that this theorem gives cases in which (5.4) holds with/3 < 0, a +/3 < 1
which are not covered by the previously known results. It should also be noted that
from [33, (4.1.8)]

P(n-1/2’1/2) (COS O) COS (n + 1/2)0
P1/2’-1/2)(1) (2n + 1) cos 0/2

and the case a -/3 1/2 of Theorem 6 we have

(5.6)
/.. (A + 1).-k (a + 1)k COS (k + 1/2)0>0
k=O (n-k)! k! 2k + l

O=<O<r, -l<A<-l/2,
which can also be obtained by combining Theorems 1 and 8 in [12].

Since Jacobi polynomials with a +/- 1/2 or/3 +/- 1/2 can be expressed in
terms of ultraspherical polynomials P’(x) by means of a quadratic transforma-
tion [33, Thm. 4.1], our results also give the following inequalities"

(5.7) --2k )(X)
0

(A + 1),-k (A + 1) (c + 1) ’(’

k=O (n-k)! k! (lf2 P’)(1)
for -oo<x < oo when 0_-<a =<a- 1/2.

(A + 1).-k (A + 1)k (-- 1)kpk’)(X) >_ 0
k=0 (n-k). k. --2kD(’>(1)

for -lxl when -l<a=<a-1/2, when O=<A--<a, and when
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and a 3/2 -< A --< 2a.
o(’) (x) > 0(5.9)

(X + 1),_ (X + 1) (a + 1)k a2k+l
D(,) [1=o (n-k) k (3/2) 2k+lk/

for x 0 when 0NA Na +1/2, when -1< Na +l/2N1, and when a N1/2,
-1< N 1/2 and -a-3/2.

11kO(a,a)
(5.10)

(A + 1)._ (A + 1) (- , a2k+lk, >0
=0 (n-k) k ’)

a2k+lki/

for 0Nx N1 when 0NA Ne+l/2 and when e 1/2 and -I<A Na+l/2.

6. Pesitivily eI an inlegral eI a Bessel Ienefien. The projection formula (5.1)
also enables us to prove the conjecture in [27] that

i0(6.1) (x t)+2"-a/2t+"L (t) dt O, x > O,

when 0 N N 1, a + 1/2. An expression of this integral as a sum of squares of
Bessel functions was used in [27] to show that in order to prove the nonnegativity
(positivity) of the integral (6.1) it suffices to prove the nonnegativity (positivity) of
the Saalschfitzian series

5F4[ -n,n+2a+2,a++l,a+(+l)/2, a+l+/2; ](6.2) +. + /2, + 1, (3 +3 + 3/2)/2, (3 + 3. + 5/2)/23

for n 0, 1, . For 0 and 1 this series reduces to 3F2 which was summed
in [27] to show that it is positive when 0, a > 1/2 and when 1, > 1/2,
and that it equals zerowhen n 1 and either 0, a 1/2 or 1, a 1/2.
The series (6.2) reduces to a 4F3 when 0< < 1, a+ 1/2, and so in [27] we
were able to apply a limit case of Whipple’s formula [16, 4.3(4)] to prove its
positivity for this case.

To handle the remaining case 0< < 1, a+ > 1/2, we need but observe
that from (5.1) and (4.6) the series (6.2) equals

(-)(-n)(2+2)((+-/2)/2)((+ + /2)/2)

(n + 2. + 2.)( +( + )/2) (. + +./2)
(a+ + 1/2) (a + 1)

4F3[k[ n,k + n +2 + 2,, k + + (, + 1)/2, k + + 1 +,/2;]j2k +2a +2 + 1, k +a+ + 1/2, k +a+ 1

2-2n (2a +2)(a + 1/2)2 (n +2 +2)
=0 (n )(2a +2)(3 +3 +3/2)

(2 +. +)(./2)_ ((-)/2)._
(+ + /2).( +

4F3 k-n+l-/2, k-n+(+l)/2,2k+2a+2+l
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which is obviously positive when 0 </z < 1, a +/x > 1/2. Therefore we have
THEOREM 7. If O<--_l <--_ 1 and a +tz >- 1/2, then inequality (6.1) holds and

the only cases of equality occur when O, a 1/2 or I 1, a 1/2.
Additional inequalities for integrals of Bessel functions and for sums and

integrals of orthogonal polynomials which follow from our method will be
considered elsewhere.

7. Absolutely monotonic functions. Since absolutely monotonic functions
have figures so prominently in previous research on inequalities [7], [12], [13] and
they can be multiplied and added together to obtain additional absolutely
monotonic functions, it is of interest to see which absolutely monotonic functions
follow from our results.

From Theorem 1 it follows that the function

(7.1)
f(t; x, , A) Y t" Y (A + 1),,-k (A + 1)k (-- 1)kL(x)

,,=o ,,=o (n- ,)! k z:(O)
(1 t2)-X-llFI[A -+- 1; 18 + 1; xt/(1 +t)]

is absolutely monotonic for x ->_0 when/3, A ->_ 1/2. In particular, setting A =/3,
we have that

(1 t2)-/3-1 e xt/(l+t)

is absolutely monotonic for x _-> 0 when/3 _-> 1/2.
For Jacobi polynomials it follows from

[19, 19.10(26)] that
the generating function

f(t; x, a, , a )=-- t" (a + 1).-k (a + 1), P"’t3)(x)
,,=o k=O (n-k)! k! P")(1)
(1 t)-a-aF4[a + 1, c + 1; a + 1,/3+ 1; t(x- 1)/2, t(x + 1)/23,

where F4 is the fourth type of Appell’s functions of two variables and, for
convergence, it is assumed that

t(x- 1) 1/2 t(x+ 1) 1/

2
+

2
<1.

This F4 function reduces to a simpler function in some special cases 16, p. 102].
For A a +/3 it was shown in 12] that

f(t; x, , , c +)
(7.3)

(1-- t2)--t3-1F [ce +fl +12 a+fl+22 ;/3+1; 2t(1+x)](l+,)2

which, by Theorem 2, is absolutely monotonic for x_->- 1 when ce +/3->0,
/3 -> 1/2 and when c +/3 _-> 1,/3 -> a. For/3 1/2 the hypergeometric series
in (7.3) can be summed by means of [19, 2.8(5)] to give the absolute monotonicity
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of the function

(7.4)
f(t;x, ce, 1/2, a- 1/2)

1/2(1 t)-"-1/2{(1 + +(2t + 2xt)1/2)--1/2

+(1 + t-(2t + 2xt)1/2)--1/2}

for x => 1, a => 1/2. Replacing by t2 and x by 2x2- 1, this gives the absolute
monotonicity of

(1 t2)--1/2{(1 + 2xt + t2)--1/2 + (1 2xt + t2)-"-1/2}
for -c<x<o, a->l/2. The function (7.3) also reduces to an elementary
function in the three cases a =/3, a =/3 + 1, a 1 and the function (7.2) reduces
in the case A =/3 [12] to give the (previously known) absolute monotonicity of the
functions

(1 t)-2-1(1 2xt + t2)-a-l/2,
(1 + t)( 1 t)-zt-2( 1 2xt + t2)--3/2,
(1 t)-t{1 +t+(1-2xt+t2)l/2}-,
(1-t)--lp-l(1-t+p)-(1 +t+p)-,

for x _->-1, where p=(1-2xt+t2)1/2.
Two additional reductions of (7.2) can be obtained by using 19, 19.10(11)

and 19.10(12)] to write

(7.5)

and

(7.6)

f(t;x,a,a,A)

1 t)- 1 xt)- 1F|Ar + 1 + 2
2 21.

=(1-t)-a-l(1-xt)o-a-ZF[2Ci. + 1-A _A,+2
2 2

a-> 1/2,

/3->-1/2,

/3_->0,

a ->-2, /3->0,

t2(x2-1)]--;a+l; (i22

a +1" t(1-x)]-

f(t; x, a, ,- 1)= 2t(1 t)-(1 + +o)-
F +1 /./+1.---

2

where p is as defined above. The function (7.5) is absolutely monotonic for x -> 1
when 1 < A --< 2a, and (7.6) is absolutely monotonic for x => 1 when a -> -3,

For A 2a + 1, (7.5) reduces to

1-xt
(7.7) f(t; x, a, a, 2a + 1)=

(1 t)2"+2(1 2xt +/2)c+3/2.
It is the relative simplicity of this function which enabled Askey [7] to prove its
absolute monotonicity for -1 =<x _-< 1, a 1/2 and then extend this result to
c > 1/2. Then a standard argument gave (5.4) for -1 =<x =< 1, 2=<A _-<ce +/3 + 1,
and hence the absolute monotonicity of (7.5) for -1 =<x-< 1, 2-<A =<2a + 1.



SUMS OF POLYNOMIALS 443

When a 1/2 the second hypergeometric function in (7.5) can be factored by
using Orr’s formula [16, 10.1(5)], and it might be possible to use this factorization
to prove the absolute monotonicity of (7.5) for 1 =< x =< 1, 1 < A < 2, and hence
the nonnegativity of the sum (4.25) for 0 < 0 < rr, 1 < h < 2, which is the only open
case, [8].

8. Additional observations and open problems. Theorem 3 is best possible
in the sense that the (C, a + fl + 2) means of the Poisson kernel (4.12) are not all
nonnegative for 1 -< x, y -< 1, 0 -< -< 1, when a > 1, 1 </3 < 1/2 or 1 <
a < 1/2,/3 > 1. In view of (4.14) it is enough to show that inequality (4.8) fails
for some n when a > 0, 1 < fl < 1/2, which is a special case of

THEOREM 8. Let a > 1, h > max (- 1,/3-a 1), and either 1 < <
1/2 or 1 < < 1/2, a + + 1 > O. Then the inequality

(8 1)
(A + 1)-k (A + 1), P(’O)(x)
(n-k)! k! ,)->=0, -1_-<x=<1, n=0,1,...

k=O

fails to hold, and the integral

(8.2) (x t)xtx-J, (t) dt, x > O,

changes sign infinitely often as x - c.
Since the integral (8.2) is a limit case [8] of the sums in (8.1) it suffices to

consider the sign of the integral. From the series representation [27, (2.2)] and the
asymptotic formula [30, 5.11.4(4)] we have

xt-"-2x-1 (x t)xt-tJ (t) dt

-A +a-fl + 1 h +a-fl +2 -x 2

r(a + 1)r(a +-/ + 1)2 2 2 4
F(a + 1)r(2a + g "e + 2 + 3

2
,a+

2(8.3)
a+l,A+

--(a+A+3/2)/2{ AZ(B+I/2)/2
r(( +/3 + l-a)/2)

BZ(,8-1/2)/2
r(( +/-a)/2)r(a/2)

COS (2Z 1/2 + 0(1))},
for a > max (- 1,/3 ce 1), ce > 1, where z X2/4 and A, B, C are positive
constants depending only on a, fl, . The power of z in the first term in braces in
(8.3) is negative when fl < 1/2 and this term is zero when h a + fl + 1. Also the
power of z in the second term in braces is negative when /3 < 1/2 and the
coefficient of z in this term is not zero when a ce + fl + 1 > 0. Therefore it follows
from (8.3) that under the conditions of Theorem 8 the integral (8.2) must change
sign infinitely often as x oo.
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Askey [8] showed that if A > a +/3 + 1 and a > 1, then the integral (8.2) is
not nonnegative for all x > 0 and hence (8.1) fails to hold. His results in [8] suggest
that inequality (8.1) probably holds for 21 <h <21 + 1 when a =/3 _-> 1/2, but
our method cannot be used to show this without some modifications since dn.j
assumes negative values for sufficiently large n when 1 < 21 < A < 21 + 1. One
way to see this is to reverse the series (4.21) to obtain

....a= (a + 1/2).,_j(n-m + 1 +a +1/2).,_(j + 1 +h/2)m_j
"’ (n-m-j+a).,_(n-m+a+l/2),,_j(n-m+h+l).,_i

4F3[J-m, n-m-]+a, (I + 1)/2, a-1/2; ]a +1/2, n-m + l+a +1/2, -m-1/2
and then to observe that for fixed ] this 4F3 series tends to minus infinity as n
when -1 < 21 <1 < 21 + 2. Similarly, it can be shown that ,,i < 0 for suffi-
ciently large n when a >/3 > 1, a +/3 < 0, I a +/3, and when 2 < a +/3 < 0,

1 </3 < 0, I 0; so that even by using all of the known transformation formulas
one could not extend Theorems 2 and 4 to other a,/3 by the method of this paper.
It seems likely that (4.18) also holds for 1 <a < 1/2,/3(a)_-</3 <0, where/3(a)
is the unique solution to the equation (see [14], [31])

’2
dt= O, -1/2 </3(a) < 0,t-t(")j (t)

],,,2 being the second positive zero of J (t); and so another method will have to be
developed to prove this.

For Laguerre polynomials it should be pointed out that the restriction
fl>--1/2 in Theorem 1 cannot be relaxed for any 1>-1. For, setting
n 2m + 1, reversing the order of summation on the right side of (2.6), replacing x
by 2x/m and using the limit relation

lim m-t3Lm(X/m)= x-/zJt(2xl/2),

we obtain a sum of squares of Bessel functions which, by [27, (3.3)], is a positive
multiple of
(8.4) 1F2[1; 2,/3 + 2; -4x]

for x > 0,/3 > 1. Then the asymptotic formula [30, 5.11.4(4)] shows that (8.4)
changes sign infinitely often as x oo when -1 </3 <- 1/2. Similarly the case
n 2m leads to the function

2x
1-/3 + i1F2[1; 2,/3 + 2; -4x]

which also changes sign infinitely often as x -oo when 1 </3 < 1/2. It is not
known whether the restriction I _->- 1/2 in Theorem 1 can be relaxed when
/3 > 1/2. However, when n 2 and/3 1/2 the inequality (1.2) cannot hold
for any I, 1 < I < 1/2, since then

/3,1 =(1+1) 1-2(I
which is the minimum value of S2(x;/3, 1), is negative.
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For Jacobi polynomials a computation shows that the minimum value of
S2(x OG , I is

( (fl + 2)(* + a +/3 + 4)2 )(8.5) (a + 1) 1-2(a +2)(/3 + 1)(a +/3 +3)(a +/3 +4)
whose nonnegativity is a necessary condition for (8.1) to hold. From (8.5) we
obtain the particularly interesting observation that if fl 1/2, then (8.1) cannot
hold for any A > 1 when 1/2-<_a < 1/2, for any , #0 when a 1/2, and for
any , in the interval 1 < A -<_ 1/2 when a > 1/2. Theorem 1 and (8.5) suggest
that inequality (8.1) probably holds for some , < 0 when a > 1/2, fl 1/2. It
should also be observed that since the variable x appears to the power n 2j in the
expansion (2.6) it follows from our results for C,,j that if A, /3 >_-- 1/2, then
S2n (X , i. 0 and S2n+ (X , I 0 when x < 0. Similarly, S2n (X Og, , A 0
and $2,+1(x; a,/3, a)_-<0 for x < 1 whenever the coefficients in (3.4) are non-
negative for all n.

Among the open problems and conjectures pointed out in [12] is the
conjecture that if a +/3 + -> 0, 0 <-/* -< 1,/3 _-> 1/2, then

(a +fl+l+ 2/.)AoL (a +/3 + 1 + 2/*),_ (a +/3 + 1) 2 P’t)(x)
(8 6) (n-k), k, {a +/3 + 1 pe,,(1 =>0

\ 2 ] k

for 1 --<x _--< 1. This sum is a common generalization of the two sums in (4.14),
and it has the integral (6.1) as a limit case. Since (8.6) is not zero at x 1 for all
odd n when 0</* < 1, it could not have an expansion of the form (3.4); so another
expansion or method will be needed to prove this conjecture for 0</, < 1.
Another generalization of the two sums in (4.14) which also has the integral (6.1)
as a limit case and might be nonnegative under the above conditions is the sum

(a +fl +2+/*)P’t)(x)
(8.7) 2

(a +/3 + 1 + 2/*)n_k (Ol + q- 1)k 2 k

k=O (n -k)! k! (a +/3 + 2-/*] et’’(1)"

Computationally, this sum should be easier to handle since, unlike (8.6), it at least
reduces to a nearly-poised F2(- 1) series when x 1.

The sum

(8.8) Z (y -t- 1),-k (2k + a + fl + 1)(a + fl + 1)k P’t)(x)
k=0 (n-k)! k!(a+ + 1) Pe’)(1)

also reduces to a nearly-poised 3F2(-1) series when x-- 1. So, if one could
prove the above conjecture for the sum (8.7), then it might be possible to use the
same method to solve the problem of finding for which a,/3 with 1 </3 < 1/2
the sums (8.8) are nonnegative for 1 _-< x _-< 1 for some y y(c,/3) > 0. This
would then yield an extension of Askey’s results [5, Thin. 10] on the Lp-

convergence of Lagrange interpolation polynomials at the zeros of Jacobi polyno-
mials.
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Another interesting problem is to find an extension of the expansion (2.1) to
Jacobi polynomials which would give the Turfin type inequality

for/3 _-> a _->- 1, n-> 1. This inequality was proved in [25] by a method which
actually gave the stronger result that if a,/3 > 1 and n _-> 1, then

(fl-a)(1-x) P(a’/3)(X)} 2 >0, -1 <x<l(8.10) A,,(x, a,/3)
2(n +a + 1)(n +/3) e(2’t)(1)

with equality only for x + 1. Thus it is preferable (and probably easier) to prove
(8.9) by first proving (8.10). This suggests that to prove (8.6), (8.7), or (8.8) by use
of the Burchnall and Chaundy formulas [17] it might be necessary to first subtract
an appropriate nonnegative function and actually prove a stronger result.
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SOLUTIONS OF NONLINEAR OPERATOR EQUATIONS,*

PETER LANCASTER AND JON G. ROKNE"

Abstract. Some theorems concerning existence and uniqueness of zeros of operator polynomials
are given. Under certain hypotheses we show the existence of complete pairs of zeros. A numerical
example is given applying the theorems.

1. Introduction. Let be a Banach space over the complex field c and let
L L(, ) be the noncommutative Banach algebra (with density I) of all
bounded linear operators from to itself. It is assumed that the norm on L is such
that IIIll- and we denote the spectrum of A L by o-(A).

We consider functions R: L L, and we are interested in operatorsX L for
which, R (X)= 0. Such an operator will be called a zero of R.

In particular, we consider polynomial functions F defined by

(1) F(X) A;X;,
i=0

where X, A0, A 1, L. We trust that no confusion will be created by using the
same symbol F for the associated function from c to L defined for all A c by

(2) F(A) AiA i.
;--0

For polynomial operators we define the degree to be the largest index for which
A; 0. If the degree of a polynomial operator F is n and X is a zero of F, then it
follows that

(3) F(A) AiAi Q(A)(IA X)
i=0

for a polynomial Q of degree n 1 and all A . It is important to note that the
order of the factors on the right cannot generally be inverted.

The case when the degree of the polynomial operator is two is of particular
interest in mechanics. We will study this case in detail. For this purpose, we write
the second degree equation as

(4) F(X) =-AX2 /BX+ C O.

If, for the moment, we assume that A =I and that (B2-4C)1/2 exists and
commutes with B, then (4) has two solutions,

Z1,2 -1/2B + x/Bz- C.

These are seen to be zeros of (4) by substitution. Furthermore, Z1-Z2=
(B2-4C)I/:z. If B-1 exists as well, then Z1-Z2=B(1-4B-zC)1/. A "strong
damping" hypothesis implies that B is "large" compared to A and C. For
example, if 411B-zCII < , then the Banach lemma leads to the conclusion that
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Z1 -Z2 is invertible. We say that if Z1-22 has an inverse, then 21,2 is a complete
pair of roots.

The existence of a complete pair is important for the following reason
(Eisenfeld [2], Krein and Langer [5] and Lancaster [6]): If Z1, Z2 form a complete
pair for F, then we have the factorization

F(,) A (Z, Z2)(AI- Z2)(Z, Z2)-’(XI- Z,).

From this we deduce the relation between resolvent operators:

F(A )-IA (Z Z2) (*I- Zl)-1 (AI- Z2)-1,
which indicates clearly the division of the spectrum of F between the spectra of Z1
and Z.

The strongest results on existence known to date relate to cases in which A, B,
C are symmetric and are due to Krein and Langer [5] and Langer [7]. In this paper
we focus on some results which involve minimal assumptions with regard to the
symmetry of the coefficient operators.

The case of infinite-dimensional Banach spaces is of considerable interest in
the analysis of some physical problems formulated as differential equations ([5],
for example). For the purpose of numerical analysis, the continuous problem is
replaced by a discrete one using variational or finite difference methods. In this
way, we arrive at a problem on a finite-dimensional space . If, in this case, a
matrix solution of the (now matrix) equation F()= 0 can be found, this yields a
"packet" of information on n eigenvalues and associated eigenspaces of F(A) if
has dimension n. This situation is illustrated in our numerical example.

The key to the theorems that we will prove is the Newton-Kantorovich
theorem. We state the theorem as it appears in [9] where a simple proof may be
found.

THEOREM 1. Let , be Banach spaces, c y and suppose G: - 21.
Assume that on an open set o , G is FMchet differentiable and that

IIGc- G’dl -< KIIX- YI, X, Y o.
Given Xo o, assume that Fo [Go]-1 is defined on all of . Let Foil-<-/ and
IlroH(Xo)ll <--n. Suppose h lflK <= 1/2 and set

1
t* ---(1- x/1 2h),

1
t** x--- (1 + /1 2h),

and suppose S {X Ilx- Soil t*} c @o. Then the interates

Xk+ Xk [Gxk]- G(Xk ), k=0,1,...,

are well-defined, lie in S and converge to a solution X* ofG(X) 0 which is unique
in of’l {XIIIX-XoI]< t**}. If h < 1/2, we obtain the rapid convergence generally
associated with Newton’s method [3].
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The usefulness of this theorem is usually confined to the properties of the
algorithm. Here, we also have special interest in the statements regarding
existence of zeros of F(X).

2. Existence theorems for equations of second degree with strong damping.
We consider the second degree equation as written in (4). In addition we will
assume that B-1 exists and is "small" in an appropriate sense. We are going to
apply Theorem 1 to this equation and for this we need the Fr6chet derivative of F.
This may be written as

F’x(H) AXH+AHX+BH,

and we immediately find that

IlFk--FI =< 21IA IIX- Yll
for all X, Y L. This gives 2IIA as a bound for K needed in Theorem 1.

Since B-1 exists, B-1F(X) B-1AX2+X+B-1C has the same zeros as F.
Our first result concerns the existence of a "small" zero of F.

THEOREM 2. Let F be as defined in (4) and B be invertible. Suppose h
2IIB-1A liB CII--< 1/2, and define

1
t* 21IB_A (1 -/1 2h),

1
t** 2"B-’A"(lll +41- 2h).

Then F(X) 0 has a solution in the sphere S {X Ilxll =< t*} which is unique in the
sphere T {X Ilxll < t**.

Proof. We apply the Newton-Kantorovich theorem to B-1F with X0 =0.
Then B-1F(Xo) B-C and B-F’xo(H)=H. This means that we may take
t =lllII- and r/-IIn-cII. From above we get (replacing F by B-F)
211B-’AII. With the hypotheses made in this theorem, the Newton-Kantorovich
hypotheses are satisfied and the conclusions of Theorem 2 follow.

The Newton-Kantorovich theorem will also furnish convergence results for
the iteration. We omit the statement of these, however, both for this theorem and
for subsequent theorems for the sake of brevity.

In Theorem 2 we needed the invertibility of B. We now assume, in addition,
that A is invertible and write

A-1F(X) X2 ’1A-BX+A-C.

We can now assert the existence of a "large" solution near -A-lB.
THrOREM 3. Let F be defined as in (4) and assume A and B to be invertible.

Suppose

h 21IB-’A IIA-CB-A If--< 1/2
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and

1

2llB- A (1- x/1- 2h),

1

Then F(X)=0 has a solution in the sphere S={XIIIX+A-1BII<=t*} which is
unique in the sphere T= {xl IIx+ A-BII < t**}.

Proof. Let Xo -A-XB in the Newton-Kantorovich theorem applied to
G=-A-1F. Then G(X0) A-1C, and this gives bounds/3-Ilroll-II-AII and
n -IIa-CB-AII. The hypotheses of Theorem 1 applied to G are now satisfied
and the conclusions follow.

We now make a stronger "strong damping" hypothesis to deduce that the
roots obtained from Theorems 2 and 3 form a complete pair.

THEOREM 4. Let F be defined by (4) with A I and B invertible, ff h
211-11 max (lln- cII, Ilfn-ll) < &, then the roots X1, X2 ofFof Theorems 2 and 3
form a complete pair.

Proofi By Theorem 2 there is a root X1 of F within the closed sphere $1 of

radius t 1/211B-111-(1 -,/i 2h) and center X= 0. Theorem 3 implies that there is
a root X2 of F within the closed sphere $2 of the same radius t with center at -B.
Since IIB-II- _-< IIBII, we have 2t < IIBll, and hence the two spheres have no points in
common. Thus X1 X..

Now we write

-X2 B-(B +X2)= B[I-B-I(B +X2)].

Since B +X2 e $2, we have lib + X21l N t and so

IIB-’(B + X)l[--< IIB-’llt < 1/2.
The Banach lemma then implies that X2 is invertible and

Ilxy’ll--< liB-11( a -liB-11t)-.
Then IIx, < t implies

IIx1x,II-< IIB-’llt(a -IIB-’llt)-’
1 +/1-2h

Since we may write X2-X XI(I-XaX1), the Banach lemma implies that
X2-X1 is invertible and

II(x2 x)-ll-<-Ilx ’11( 1 -IIx-1Xlll)- < lIB- 11[
=41 2h"

The theorem is now proved, and we note that as h approaches 1/2, the inverse
may become unbounded. We also note that the spectrum of X2 strictly dominates
the spectrum of X. First, it is easily verified that, if A L and IIA-II-< k, then
A o-(a)implies 1/k_-<IAI_-<IIAII Then the bound on [Ixll[ implies that if
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, 6 r(X2), then

1+/1-2h

This property is required of some suggested interative methods for the solution of
equations in matrices ([1] and [8]).

Following the line of argument of Eisenfeld [2], we can arrive at a complete
pair under apparently weaker conditions than those of Theorem 4, but without the
implicit convergence results of Theorem 3. Thus under the hypotheses of
Theorem 2 let G(X)= XZ(B-1A)+X+ (B-1C). By the method of proof of that
theorem, one easily establishes the existence of an X6 S which is unique in T and
which satisfies G(X)= 0. Now, under the further hypothesis that A -1 exists, we
define Y -A-1B-A-1BffB-IA, and it is easily seen that B-F(Y) G(ff)
0. Clearly,

and since "6 S, it follows that

IIY+ A-’Bll <= 1/21lA-’Bll(a -41 2h)

and h is as defined in Theorem 2. To see that X and Y form a complete pair
observe that B-aAY= -I-f(B-1A, whence

B-A (ff y) I- D,

where D=-B-’Aff-2B-IA, and so IlOll<=ZllB-aallt*= 1-/1-2h<l pro-
vided h < 1/2. It then follows that ’- Y is invertible as we set out to prove.

Associated with the function F: C L we have the derivative with respect to, :F()(A)=2AI +B. The following result generalizes Theorem 2 which is
obtained on putting a 0.

THZORZM 5. If]or a complex number a it holds that F(a)(a)- exists and

then with

h 211FI)(a)-F(a)IIIIF)(a)-AII 1/2,

1
t* 21IF)(a)_All (1-41 2h),

1

2"F()(a)-A’’(lll +/i 2h),

a zero ofF exists in the sphere S {X[ IIX- alII <= t**}.

The proof is obtained by applying Theorem 1 to the function G FI)(a)-F.
3. Existence theorems [or equations o[ second degree with weak damping.

The terminology weak damping is taken from mechanics where the norm of B in (4)
is small. If B 0, then (4) reduces to

AX2+ C O,
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which has a solution if A -1 exists and if (-A-1C)1/2 exists. For the next theorem
we assume A I and that C/2 exists, i.e., there exists C/2 eL such that
(C/2)= C. We then show that if B is small in an appropriate sense, we still get
zeros for the function F of (4).

For the purpose of this theorem only we assume that is a Hilbert space and
denote by A* the (Hilbert) adjoint of A e L.

THEOREM 6. Suppose y=inftr(C1/2+(C/2)*)/2>O, IIBII<2, and h
211BC1/ZlI/(2w IIBIDz _-< . Define

23,-I111
t* (1-/1-2h),

2

t**= 2’- [IBI[ (1 + 41 2h).
2

Then (4) has a solution in the sphere S {X [IX: iC’/2ll < t*} which is unique in the
sphere T= {XI IIx: ic/211 < t**}.

Proof. We only prove the case when the spheres S and T are centered around
iC1/2. Let Xo iC/2 in the Newton-Kantorovich theorem. Then F(Xo) iBC/2

and

(5) fxo(H) n(ic1/2) q-(iC1/2 q- B)H.

We now need estimates for Ilroll and IIr0F(X0)ll. Consider first the equation

(6) AC1/2 + (C’/2- iB)A P,
and define T(A)=ACa/+C1/ZA. Then TeL. Since y>0 it follows that if
a eo-(C1/2) (/zeo-(C1/2)*) then Rea>0 (Re/z>0). Hence o-(C/2)f"1
(-C1/2) ok. By a corollary of Rosenblum [10], T- exists and we may define
q:L-+ L by q(X)= T-(P+ iBX). Obviously, if A satisfies (6), then A is a fixed
point of q and conversely. Thus to prove the existence of a solution of (6) we may
apply the contraction mapping principle to q. We have

qD(X)- qD(Y) T-I(iB(X Y)),
which gives

IIq (x)- (Y)ll-< IIr-’ll IIBII IIx- Yll.
Using the definition of y, a lemma of Heinz [4] yields IIr-ll -< /(2r), and hence
the contraction property follows from the fact that

Since T(A) P+ iBA, we have

Ilall-< IIr-’ll(llell + IIBII Ilzxll) --< + II.ull IIAII
from which

< IIPllIIAII--2_IIBII
Since (5) implies that -iF’xo(H)= HC/+(C/- iB)H, it follows that

IlBC*/2llIlrof(Xo)ll <-- --I1- n
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and

1
Ilroll 2./-IIBII

Applying Theorem 1 to F, we have r 2 and so the hypothesis on h yields
h r/fir _-< 1/2. Our conclusions therefore follow Theorem 1.

We note that a similar theorem holds if we define Xo + iC1/- B.

4. Existence theorems tar mare general equations. Assume now that our
operator-valued function can be written in the form

(7) F(X) Ao+AiX+P(X).

In the next theorem we prove a natural generalization of Theorem 2 on hypoth-
eses which ensure that P(X) behaves sufficiently like a power ofX higher than the
first.

THEOREM 7. Suppose that, in (7), A -1 exists and that P satisfies
(i) P is Frchet differentiable in an open set o,

(ii) P(0)= 0,
(iii) e’o(H) 0 for all H L,
(iv) Bp >=0 such that IlA-i’(P’x-e)ll<=pllx l vx, Yo.

If h pIIA TA0]l-_<1/2 and we define
1

t* (1-/1- 2h),
P

1
t** (1 +41- 2h),

P

then the function (7) has a zero in the sphere S {X] Ilxll <- t* unique in the sphere
T= {xl Ilxll < t**}.

Proof. We apply the Newton-Kantorovich theorem to G(X)
AT1Ao+X+A-IP(X). Since

G’x(H) G’,z(H) A -{ {P’x(H) P’,z(H)},

we may use (iv) and take r p. Then if Xo 0, Fo (G..o)-1= I and roG(Xo)=
A-Ao. Thus we can take/3 1, r/= ]IA -lAol] and the theorem follows. We note
that Theorem 2 is obtained with P(X)= AeX.

We can apply Theorem 7 to prove the following result for a cubic polynomial.
We write

(8) F(X) Ao+AX+A.X2 +A3X3.

Note that, when A3--0, condition (9) reduces to the (strict) strong damping
condition .of Theorem 2.

THEOREM 8. If, in (8), A- exists and

(9) aliA -AoII(61IA -’A3II IIA -A0ll + IIA -AII) < 1,

then Fhas a zero in the sphere with center at the origin (in L) and radius 2IIA i-’A011.
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Proof. Comparing (8) with (7) we write P(X)--A2X2+A3X3, and it is a
straightforward calculation to show that, if X, Y{X L llxll--< r}, then in
hypothesis (iv) of Theorem 7, we may take

p 6rllA 71A311 / 2IIA 71A211.
Using inequality (9) we may choose

1 aliA 7aoll IIA ?m21lr= 1211mT,AollllmTm311 >0,

in which case it is found that PlIA 71Aoll 1/2. Thus the parameter h 1/2 in Theorem
7, and we can conclude the existence and uniqueness of a solution of F(X)= 0 in
the sphere of radius t** p-l= 211A 7A011 and center at the origin.

5. A numerical example. From 9.6 of [6] we get the following numerical
example of a lightly damped system

F(A IA 2 +BA + C,
Where

and

.00827963 .00176811 -.00327865

.00176811 .00741734 .00067080
-.00327865 .00067080 .05761640

C= 1 0
0 2

We apply Theorem 6 to this equation. For this purpose we compute the
following quantities

1 0 0

Xo iC/= 1 0

0

(C1/2--I-(C1/2)*,)3’ inf o
2

1

and IIBII-.06156585 using the maximum row sum norm. Then the hypothesis
IIBII < 2, is certainly satisfied. We compute:

h
211BC1/21[ (2/)(’06156585)
(23,- IIBII) (2-.0615658)2 =.04634285<1/2.

Thus our hypotheses are satisfied. Now

(1 4’1 2h) .046008288,

(1 +x/l- 2h) 1.8924258,
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and we have the result that

s {xl IIx-ic /211} <-.046008288
contains one root that is unique in

T-- {Xl IIX-iC /211} < 1.8924258.

We compute this root using the Newton iteration method programmed on the
CDC 6400 at the University of Calgary. With X0 defined as above we compute
H,, X,,/l X,, from the equation

(X,, +B)H,, + H,,X,, (X2,, + BX,, + C), n =0, 1, .,
and get

IIH, .0304,

IIHzll .000316,

IIH II .0000000335.

x3 is now

+ i.99999012E +00,

-.88405507E- 03 + i.32805807E- 05,

.13580209E-02 + i. 19356899E-04,

-.88405493E -03- i.32805807E- 05,

-.37086700E- 02 + i.99999269E +00,

-.27784928 E-03- i.32162148 E-05,

.19206292E-02 + i. 19356897E-04q
/

Let the eigenvalues of X3 be el, e2 and e3. We compute these using routines from
Eispack and get

el -.28808438E- 01 +i.14139122E+01,

e2 .48341075E 02 + i.99999065E + 00,

e3 .30141399E- 02 + i.99999871E + 00,

which compare favorably with numerical results claimed in [6].
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DECOMPOSITIONS OF A HILBERT SPACE AND FACTORIZATION
OF A W-A DETERMINANT*

R. J. HANGELBROEKf AND C. G. LEKKERKERKER$

Abstract. The dispersion function A(A) which occurs in linear transport theory can be introduced
as the W-A determinant of a certain pair of operators B1, Bz defined in L2[ 1, 1]. Each of the two
operators is reduced by a complementary pair of subspaces of L2[_ 1, 1]. In this paper the factoriza-
tion A(A) X(A)X( A) is shown to correspond with a factorization of the operator VB2 V- AE)
(B1 AE)- into the product of two operators with determinants X(+A). Here V is an automorphism

of L2[_ 1, 1] which is defined in terms of the projections associated with the two pairs of subspaces.
The results are brought into a general setting.

1. Introduction. This paper deals with a question originating in linear
transport theory. In a specific type of problems in that theory, viz., the so-called
half-space problems, one has to deal with a situation which, within the framework
of a Hilbert space, can be described as follows. There are given two bounded
linear operators B and Be which differ by a finite-dimensional operator. Each of
the two operators is reduced by a complementary pairof closed subspaces, say,
{H/, H_} and {Hp, Hm}, respectively. Then the question is whether the projection
P/ onto H/ along H_ induces an isomorphism from Hp onto Hr.

In transport theory (cf. [1], [2], [3]) the above question is currently answered
in a constructive way. There, for an arbitrary f/ H/, an element fH, is
constructed such that P+f f+. The various methods to obtain f, as proposed so
far, have in common that they use an a priori factorization of the W-A determin-
ant associated with the operators B1 and B2, i.e., the determinant of (B2-AE)
(B1 AE)-1. (E is the identity operator.) If this determinant is denoted by A(A),

then the factorization takes the form A(A)= X(A)X(-A). The function A(A) is
known as the dispersion function and its factorization is called a Wiener-Hopf
factorization. One could hope that the factorization corresponds to some factori-
zation of the operator (Be-AE)(B-AE)-a. This hope seems to be vain. In this
paper, an operator V is introduced which is defined in terms of the projections
associated with the pairs of subspaces {H/, H_} and {Hp, H,,}. It is shown that H/
and Hp are isomorphic under P/ if V is an automorphism in H. The operator
VBeV-1 is reduced by {H/,H_}. Moreover, the operator (VB2V-1-AE)
(Ba-AE)-a does admit a factorization as a product of two operators having

determinants X(A), X(- A).
Since we believe that they may be of use in other fields than transport theory,

we bring our results into an abstract setting in 2. We shall make a generalization
by considering two bounded operators B1 and B2 which differ by a nuclear
operator. On the other hand, we shall restrict ourselves to a (separable) Hilbert
space in spite of the fact that Hilbert space concepts do not enter directly into the
problem as formulated above in the first paragraph. The reason for this restriction

* Received by the editors August 23, 1974, and in revised form May 15, 1975.

" Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois 60439. This
alathor’s work was performed under the auspices of the U.S. Energy Research and Development
Administration.

$ Institute of Mathematics, University of Amsterdam, Amsterdam, the Netherlands.

458



DECOMPOSITIONS OF A HILBERT SPACE 459

is that we want to make an unlimited use of [4] for reference. In 3 a simple
half-space problem of transport theory is discussed by way of example. The results
of 2 as applied in this example furnish a new approach to the half-space
problems. This approach shows that questions of existence and uniqueness of a
solution to that type of problem are not directly linked to the possibility of a
Wiener-Hopf factorization of the dispersion function. On the other hand, the
example indicates clearly why such a factorization is needed if one wants to
determine a solution explicitly. The approach in 3 can be seen as complementary
to the theory developed in [2], in particular, the part of that publication concerned
with half-space problems.

Notation. In this paper the identity operator is indicated by E. For A a linear
operator p(A) will denote its resolvent set and AIG its restriction to a subspace G.

2. Three theorems. Let H be a Hilbert space with closed linear subspaces
H/, H_, Hp, H,, such that we have the direct sum decompositions

H H+(H_ Hp(H,.

We do not assume any orthogonality properties of these subspaces. Let P+/- denote
the linear projection operators in H that project onto H+ along H,, respectively.
Similarly, Pp and P,, are the linear projections onto Hp, H,, along H,,, Hp,
respectively.

We define a bounded linear operator V in H by

(2.1) V= P+Pp +P_P.,.

From the definition it will be clear that V restricted to Hp, H,, coincides with P+,
P_, respectively. In other words,

vlz-z Wln =P-IH ,
With this remark the first theorem becomes almost trivial.

THEOREM 1. If the operator V is an automorphism in H, then V-a= P+ (2,
where P V-aP+ is a bounded projection onto Hp along H_ and 0 V-aP- is a
bounded projection onto H,, along H+. The restrictions P[H+ and P+IHp are inverse
to each other. The same is true for the restrictions OIH- and P_]H,,.

Proof. From the definition of the operator V it is clear that VHp c H/.
Similarly, VH,, H_. Since, by our hypothesis, V is a bijection fromHonto itself,
it follows that VHp H+. Thus VIHp is a bijection from Hp onto H/.

We put P V- P/ and O V-aP-. Then V-a= P+ (2. The restrictions of
V-a and P to the subspace H/ coincide. The same is true for the restrictions of V
and P/ to the subspace Hp. Therefore, el/-/+ e+l/-/, are inverse to each other.
Moreover, we have the relations

PP+ P and P+P P+(PP)= (P+Pp)P VP P+.
Finally, we show that P is a projection by using a familiar argument" p2=
(PP+)P P(P+P) PP+ P. The assertions with respect to O follow in a similar
way.
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In addition to the definitions and assumptions preceding Theorem 1, we
assume that in H two bounded linear operators B1 and B2 exist such that H/, H_
are invariant subspaces under B1, and Hp, H,, are invariant under B2.

First we collect some simple properties of the projections P/, P_, P, O, Pp
and Pm:
(2.2) P+P=P+, PP+=P, P_O=P_, OP_=O,

(2.3) PpP=P, PpO=O, P,,P=O, PmO-O,

(2.4) PBzP B2P, OB20 BzO,

(2.5) P+BaP P+B,, P_B,O P_B,.

The first two relations of (2.2) were already obtained in proving Theorem 1. The
latter pair is of the same type as the first pair; they follow by replacing P/, P by
P_, Q, respectively. The relations in (2.3) are obvious since P and O have ranges
Hp and H,,, respectively. The relations in (2.4) follow from the assumption that Hp
and H,, are invariant under B2. The projections P/ and P_ commute with B, as a
consequence of the assumption that B, is reduced by the complementary pair
{H/, H_}. The relations (2.5) then follow from (2.2).

THEOREM 2. Let the operator Vdefined by (2.1) be an automorphism in Hand
let B,, B2 be two bounded linear operators in H which are reduced by the
complementary pairs of subspaces {H+, H_} and {Hp, H,,}, respectively. Then the
operator VB2V-1 is reduced by {H+, H_}. For each A p(B,), A # O, the operator
(A)=(VBzV-1-AE)(B,-AE)-’ can be factorized as a product (E+R+(A))
(E +R_(A)), where R+(A) are bounded linear operators which vanish on H.

Furthermore,

(2.6)
E +R+(A) (P+B:P- AE)(P+B1- AE)-1,
E + R_(A) (P_B2O AE)(P_B,- hE)-’.

IfB2-B1 is a nuclear operator, then R+(A) are nuclear.
Proof. Let us investigate the operator VB2 V-’. According to Theorem 1 and

(2.4),

B2 V-I B2P+B20 PBeP+ (B2(.
Hence by (2.2) and (2.3),

VBeV-I (P+Pp + P_P,,)(PB.P + OB20)

P+PB2P+P-QB2Q P+B2P+P-B2Q.

Substituting Bz B1 q-D and using (2.5), we obtain

(2.7) VB2 V-’ B1 +P+DP+P_DO.
The penultimate formula also furnishes a decomposition of VB2 V-’ as the sum of
two operators leaving invariant H/, H_ and annihilating H_,/-//, respectively. In
other words, VB2 V- is reduced by the pair {H/, H_}. Clearly, B, admits a similar
decomposition, viz., B, P+B, + P-B1. These two facts enable us to factorize
().
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Let A p(B1), A 0. Since P+P_ P_P+ 0 and P+, P_ commute with B1, we
have

E-A-aB1 (E-A-’P+B1)(E-A-1p_B1),
p+(E-A-ap_B)- (E-A-p_B)-ap+ P+.

The analogous relations obtained by interchanging P+, P_ are also true. Using
(2.2) we get

P(E A -1P_B1)-a P, O(E A -’P+B1)- O.
So for f(A) we find, taking into account (2.7),

E -a(P+DP +P_DO)(E -aBa)-E--ap+DP(E-A-p+B)-a-A-ap_DQ(E-A-p_B)-(E A-’P+DP(E A-P+B,)-’)(E A-’P_DO(E A-aP_B)-’).
Thus our result is that for A p(B), A # 0, f(A) can be written as

() E +R(A) (E + R+(A))(E + R_(A)),

where R (A), R+(A) and R_(A) are given by

R (A) (P+DP+ P_DO)(B, AE)-a,
(2.8) R+(A) P+DP(P+B1- AE)-1, R_(A P_DO(P_B1 AE)-1.
Also, the relations (2.6) hold.

The operators R+/-(A) determined by (2.8) satisfy

R+(A) R+(A)P+ R (A)P+, R_(A) R_(A)P_ R (A)P_,

since P= PP+, O OP- and P+/- commute with (P+/-BI-AE)-1. Consequently
R+/-(A) vanish on H, so thatE +R:(A) coincide with O(A) on the subspaces H.

For D B2-B a nuclear operator, the last assertion of the theorem follows
from (2.8).

In Theorem 3 we assume that B2-B1 is nuclear. We also have to be more
specific about the Hilbert space H and the operator V: /-/is assumed to be
separable and E- V is required to be a Hilbert-Schmidt operator.

First we bring some definitions and results about determinants from [4],
which we need in Theorem 3. As is known, the determinant det (E- K) and the
(spectral) trace tr K can be defined for any nuclear operator in a separable Hilbert
space by

u(g)

(2.9) det (E K) [I (1 A(K))
/=1

and

u(K)
trK= Y. I(K),

]--1
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where Aj(K) are the nonzero eigenvalues of K and v(K) is the sum of the
(algebraic) multiplicities of the Aj(K). For v(K) oo, the convergence of the sum
and the product are a direct consequence of K being nuclear. In fact, we have the
inequality

(K) r(K)
(2.10) E I(K)I--< Y, si(K)

j=l j=l

with si(K)= A((K*K)/2); r(K) is the rank of K. The right-hand member of the
inequality converges by definition if K is a nuclear operator.

If K is finite-dimensional (i.e., if r(K)< oo), then det (E- K) can be defined
equivalently as the determinant of the restriction of E-K to any finite-
dimensional subspace which contains the range of the operator K.

For two bounded linear operators A, A2 that differ by a nuclear operator,
the W-A determinant (Weinstein-Aronszajn or perturbation determinant) is
defined by

det {(A2-AE)(A1-AE)-I} det {E +(A2-A1)(AI-E)-I},, p(A).

In particular, if Oep(A), then A2A-1= E +(A2-AI)A- and the determinant
det {A2A -1} exists.

In this section we use the following properties of the determinant and the
trace,

(2.11) det {B(E-K)B-1}=det (E-K),
(2.12) det {(E K)(E

tr (K + K1) tr K+ tr K,

where B is a bounded automorphism and K, K1 are nuclear operators in H. The
relations (2.11) and (2.12) are the results 6 and 7 in [4, Chap. IV, 1]. The last
relation is a consequence of the fact that the spectral trace is equal to the matrix
trace i-4, Chap. III, Thm. 8.4].

The perturbation determinant of two bounded linear operators A1, A2
differing by a nuclear operator K is a holomorphic function on the resolvent set
p(A) [4, Chap. IV, 1 (result 8) and 3].

For K a Hilbert-Schmidt operator, a regularized determinant dt (E-K)
can be introduced by

v(K)

(2.13) dt (E-K)= 1-I [(1-hi(K)) exp Aj(K)].
j=l

If v(K)= oo, then the product converges since

v(K) r(K)

Z IA(K)I-< E (s(K))
j=l j=l

and the right-hand member converges by definition.
For A 1, A2 bounded linear operators, 0 p(A 1) and A2-A1 a Hilbert-
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Schmidt operator, we have

dt (A2A-I)= dt (E+(A2-A-I).
Finally, we need the property [4, IV. 3]: If K1, K2 are Hilbert-Schmidt, K2-Ka is
nuclear and 0 p(E- Ka), then

(2.14) det {(E-K2)(E-K)-} =dt (E-K:)
dt (E aI"l)

exp [tr (Ka- K2)].

THEOREM 3. Let B1, BE be bounded linear operators in the separable Hilbert
space H such that B and B2 differ by a nuclear operator and are reduced by the
complementary pairs of closed subspaces {H+, H_} and {Hp, Hm}, respectively. Let
the operator V, defined by (2.1) be an automorphism in H such that E-V is a
Hilbert-Schmidt operator. Then we have the following relations between W-A
determinants"

det {(VB2 V-I-AE)(BI-AE)-I} det {(B2-AE)(B1-AE)-1}
(2.15)

det {(P+BzP- AE)(P+Ba- AE)-a}det {(P-BzQ AE)
(P-B1- AE)-1}

for A p(B1), # O.

If 0 p(B a), then the point 0 is a removable singularity of each of the two

factors in the right-hand side of (2.15).
Pro& Since B2 BI +D, we can write relation (2.7) in the form

VB1 V-a-B1 VDV-a +P+DP+P_DQ.
We denote the right-hand member, which is a nuclear operator, byK and deduce

V(B1 AE)W (B AE) K.

After a multiplication by V-1 from the left and by (B1- AE)-a V from the right,
the latter relation yields

(2.16) (B1-AE)V-I(B1-AE)-IV-E V-aK(B1-AE)-Iv, A Gp(B1).

The right-hand member of this formula is again a nuclear operator. So we may
write (using (2.11) in the first step)

det {(VB2V-a- AE)(B1 AE)-1} det {(B AE) V-I(BI AE)-a V}
(2.17)

=det {(BE-AE)(Ba-AE)-} det {(B1 AE) V-I(B1- AE)-a V}.
In order to prove the first equality in (2.15), we have to show that the second
determinant in the last member of (2.17) equals 1.

The operator V--1 can be written as

V-1 (P+P+P_Q) +P_P+P+Q E +H,

where H=P_P+P+Q. Substituting this for V-1 in the relation (B1-
AE) V-a(B1-AE)-1- V-a= V-aK(B1-AE)-1 (cf. (2.16)), we obtain

(2.18) (B-AE)H(Ba-AE)-l-H= V-1K(B1-AE)-1, , 6p(B1).
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The assumption that E- V is Hilbert-Schmidt implies that H W--I(E V) also
is Hilbert-Schmidt. This means that we can apply formula (2.14) for K1 -H,
K2 -(B1-AE)H(B1-AE)-1. We obtain

det {(B1-AE) V-I(B1-AE)-1V}
dt {(B AE) V-(B1-AE)-}

dt W-1 exp [tr {-H+(B1-AE)H(B1-AE)-}].

From the definition of a regularized determinant as given in (2.13), it will be clear
that

dEt {(B1- AE) V-I(B1- AE)-1} dEt V-1.
It remains to show that the exponential function in (2.19) equals 1. We apply the
projection P_ to both members of (2.18), bearing in mind that the operators B1
and P_ commute and that P_H P_P since P_P+ 0. We obtain

(B1- AE)P_P(B1- AE)-I P_P P_ V-1K(B1- AE)-1,
where the right-hand member is nuclear. The square power of the left-hand
member is 0 since PP_ 0. That means that the left-hand member is nilpotent and
hence a nuclear Volterra operator. The trace of such an operator equals 0, i.e.,

tr {(B1- AE)P_P(B1- AE)--P-P} O.

Similarly, we have

tr {(BI AE)P+O(B AE)- P+O} O.

Addition of the last two formulas yields

tr {(B1- AE)H(B1- AE)-I H} O,

which completes the proof of the first equality in (2.15). The second equality in
(2.15) is a direct consequence of Theorem 2 and (2.12).

From the proof of Theorem 2, we know that

(E+R+(A))IH_=EIH_, (E + R+(A))]H+ I-I(A)IH+,

for A p(B0, A # 0. Similar relati6ns hold for E + R_(A). If one uses the definition
of the determinant as given in (2.9), it will be clear that

det (E + R+(A)) det {fI(A)IH+}, Ap(B1), AO.

If O p(B), then the right-hand member in this relation is holomorphic in a
neighborhood of A =0. Hence det (E+R+(A)) can be extended to A =0 by
analytic continuation, which proves the last assertion of the theorem.

3. Application. In this section we apply the results of 2 to a half-space
problem from neutron transport theory. The problem was studied a.o. by Case
and Zweifel [1]. A functional analytic approach was given by the first author of
this paper [2] and by Larsen and Habetler [3]. The problem requires the solution
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of the equation

0 q(x,/x’) d/z’,(3.1)

under the conditions

(3.2)

and

g)

0<x<oo, l =< /x =< + l,

lim (x, it) 0, 1 -<_ It --<- + 1.

The parameter c in (3.1) is a constant strictly between 0 and 1. The condition at
x 0 has the peculiarity that the given function f/ is defined only for values of
/z>0.

Equation (3.1) and its conditions can be written in a more concise form as
follows. Consider the Hilbert space H= L:(I) (I {- 1 _<-/x <= + 1}) with the inner
product

+1

(f g)= I f(t-t g(Iz dl.

Denote by e the function on I that is identically equal to 1. Next, define two
bounded linear operators T- T, and A in H by putting

Tf (tt tff(),

c
f(p,’) dp,’, fell, tx el.(3.3) (Afl(txl=f()--

In other words, T is the operator of multiplication by the independent variable ,
and A is obtained from the identity operator E in H by adding a certain
one-dimensional perturbation. The relation (3.3) may be written as

Af f-(f, e)e.

It is easily seen that A can be inverted and that

C
(3.4) A-Ig=g+’y(g,e)e, gH, Y 2(1-c)"
We use the following notation:

I+=[0,1], I_=[-1,0], H+=L;(I+), H_=L(I_).

H+ and H_ can be considered as closed subspaces of H. They are invariant under
the operator T. We denote the projections onto H alongH by P..

Applying A- and interpreting as a function of x with values in L(I), we
can write (3.1) as a first order linear differential equation"

(3.5) A-’ Tx(X) O(x).
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The conditions at x 0 and for x --> oo can be written as

(3.6) P+q(0) =f+,

and

f+ H+,

(3.6’) lim O(x) 0,

where the limit has to be taken in H.
We indicate some of the basic properties of the operator A-aT. Full proofs

are given in [2]. A-aT is bounded and is obtained from T by adding a certain
perturbation. In fact,

(3.7) A-aT T+BoT,

where Bo is the one-dimensional operator given by

(3.8) Bof y(f, e)e, f H.

The W-A determinant of the pair of operators T, A-1T is denoted by A(A). Since
BoT is one-dimensional, this determinant is obtained as the eigenvalue of the
operator (A -1T-aE)(T-aE)-1, which corresponds to the eigenvector e. Thus

(3.9) A(a)=det{(A-1T-aE)(r-aE)-l} 1+7
/z d/x, aI.

The function A(A) is holomorphic outside the segment L It has two simple zeros
+/- Uo, where u0 > 0. Moreover, the spectrum N of the operator A-aT just consists
of I and the two points +/- u0, which are eigenvalues of multiplicity 1.

The operator A-aT is self-adjoint if H is endowed with the inner product
(equivalent to the originally given inner product (., .))

(f, g)A --(Af, g), f, g H.

Another property is that the function e is a cyclic element for the operator A-a T.
This can be deduced from the formulas (3.7) and (3.8). It follows then from the
spectral theorem that there exists a unitary isomorphism F from the space H
endowed with the inner product (., ")A onto the Hilbert space L2(N, or), o- a finite
positive Borel measure on N, such that F diagonalizes the operator A-a T. By this
we mean that

A T F- TNF,

where TN is the operator of multiplication by the independent variable v N. The
transformation F is so chosen that Fe g, where g is the function on N that is
identically equal to 1. The inner product in L2(N, o-) is defined by

The isomorphism F and the measure r can be determined explicitly. For
functions f, [ that (with the exception of possibly a finite jump at the point O) are
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H61der continuous on/, N, respectively, F and F-1 are given by

’ f(Ix)-f()
-3’ ./z d/z +f(v), 1 _-< v _-< + 1,

(Ff)(v)
1,1,

-3’ tz dtz, v + Vo,
lld,--V

/()-/(,)(3.10) (F-1/)(,) r d,() +/(,), ,
The measure r is absolutely continuous on 1 _-< v _-< + 1; one has

dv
d,() A+A_(),

_-< _-< + 1, ,{+ 0} (o),

where A denote the boundary values of A, i.e., A+(v) lim,,o A(v+ir/), and
where 3,Vop(Vo) is the residue of 1/A(A) at the point Vo.

Next, we consider half-ranges. We decompose N into two parts by putting

N+ [0, 1] O {o}, N_=[- , 0]0{- 0}.

The spaces L2(N+, r) may be looked upon as subspaces of L(N, o-). We denote
the projections onto L2(N+, r) along L2(N:, o’) by/3+ and the inverse images
F-1L2(N+, o’) by Hp, H,,. It is clear that Hp, H,, are closed subspaces of H which
are orthogonal relative to the inner product (., ")A and that we have the direct sum
decomposition

H= H(R)H.
The two summands in the last decomposition are invariant under A-1T and

the restrictions of A-1Tto these two subspaces have spectra N+, N_, respectively.
We thus have an example of a dissection of (a connected part of) the spectrum N,
with a corresponding decomposition of the space H. The projection operators
associated with this decomposition are denoted by Pp and Pro, SO

(3.11) P F-lp+F, P F-I_F.

The transformation F makes it possible to study (3.5) in a simpler form and to
obtain explicit solutions. The equation is transformed by F into

(3.12) T4(x) -g,(x), 8(x) e La(N, ,),

where tl,(x)=F,(x) for all 0<x <oo. In [2], it has been shown that ,(0)e
L2(N+, o-) is a necessary and sufficient condition for (3.12) to have a solution
satisfying lim,_,oo (x) 0. Moreover, for a given (0), the solution is unique and
(x)eL2(N+,r) for all 0_-<x <oo. These facts imply the truth of the following
assertion" equation (3.5) has a unique solution ,(x) such that (3.6) and (3.6’) hold
if and only iff+ is the H+-component of a unique element h of Hp. The element h
coincides with the initial value ,(0).

This result induces us to consider the following questions about the restric-
tion of P+ to Hp" (i) is P+IHp an injective map into H+; (ii) what is the range of
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P+IHp ? It will be clear that, once the answers to these questions have been found,
the analogous questions for P_[H,, can be answered by a symmetry argument.
(Such symmetry arguments will also be used later on. They can be made precise by
the use of a transformation S defined by (Sf)(lx)= f(-tz), tz L The transforma-
tion S is unitary with respect to (., .) as well as (., ")A; P/, H/ and Hp are
transformed by S into P_, H_ and Hm, respectively. Moreover, STS T and
SA-1TS -A-1T.)

It is not difficult to show that P+]Hp is injective. The proof will be given as a
part of the proof of the following lemma.

LFMMA 1. The operator V= P/Pp + P_P,, is an automorphism in H. 7he
operator E- V is Hilbert-Schmidt.

Proof. Let g#0 be an arbitrary element of Hp. Then (A-1Tg, g)a--
$1,,+ ,’l(Fg)(’)l2 do’(u)>0. Hence, (Tg, g)= ,/z Ig(/x)l2 d/z >0 andso P+g # O. This
means that P+IHp and, by symmetry, P_IH,,, are injective. Next, take an arbitrary
f # 0 of H. f can be decomposed as f fp +f,,, with fp Hp, f,,, H,,, and at least
one of the components has to be different from 0. Then at least one of the
summands in VF P+fp + P_f,,, hence also Vf itself, has to differ from 0. So V is
injective.

In order to show that V is surjective, we write V- E P_Pp P+P,,. Since V
is injective, it suffices to prove that P_Pp +P+Pm is compact. We consider
P_Pp P_F-I+F. For H61der continuous functions defined on N+, we obtain
from (3.10)

(3.13) (P-F-I)(I) 3’ I1, (u)
u dr(u), /z I_.

The kernel of the integral operator in the right-hand member is bounded and
hence square integrable on I_ x N/ with respect to the product measure d/x x
do-(u). Therefore the integral operator is a Hilbert-Schmidt map of L2(N/, r)
into H_. Since the H61der continuous functions on N/ form a dense subset of
L2(N/, r) and since P_F-1 is continuous on L2(N/, r), it follows that relation
(3.13) holds for all )eL2(N+, r). Then P_Pp and, by symmetry, P+P,, are
Hilbert-Schmidt. The same is true for their sum P_Pp +P/Pm E- V.

Taking B1 T, B2 A-1T and using the results of Lemma 1, we are now in
the position to apply the theorems in 2. From Theorem 1 we know that the
projection P onto Hp along H_ exists. Thus we arrive at the following result
(obtained in [2] by explicit calculations).

THEOREM 4. The boundary value problem (3.5)-(3.6’) can be solved uniquely
for each f/ H/.

More precisely, the conditions (3.6) and (3.6’) are equivalent with (0) Pf/.
With the latter condition at x 0, the original boundary value problem becomes a
regular initial value problem in the space Hp.

The function A(A) was defined as the W-A determinant of the pair of
operators T, A-1T. Applying Theorems 2 and 3 of 2, we obtain

THEOREM 5. We have

(3.14) A(A) det (E + R+(A)) det (E + R_(A)), A I,
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where

Also,

E +R+(A) (P+A-1TP-AE)(P+T-AE)-E +P+BoTP(P+T-AE)-,
E +R_(A) (P_A-TO AE)(P_T-AE)-1 E +P-BoTO(P_T- AE)-k

(E +R+(A ))(E + R_(A )) VA-TV--1- AE)(T- /IE)-1.
The determinants in the right-hand member of (3.14) are W-A determinants

of the pairs of operators P/T, P/A -a TP and P_T, P_A -a TO, respectively. The
spectra of P/T and P_T are given by the sets [0, 1] and [-1, 0], respectively.
Hence, the functions Y+(A) det (E + R+(A)), Y_(A) det (E + R_(A)) are
holomorphic outside the intervals [0, 1], [-1, 0], respectively. For reasons of
symmetry, we have Y_(A)= Y/(-A), so that

A(A)= Y+(A) Y+(-A), A_I.

We remark that the operator R+(A) is one-dimensional with range span (P+e), the
linear span of P+e. Adopting the notation e+ P+e (i.e., e+ is the characteristic
function of the interval I+), we see that det (E + R+(A)) equals the determinant of
the restriction of E +R+(A) to the one-dimensional space span (e+). In other
words, Y+(A) is the eigenvalue of the operator E +R+() which corresponds to
the eigenvector e/"

(3.16) (E+R+(A))e+= Y+(A)e+, AI+.
Moreover, Y+() is the only eigenvalue of E +R+(h) which may be different from
1.

The actual factorization of the dispersion function A(h) into a product of the
form

(3.17) A(A X(,)X(- a

prays a decisive role in the explicit determination of the projection operator P (see
the end of this section). In order to guarantee the uniqueness of the latter
factorization, certain conditions have to be imposed on X(,). In [2, 7.3] such
conditions were formulated in the following way: X(,) has to be a function
defined for A (0, 1] with the properties (a) X(A) is holomorphic in the open
half-space Re A < 0, (b) X(A) is continuous and without zeros in the closed
half-space Re A _-< 0, (c) lima_o X(, 1. We remark that the condition X(0) # 0
contained in (b) is superfluous since it is a consequence of limx_,0A(A)=
1/(1 c) # 0 (cf. (3.9)). In Lemma 2 we give three properties of the function Y+(A)
which imply that Y/(A), extended with its limit value at , =0, satisfies the
conditions (a), (b) and (c). Thus we conclude that

X(h) det (E + R+(h)),

so that the actual factorization of the dispersion function A(A) may be looked
upon as a means to calculate the W-A determinant of the pair P/ T, P/A -1TP.
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LEMMA 2. The function Y+(A) det (E + R+(A)) has the properties:
(i) Y+(A) is holomorphic outside [0, 1] and has A Uo as its only zero,
(ii) limx_,o Y+(A) 1,

(iii) Y+(A) has a limit for A 0, 1/27r -< arg A _--< 23-7r.
Proof. The operator A-TIH has spectrum N/ [0, 1] Cl{Uo}. Since P/ is an

isomorphism from Hp onto H/ with P as its partial inverse, it follows that
P/A-aTp also has N, as its spectrum, with Uo an eigenvalue. From the first
equality in (3.15) we deduce that for hI the operator E+R/(A) has an
eigenvalue 0 if and only if A u0. According to the remark following (3.16) this
means that Y/(A) has u0 as its only zero.

From (3.15) and (3.16) it will be clear that the map h Y+(A) is regular at
infinity with limx_,oo Y/(A) 1.

Using the projection O along H/ onto H,,, we can decompose the vector e as
e Oe +p with Oe H,,, p H/. Since Hp is orthogonal to H,, relative to the
inner product (., ")a, we have (g, e)a --(g, P)A for any g Hp. Then

(Tg, e)= (A-1Tg, e)a (A-1Tg, P)A (Tg, p), g cUp,
and

P+A --1 TPf P+Tf+P+BoTPf P+TF+ y TP[, e e+

P+Tf+ 3,(TPf, p)e+ P+Tf+ ),(P+ Tf, p)e+

since P+T= TP+, P+P=P+. Using (3.15) and (3.16), we obtain the following
expression for Y+()t)"

f01 d/x, where p (E O)e 6 H+ L2(i+)./xp(/z)(3.18) Y+(A) 1 /y

For 1/2-<argA-< and I+, we have Ill-AI. Then it follows from
Lebesgue’s theorem on the dominated convergence of integrable functions that
the right-hand member of (3.18)converges to 1 + 3/ pox) d/x for A - 0, arg A in
the indicated interval.

Finally, we derive two methods to determine the projection P explicitly. For a
third method we refer to [3].

In order to derive the first method, take an arbitrary f e H. Then Pf Hp and
FPfeL2(N+, r). Instead of Pf, we determine g FPf. Since P/ P/P, we can
write

(3.19) P+f= P+F-ag, g LZ(N+, o-).

If g happens to be H61der continuous on N+, then we may use (3.10) to write (3.19)
in the explicit form

(3.20) f(/z) 1+.

Thus we have derived a singular integral equation for g, which can be solved for an
arbitrary function f that is H61der continuous on I+. In fact, the half-range
completeness theorem of Case deals with a singular integral equation which is
equivalent to (3.20). In the proof of that theorem, a solution of the equation is
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constructed with the aid of (3.17). This solution is directly related to the solution g
of (3.20) (cf. [1, 4.8], [2, 7.4]).

The second method is as follows. Using (3.15) we derive from (3.16)

(P+A -1TP- AE)-le+ x(x)
(P+T-AE)-le+, A,’N+,

where we have replaced Y+(A) by X(A). For some polynomial we take the
Dunford-Taylor integral representation of (P/A-ITP) in order to obtain

(P+A-TP)e+=- c(A)(AE-P+A-1Tp)-e+ dA

d1
(A)(AE P+ T)- e+x-- )’27ri

where F is a simple closed contour in the complex A-plane enclosing the spectrum
N/ of P/A-a TP. The integrals exist as limits of Riemann sums in H/. Since e/ is a
continuous function on I/, and P/T induces a bounded linear operator in the
Banach space C(I/) of continuous functions with the supremum norm, the
integral in the right-hand member exists also in C(I/). This means that the
left-hand member represents a continuous function 4, say, and that we may take
values at an arbitrary point/z I/. Thus we obtain

(3.21) &(/z) - A -ix X(A)’ /z eI+.

The integrand in (3.21) is holomorphic outside F with the exception of a pole of
order n- 1 at , o if n is the degree of . An expansion of the integrand in

powers of 1/h yields as a result that b is a polynomial in/z of the same degree n as

4- By analytic continuation, the formula holds for all Ix inside F. The formula can
be inverted so as to yield

1 fr b (A)X(A) dA v inside F’,(3.22) ,(u)= A-u

where F’ is any simple closed contour enclosing N/. (Choose F’ inside F and
substitute 0(A) from (3.21) in the right-hand member of (3.22)).

Formula (3.22) is introduced in [2, 7.3] without prior justification in order to

prove the existence of the projection P by actual construction. Here we indicate

briefly how the formulas (3.21) and (3.22) lead to an expression for P. For the
details we refer to the cited thesis [2].

The latter two formulas are taken for tz e I/, v e N/ and the contours are

contracted to loops around the sets N/, I/, respectively. (Remark that A v0 is a
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regular point of the integrand in (3.22).) As a result, we obtain with the aid of
(3.17) considering , b as half-range functions (see [2])

(3.23) 4(/z)= 1,Iv {(,)X(-u)-(Iz)X(-I)}ud(u)+(/z)X(-t),

-3’ + 0=<u-<+l
-) x(;,)j- x(- )’

(3.24) 4(u)
["
Jl t, ,o.’ x(-) -,

Comparing (3.23) with (3.20)^, we see that if we take f to be in the latter
equation, then g(u)= X(-u)6(u). In other words, we have the result that for a
given polynomial on I+,

(Fe6)() X(- )(), +,
where (u) is given by (3.24).

By continuous extension to Banach spaces of H61der continuous functions
the formulas (3.23), (3.24) can be shown to hold also for , & that are H61der
continuous on I+, N+, respectively.
e results can be extended even further to e H+, e LZ(N+, ) so as to

yield ultimately

Pf F-x[]F[p, f H,

where [p], [] are bounded linear multiplication operators in H, LZ(N, ),
respectively, which are defined by

([(g)/x(-g), I+,
([Pff)(g)

0, eI_,

and

g(t,)X(- u), t, N+,
([4]g)(u)

O, N_,

for f e H, g e L2(N, tr).
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NONLINEAR NETWORKS WITH CURRENT SOURCES
AND TELLEGEN’S THEOREM*

VACLAV DOLEZALf

Abstract. In this paper conditions are given guaranteeing the existence and uniqueness of a
current distribution in a Hilbert or algebraic network driven by both EMF and current sources.
Moreover, a generalization and converse of Tellegen’s theorem for these networks is discussed.

Introduction. The purpose of the present paper is two-fold; first, to discuss
solvability of general nonlinear networks driven by both EMF and independent
current sources, second, to generalize Tellegen’s theorem and give a converse.

To be more specific about our first goal, we will discuss Hilbert networks and
thus extend the theory presented in papers [1]-[3]. The present solvability
conditions are similar to those in [3], but more complicated in the case of a
nonlinear network.

In addition to this, we will consider algebraic networks, i.e., finite nonlinear
networks, whose variables (voltages, currents) belong to some linear space, which
does not have any topological structure. Such networks are encountered if, for
example, the variables are continuous or locally integrable functions on [0, oo).
The corresponding results are analogous to those for Hilbert networks.

As for the second goal, we will deal with both Hilbert and algebraic networks
and derive the respective extension of Tellegen’s theorem.

It is a fact that both Hilbert and algebraic networks are special cases of an
abstract network. Consequently, we will study the abstract network first.

For purposes apparent later, we will introduce this concept in a slightly more
general way than was done in [3] and [1]. Also, the "quasi-inverse" will have a
broader meaning here.

1. Abstract networks. First, let us define several concepts we will need.
Let X, Y be nonempty sets and let (Y) denote the collection of all

nonempty subsets of Y; a mappingA: X (Y) will be called a set mapping from
Xto Y.

If D X, D , we denote (AD) UoAx. Moreover, if A is such that
Ax is a singleton for each x X, then A will be called an operator.

Let A X*(Y) and let D X, D ; the set mapping A-: (AD)-(D), defined by A-y {x:x D, y Ax}, will be called the quasi-inverse of
A onD.

Clearly, if bothA andA- are operators, then A- coincides with the ordinary
inverse A-.

Next, let A X- (Y), D X, D ; A will be called simple on D, if for
x x, xz D, x # xz => (Axa) f"I (Ax) .

It is easy to see that"

A is simple onD:>A-: (AD) (D) is an operator.
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Finally, given A"X(Y) and an operator B" YZ, we define the set
mapping BA:X- (Z) by (BA)x B(Ax)c Z for each x X; the definition of
AC is analogous.

Now, let .’ be a nontrivial linear space over the field of complex or real
numbers, and let M, N be linear subspaces of such that MN; if D c,
D # and Z: D (), then the ordered triplet [Z, N, M] will be called an
abstract network over .

DEFINn’ION 1.1. Let W [Z, N, M] be an abstract network over &o, and let
(e, k) 6 &o ; an element will be called a solution of corresponding to the
pair (e, k), if

KI: there exists v Zi such that v e M,

Kz: e(k +N)fqD.

Observe that if is a solution of2 corresponding to (e, k), then is also a
solution corresponding to (e, k + k’) for any k’ N.

Remark. Referring to [3] and [1], let us point out the following important
fact: If W= (Z, a) is an abstract network over as defined in [3], we let W
correspond to [Z, Na, N], where Na ={x: x , ax 0}. Then, by the above
conditions K1, K2 and the definition in [3], an element is a solution of W
corresponding to an e , exactly if is a solution of [Z, Na, N] corresponding to
the pair (e, 0).

For an abstract network W we shall define the following sets"
If/} c D,/} , and if k , let

(1.1) /} (k +N) fq/;
if/ , let

(1.2) O(/k) M+ (Z/k).
Let P be the projection from onto N along M; then it is easy to see that

(1.3) 0(1 P-I[(pz)I].
Furthermore, let

(1.4) K(/) {k" k e,D},
and

(1.5) R(/) {(x, y): y eK(/), x

Because
Now the following is true"
THEOREM 1.1. Let W [Z, N, 214] be an abstract network over L, let 1 D,

1 and let (e, k)e .o’x Sf; then possesses a solution e corresponding to
(e, k), iff (e, k)eR(D). In this case, the set I of all solutions in D corresponding to
(e, k) is given by

(1.6) I (PZ)-Pe,

where (PZ)-" [(PZ)/k] -> (/k) is the quasi-inverse of the set mappingPZ: ff) -->

(R)([(PZ)D]).
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Moreover, f possesses a unique solution in l.for any (e, k)R(), iff, for
every k* K(I), the set mapping PZ is simple on Dk..

The proof of this theorem follows almost the same pattern as the proofs of
Theorems 1.1 and 1.2 in [3]; therefore, we omit the details. Instead, let us make a
few comments.

(a) To motivate Theorem 1.1, we shall see in 2 and 3 that this theorem
constitutes the mathematical background for proving an existence and uniqueness
result on Hilbert and algebraic networks.

(b) The main reason.why we discuss the existence and uniqueness of a
solution in some subset D of D, is that we will consider this situation in the
subsequen.t Theorem 1.2.

(c). In the above conditions we allowed k in the pair (e, k) to be any element.
of K(D), and not necessarily an element of some specified subset K’ c K(D) only.
This, howeve.r, is no loss of generality since the latter,more general situation is
obtained if D is suitably restricted. Indeed, if K’ K(D), K’ # (, we can put

(1.7) / 1,3 [(x +N) 71/];
xK’

then it is easy to see that K(/)- K’.
Also, observe this fact: Assume thatN/) #. Then0 K(/)), and putting

K’={0}, we get _by (1.7), /5=N/; thus, by (1.5), R(/)=
{(x,y)’yK’,xQ(ly)}={(x,O)’xQ()o)}. Since /o=N/=N/, we
have by (1.2), R(/)={(x, O)’xM+(Z(N))}. Now taking into account
Definition 1.1 and the above remark, we see readily that the present Theorem 1.1
yields Theorems 1,1 and 1.2 in [3].

It is worth noting that the uniqueness condition simplifies if the abstract
network is linear; indeed, we have the following result.

THEOREM 1.2. Let 3" [Z, N, 34] be an abstract network over .., let D be a
linearsubspace of and letZ D be a linear operator..Moreover, letD’ Dbe a
linear subsp.ace, let d N f’) D be a fixed element and letD d +D’. Then [or each
(e, k)R(D) there exists in 1 a unique solution ofcorresponding to (e, k), iffthe
operator PZ is 1-to-1 on Nf) D’. In this case

(1.8) i* + (PZ)aP(e -Zi*),

where (PZ). is the inverse ofPZ" N(3D’ (PZ)(N0D’), and i* is any chosen
element in Dk (k +N) f3 (d +D’).

The proof is an elementary consequence of Theorem 1.1 and is omitted. The
assumption thatD is a linear fiat in. is motivated by the rather common case of a
network Ac such that is some function space, 3" contains differentiators and
some initial condition is prescribed for the current distribution in

2. Hilbert networks. Let us now apply the above results to Hilbert networks.
In order to facilitate reading the paper, we will first review all previously
introduced concepts which are needed in the sequel.

Let G be a locally finite oriented graph [1] which has the set of branches
{ba, b2,’" "} with cardinal c2-<N0, the set of vertices {va,/)2,"" "} with cardinal
ca-<-N0, and let d be the incidence matrix of G (having type c2xc0. Let
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a [aik] K" d, where K diag (kl, k2, k3,’" ")of type cl c is chosen so that
the number kj # 0 for all/"s and ik la 12 <.

Furthermore, let Hbe a fixed separable Hilbert space; if c --<N0, we put

and

H {x" x [xk] is a c-vector, xk H, Y. IIx ll= <)
k

(x, yL E
k

for all x, y eHc. Then H is again a separable Hilbert space.
Let the operator d" Hc-H1 be defined by dx a.x. Then d is a linear

bounded operator on H, its null-space N is closed in H and does not depend
on the choice of the matrix K 1].

Next, letXbe a c. x Co matrix whose columns constitute an orthonormal basis
in the solution space of the equation a. != , Rc2 (thus, entries of X are
numbers), and let : HoH2 be defined by .z =X. z. As shown in [1], X is a
norm-preserving isomorphism between Hc and N, c H.

Now, let D cH, D #, and let ,: D (Hc) be a set mapping; then the
ordered pair (, G) will be called a Hilbert network [3].

Finally, denote

(2.1) dTHC={dT x: x e H};

clearly, dTHC is a linear subspace of the space consisting of all c-vectors whose
elements are in H.

DEFINITION 2.1. Let =(, G) be a Hilbert network and let (e,f)e
Hc. x drl]r-/c; an element H2 will be called a solution offf corresponding to the
pair (e, ]), if is a solution of the abstract network W= [,, N,, Na] over H
corresponding to (e, k) Hc xH, where k is any element in H satisfying the
equation dT k f.

In other words,
(i) there exists v zi such that v e N,

(ii) e (k +Na) ("1D.
Observe that this definition is meaningful, i.e., does not depend on the

choice of k.
DErINITION 2.2. Let be a Hilbert network and let (e, f) Hc x drHC; an

element H will be called a classical solution ofd corresponding to the pair
(e, ]’) if

(2.2)

K-: there exists a v i such that
-T (v-e)=0

for all y R satisfying the equation dT" "y "-O,
D and dr. =f.

A comment on Definition 2.2 is in order. Let = (Z, G) be a Hilbert
network; then clearly G describes the structure of and Z the behavior of its
elements. In the pair (e,/’) let the c-vector e be interpreted as a vector of EMF’s in
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branches b a, b.,. , and the ca-vector f as a vector of currents forced to nodes
v, v2,"" by independent current sources. Moreover, let the cz-vector be
interpreted as a vector of currents i, i2, flowing through branches b, b2,
and the c2-vector v Zi as a vector of voltage drops caused by currents i, i2, .
Then condition K- expresses the Kirchhoff’s node law, and K- the loop law. Thus,
K and K constitute a complete description of physical phenomena in the
network.

Using the same argument as in [1], we readily conclude that the following is
true.

THEOREM 2.1. Let (e, j)
corresponding to (e, f), iff is a classical solution of corresponding to (e, .).

Observe the significance of this theorem. The Definition 2.2, which is a
formulation of Kirchhott’s laws, employs two different spaces R c2 andH. On the
other hand, the Definition 2.1 uses a single space H2. Thus, due to Theorem 2.1,
we can work only with a simpler structure of an abstract network and remain in the
framework of the space Hc.

Let us now present a (rather complicated) analog of Theorem 2.1 in [3]. To
this end, some new notation is needed.

Let D cD cHc, D #; if k eH, we will define the set Dk again by (1.1),
and Q(Jk) by (1.2). (Here, of course, N= Na and M N-.) Also, let K(D) and
R(D) be defined by (1.4) and (1.5), respectively. In addition to this, let

(2.3) 6e(/) {(x, dr. y)" y K(/)), x O(/y)}.
If : 6H, let the translation operator Te" H-H be defined by

(2.4) Tez z +
Finally, for every x e K(/), choose a fixed ( e/x and define a subset

Fx cHo by the relation

(2.5) XF T_exDx.
This definition is clearly meaningful. Indeed, if u T_.Dx, then u -:x + v,

v x +Na, v
-x +Na,we have u Na. Hence, T_e/ = Na. On the other hand, as mentioned
above, X is a 1-to-1 correspondence between H and Nn; consequently, Fx is
uniquely defined by (2.5).

Now we have
THEOREM 2.2. Let a(c (,, G) be a Hilbert network, let c D, 1 #( and let

(e, ]) H d7HC2; then a(c possesses a solution 1 corresponding to (e, f), iff
(e, f) 5(D). In this case, the setlofall solutions inDcorresponding to (e, f) is given
by

(2.6) I TeXW-X*e,

where k is any element inH satisfying the equation d 7-. k ], (k is in k, and W-
denotes the quasi-inverse of the set mappingW Fk - ([WFk]0) with W being
defined by
(2.7) We
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Moreover, possesses a unique solution in 1}for a ny , ]) (1}), iff, for every
x K(1}) and some x 1}x, the mapping Wex X*ZTexX is simple on Fx.

The proof of this theorem follows readily from Theorem 1.1 by applying
similar arguments as in the proof of Theorem 2.1 in [3]. The details are omitted.

The comments (b) and (c) that we made on Theorem 1.1 apply also to
Theorem 2.2. Thus, in particular, Theorem 2.1 in [3] appears as a special case of
the present Theorem 2.2. To see this, it suffices to realize that saying "i Hc2 is a
solution corresponding to e e Hc’’ defined in [3] (no current present) is equivalent
to "i is a solution corresponding to the pair (e, 0)’.’ in the present context.

Also, observe the following fact: If (e,/’) 5t’(D), then clearly/" drH2; if is
a finite network, i.e., c2 <No then as is known,

/-[j,je,’’’ ,j1]rdrHc= , j,. --0.
m=l

The physical interpretation of this fact is plausible.
ApplyingTheorem 1.2 to a Hilbert network, we obtain the following result"
THEOREM 2.3. Letcbe a Hilbertnetwork, letD be a linearsubspace ofHc and

let" D Hc be a linear operator. Moreover, let D’ cD be a linear subspace, let
d N D be a fixed element and let d +D’. Then for each (e, j) ()) there
exists inJ a unique solution ofcorresponding to (e, f), iffthe operator W )*ZX
is 1-to-1 on F’, where.the linear subspace F’ H is defined by

(2.8) 2F’= Na CI D’.

In this case,

(2.9) i* +2W-1X*(e-Zi ),

where W-1 denotes the inverse of W: F’- WF’, i* is any chosen element in
/k =(k +Na) (d + D’) and k eHc is any solution oldr k f.

(The proof is obvious.)
Comparing this result with Theorem 2.1 in [3], we see that if a linear network

fir is regular on D’ (i.e., each solution in D’ corresponding to an excitation by
EMF’s only is determined uniquely [3]), then each current distribution inWforced
by both EMF’s and other current sources is unique. Such a statement, however,
cannot be made about nonlinear networks.

Moreover, (2.9) shows that, in the case of a linear network, presence of outer
current sources described by a vector/" can be replaced by additional EMF sources
described by the vector -2i*. As manifested by Theorem 2.2, such a conclusion is
not true for a nonlinear network.

Finally, let us mention the following useful fact: Sufficient conditions for
uniqueness of a solution can easily be derived on the basis of conditions given in
Theorem 1.4 in [3]. For example, if any of conditions (1.8), (1.10) or (1.12) is
satisfied for all x 1, x2 D Hc2, then we have uniqueness of a solution in D for
a.ny (e, f)e Se(D). This follows immediately from Theorem 1.1 and the fact that
Dk cD for each k K(D). Since these conclusions are straightforward, we omit
the details.
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3. Algebraic networks. In many engineering problems we encounter net-
works whose variables (voltages, currents) are continuous functions on [0, oo), or
locally bounded measurable functions, or locally integrable functions on [0,
Such variables cannot be imbedded into a Hilbert space, and consequently, we are
unable to apply the model of a Hilbert network. Fortunately, many results valid
for Hilbert networks can be extended to the case that the underlying space is just a
linear space not necessarily equipped with any topological structure. For this
generalization, however, we have to pay a price: We have to assume that the
networks under consideration are finite since the concept of convergence is
missing in this setting.

In order to study these (algebraic) networks more closely, we will again use
the concept and properties of the abstract network. To this end, let us carry out
some auxiliary considerations.

Let G be a finite oriented graph having c2 branches and c vertices, and let d
be the (C2XCl) incidence matrix of G. Define the operator d" Rc2-R cl by
d: dT. , and let N {:: sc R c2, d: 0}.

We will assume in the sequel that Ne # {0}, which amounts to requiring that G
contains at least one loop.

Next, since every Euclidean space R is a Hilbert space with inner product
(1, 2) 1T" 2, the set Na is a closed linear subspace of R. Choose some fixed
orthonormal basis {:, :2, :o} in N, and let X be the c2 Co matrix having
the c2-vectors sc as celumns. Define operators J and J* by

(3.1)
X: RoR,
P72"" Rc-Rc,

and let Nx. {rl rl R J*r/= 0}.
Using elem.entary arguments we see easily that:
(a) Na. XR and X is 1-to-1.
(b) dX 0 on R.
(c) 2*2 I on R.
(d) R=N2.Na.
Now let L be a fixed nontrivial linear space over the field of complex or real

numbers; if c ->_ 1 is an integer, L will denote the Cartesian product L xL x. x
L having c factors. Clearly, L is a real or complex linear space with "element-
wise" operations, depending on whether L is real or complex. For convenience,
we will interpret the elements in L as c-vectors.

Define the operators d, J and J* by

(3.2)

d" L2-Lq, dx dr. x,

f Lo->L- Xy X y,

*" Lc-L, J*z 2r" z,

and let N {x" x L2, 3x 0}, N2. {z" z L2, J*z 0}. In definitions (3.2)
we understand that if L is a real space, then X is a ral matrix (i.e., in (3.1) the
Euclidean spaces are real); in the opposite case X can be complex.
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Using the above relations (a)-(d), we can prove the following proposition:
LSMMA 3.1.

(i) N4 XL andX is 1-to-1.
(ii) dX 0 on Lo.

(iii) *2 !on Lc.
(iv) L Nc @Ne
(v) IfP is the projection from Lc onto N along N:;c ., then P *.
(vi) Let u L; then / u 0 for all 3/N:u Nc ..
Proof. First note the fact that all operators involved are defined via finite

matrices whose entries are numbers, and consequently, the product of such
matrices obeys the associative law. Having this in mind, (ii) and (iii) are trivial.

The inclusion 3L c Ne is obvious. Conversely, let x e Ne, i.e., dr’x O.
Choosing some basis ’ in L we can find elements l, 1, ..., 1, e and c: x m
matrix R with constant elements such that x R 1, where [1, 1:, ., 1,].
Thus, dr (R 1) (d r R) 0 ::)> d r. R 0. Hence, by proposition (a),
there exists a CoX m matrix E such that R X. E, so that x (X. E).
X. (E. I); since E. e L, we have x e 3L and the inclusion N ILc is
proven. An analogous argument shows that 3 is 1-to-1.

The relation (iv) follows readily from (d) by employing the basis in L.
As for (v), let *"L--> LC. From (iii) we infer that O: , i.e., 0 is a

projection. Moreover, (ii) implies that OL cN. Conversely, let x e N; then by
(i), x 2z for some z e L, and since * maps Lc onto Lc by (iii), we have
z 3*w for some w eLc. Hence, x =35*w Ow, i.e., N c OL. Conse-
quently, by (iv), O is the projection onto Ne and NX..

Finally, (vi) is an elementary consequence of (a) and (iv).
We are ready to define the algebraic network.
Let G be a finite oriented graph, let D c L, D , and let Z: D -> (Lc)

be a set mapping; then the ordered pair (, G) will be called an algebraic
network.

Denote

(3.3) dL {d x" x LCa} c Lcl.

DEFINITION 3.1. Let W (Z, G) be an algebraic network, and let (e, ])s
L dL; an element L will be called a solution ofcorresponding to (e, j),
if

K-" there exists a v i such that
-T

(3.4) 3’ (v -e) 0

for all 3’ R satisfying the equation dr. 3’ O,

K-: dTo j and D.

Clearly, conditions K,K are formulations of Kirchhoff’s laws for our
algebraic network.

As pointed out above, an algebraic network is a special case of an abstract
network. Indeed, we have the.following"

THEOREM 3.1. Let (Z, G) be an algebraic network with Na # {0}, and let
(e, f) L drL; then an element L is a solution ofcorresponding to (e, f),
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iff is a solution of the abstract network [, N,N.] overLc2 corresponding to
(e, k), where k is any element in L satisfying the equation dr. k =].

Proof. First, is truly an abstract network over L, since L -Na 0)N.
by Lemma 3.1(iv). Moreover, it is clear that K:> (k +Na) f3 D <::>K2 in
Definition 1.1 for [., Na,N.]. Also, lettin u v e, we have by Lemma 3. l(vi),
K-:> u 6 Nt :>K1 in Definition 1.1 for [Z, Na, N;t .]. Hence, the proof.

Using the same arguments as in 2, we can easily derive necessary and
sufficient conditions for the existence and/or uniqueness of a solution of an
algebraic network. To this end, define the following concepts"

Let/ cD,/ # be a given set; for each k L2, let

(3.5) /, (k +N,) f"l/,
and

(3.6) O(6) N.+(/)
provided D #. Furthermore, let

(3.7) K() {k" k e Lc, 1, ,
(3.8) ow(O) {(x, dr. y): y e g(b), x e 0(/5)}.
If : e L, let Te: L .--> L be defined by Tez z + .

Finally, if : e D, define the set F, Lc by

(3.9) 2Fx T-t.)x.
As in 2 it follows by Lemma 3.1 that F, is uniquely defined. Now, the following
assertion is true.

THEOREM 3.2. Theorem 2.2 remains true, if the term "Hilbert network" is
replaced by "algebraic network", H is replaced by L, and the symbols have the
meaning defined by (3.2)-(3.9).

In particular, if Na D # and e L, then a possesses a solution corre-
sponding to (e, 0), iff
(3.10) e 60(D) N2. +[(Na f3P)].
In this case, the set I of all solutions of corresponding to (e, O) is given by

(3.11) I 2W-2*e,
where W-denotes the quasi-inverse of the set mapping W J*J:F- ((WF))
and Fc Lo is defined by f(F Na fq D. Moreover, I is a singleton for every
e Q(D), iff W is simple on F.

Remark. In formulas (3.10), (3.11) the operators and J* can be replaced
by operators I? and f’* generated by matrices Y and f.r, respectively, where the
columns of Y constitute a (not necessarily orthonormal) basis in Na. Then, of
course, Fhas to be replaced by a set F’ defined by YF’ N (l D. To verify this fact
it suffices to realize that X Y. S with S being a nonsingular c0 x c0 matrix. Then
f( YS and being a bijection between L and itself, and similarly for X

Note that, with changes described above, Theorem 2.3 also holds for
algebraic networks; however, since this matter is straightforward, we omit the
details.



482 VACLAV DOLEZAL

4. Tellegen’s theorem. Let us now consider a generalization and converse of
the classical Tellegen theorem [4]. First, we are going to discuss the case of a
Hilbert network.

Having Kirchhoff’s laws in mind and thus accepting the classical solution as
the "true solution concept", we see readily that the sought generalization and
converse is already furnished by Theorem 2.1 and Definition 2.1. Actually,
realizing that u N-.:>(c, u)c2 0 for all c Na, we can rephrase our results as
follows:

THEOREM 4.1. An element H is a (classical) solution ofa Hilbert network
(, G) corresponding to (e, ) H dTHe2, iff

K" there exists a v ,isuch that

(4.1) (c,v-eL=O

for every vector c Hc satisfying the equation d 7-. c 0,

K" D and dT" =].

Obviously, condition KI* is a type of relation we encounter in the classical
Tellegen theorem. Also, let us stress the sufficiency part of our assertion, i.e., if
Hc meets K* amd K2*, it must be a solution of the network. Further comments

on this result are not necessary, since they have been made in 2.
Let us now establish a generalization of the Tellegen theorem for algebraic

networks. To do this, we define some additional concepts.
Let L’ be a fixed linear space over the same system of scalars as L has, and let

(L, L’) denote the linear space of all linear operators fromL into L’; moreover, let
K be a fixed linear subspace of (L, L’). The subspace K will be called complete if
x L, Ax 0 for all A K implies that x 0.

Observe that if K contains at least one 1-to- 1 operator, thenK is complete.
THEOREM 4.2. Let ’=(, G) be an algebraic network, and let (e, j)

LC2xdrLa.
(i) Let LC be a solution ofcorresponding to (e, j); then there exists v i

such that

(4.2) F" (v e) 0

]’or every F K satisfying the equation d 7-. F O.
(ii) Let K be complete, let D and d7-. f; if there exists v ,i such that

(4.2) holds ]:or every F K satisfying the equation d F O, then is a solution of

"corresponding to (e, f).
Proof. Denote {F: FK, d7". F 0}; then we have

(4.3) F 92F=X. to with toK.
Indeed, recalling the definitions (3.2) of and .,, we see readily that the

equivalence (4.3) is exactly the proposition (i) in Lemma 3.1, where L is replaced
by K.

Next, observe the following fact: since d is a real matrix, we can select an
orthonormal basis {:1, 2,, ", Co} in Na so that each vector sxi is real, indepen-
dent of whether R2 is a real or complex space. Consequently, we can assume
that X is a real matrix.
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(i) Let e Lc2 be a solution of corresponding to (e, ]). Then, by K, there
exists v ei such that 37 r. u 0 for any 3’ N, where u v e. Thus, by (vi) in
Lemma 3.1, J*u jr. u Xr u 0. Now, if F e 92, we have by (4.3), F X. w
for some to s Kc. Hence, 0 toT". (Xr u) (toT". Xr). u Fr. u and (i) is
proved.

For (ii), if the hypothesis is satisfied, then fulfills K-. Again letting u v e,
we have by (4.3) for any to K,
(4.4) 0 (X. to)a-, u toT. (X u).

However, if Xr. u has components (Xr. u)-, ] 1, 2,. ., Co, then (4.4) implies
that u(Xr. u)=0 for each u eK and every/’; thus, by completeness of K,
(Xr. u) 0 for /" 1, 2,. ., co. Consequently, Xr. u 0 u e N2. :=> K-
holds by (vi) in Lemma 3.1. Hence is a solution of 3c corresponding to (e, ]) and
(ii) is proved.

Observe that if (,, G) is an algebraic network (consequently, finite)
whose underlying space L happens to be a Hilbert space, then Theorem 4.1, which
is valid for Hilbert (not necessarily finite) networks, follows for from Theorem
4.2. To verify this, let L’=R and let K {A’a e L}, where each operator
A," L --> R is defined by A,x (o, x ). Clearly, K is complete, since (a, x } 0 for
all aL implies that x=0. Moreover, it is easy to see that F=
[Aal, A,2, ", Aaz]T K and dT F 0:o [ffl, O2," ", Olc2]T L and
dT.a=O.

Thus, with v-e=u=[ul, uz,...,u2]T, (4.2) reads 0=FT.u=
Y.i=- Aui = (ai, ui)=(a,u); this, however, is exactly equation (4.1).
Hence, our claim.

Let us now consider two simple examples which illustrate the applications of
Theorem 4.2.

Example 1. Let G be a finite oriented graph having c2 branches, and let d be
its incidence matrix. Let L be the space of all locally integrable functions on
[0, oo). Given io e Rc with dT. io 0, let D L be defined byD {x" x [x] is
a c2-vector, x absolutely continuous on [0, oo) for k 1, 2, ., c2, x(0) io}.

Furthermore, denote T=Rx[0, oo), and assume that the functions
l, r, s" T->R have the following properties:

(i) is differentiable at every point of T,
(ii) r(x(t),t), s(x(t), t) L for every x e L2.
Now, let Z" D L be defined by

(4.5) (,x)(t) {l(x(t), t)}’ + r(x(t), t) + s x(’) d’,

then the algebraic network (,, G) will be called an L, R, C-network.
It is easy to see that a nonlinear, time-varying L, R, C-network is truly under

consideration. Indeed, if : e Rc and dr. : 0, we can interpret l(, t) as a vector
of magnetic fluxes at time t generated by the (direct) current vector . Similarly,
r(:, t) can be interpreted as a vector of voltage drops on resistors at time t. Finally,
if e R ’- has a meaning of charges at capacitors, s(r/, t) is a vector of capacitive
voltage drops at t. Hence, if the vector function x(t) has a meaning of currents,
then the right-hand side of (4.5) is a vector of total voltage drops in branches of our
network.
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Note also that if there are no mutual couplings between branches, then l, r, s
have, of course, the "diagonal form", i.e., 1(:, t)= [11(1, t),
1.(, t),"’, lc(c, t)]r, and similarly for r and s.

To avoid ambiguity, a solution eD of corresponding to (e, 0) for some
e e L will be called an elementary solution.

It is well known [5] that the requirement e D, which is enforced by presence
of differentiators in the network, imposes severe limitations on the existence of an
elementary solution. (Note that this is so even if is linear.)

However, this inconvenience can easily be surmounted by defining the
concept of a "generalized solution". Indeed, let Z: LCLc be defined by

(4.6) (Zx)(t) l(x(t), t)- l(io, O)+ r(x(r),

(Note that now Z is defined on the entire space LC2!)
Let e e LCa; an element eL

corresponding to (e, 0), if is a solution of =(Z, G) corresponding to
(I; e(r) dr, 0).

It is clear that the class of generalized solutions is much bigger than the class
of elementary solutions. On the other hand, the relation between the two solution
concepts is very simple as is documented by the following:

PROPOSITION 1. Lete L- then is an elementary solution offcorresponding
to (e, 0), is a generalized solution of corresponding to (e, O) and D.

Although this fact follows directly from (4.5), (4.6) and K-, let us prove it by
using Theorem 4.2; to this end, put L’=L, and let K={J: a era}, where
(Jx)(t)=Itox(r) dr. Clearly, K is complete, since J is 1-to-1 on L. Thus, by
Theorem 4.2 and the above definitions, is an elementary solution of N corres-
ponding to (e, 0):>F. (i-e)=0 for all FeK with dr. F=0, and i6D,
dr- 0. Hovever, by (4.5), (4.6), the relation Fr. (zi-e)= 0 is nothing else
than K- for with e replaced by Je. Since D Lc2, the right-hand side of our
equivalence reads: is a generalized solution of corresponding to (e, 0) and
e D. This verifies our claim.

Example 2. Let (z, G) be the same L, R, C-network as in Example 1, but
now let L be the space of all measurable, locally bounded functions on [0, oo).
Also, let the definition of D be modified accordingly, i.e., let us add the
requirement x’ Lc2. We are going to show that the following is true.

PROPOSITION 2. Lete L; then is an elementary solution offfcorresponding
to (e, 0), iff D, dr. i=0 and

Io(4.7) cr(r) [(;2i)()-e()]&=O

for all c Lc with dr c O.
Note that by setting c in (4.7), we get I r. zi dr I r. e dr, i.e., an

energy relation analogous to (4.1) holding for a Hilbert network.
To prove our proposition, let L’ L and putK {Ja: a L}, where Ja: L L

is defined by (Jx)(t)=toa(r)x(r)dr. Clearly, K is complete, since J with
a- const. 0 is 1-to-1. Moreover, it is easy to see that (4.2) is precisely the
relation (4.7). The rest follows from Theorem 4.2.
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INTEGRAL REPRESENTATIONS AND INEQUALITIES
FOR BESSEL FUNCTIONS*

A. McD. MERCERS"

Abstract. In a previous note the author showed how various inequalities, typified by Griinbaum’s
inequality 1 +Jo(a) >= Jo(b) +Jo(c) (a b + c 2), could easily be obtained from a certain integral
representation for the Bessel functions. In the present note a method is described which provides more
general representations of this kind, and examples of the resulting inequalities are given.

1. Introduction. In [1] we showed how short proofs of Gr/inbaum’s
inequality

(1.1) l+Jo(a)>-_Jo(b)+Jo(c), a2=b2+c2,
and others of a similar nature could be constructed using the integral representa-
tion

1
1-[ cos AkXk o’, n _-> 2,(a.2 Y"(x s-

where
Here, (A) F(u + 1)(2/h)J(A), u n 1, S(1) denotes both the (n 1)-

dimensional manifold I1 11 i in Euclidian space E" and its volume, while a is the
volume element in S(1). This formula is a consequence of a theorem proved in [2].

The technique which deduces (1.1), for example, from (1.2) would work
equally well to provide inequalities for functions which had integral representa-
tions of a kind more general than (1.2). For example, there would be no essential
difference if, instead of the integral in (1.2), we had

(1)

in which w denotes a nonnegative function defined in S(1). Now the theorem
proved in [2] does not provide representations of this more general kind and so it
is the purpose of this note to present a method which does. We shall describe this
method in the next section and the basic result is to be found in (2.7) below. In the
third and final section we give some examples both
the resulting inequalities.. Let r denote distance from the origin inN. Then the Helmholtz equation

(2.1)
Ox+ 0

can be written as

02& 1n
(2.2) - he +A2 O.

Or2 r Or r-
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Here A is the Beltrami operator or surface Laplacian in the manifold S(1). If tra
denotes the element of volume in $(1), then we have the identity of (n 1)-forms
(Ab)tra d(* &b), where d is the operator of exterior differentiation and is the
Hodge operator in S(1). For more details of these matters we refer the reader to
[3]. It follows then that (2.2) can be written in the Pfaffian form

(2.3) r2{o2 n l o4)} 21r2 - r
trx +d(. dg))+r zbtrl=0.

We have written (2.2) in this form so as to be able to separate variables. If _v
denotes the (n 1)-tuple of hyperspherical polar coordinates in the manifold S(1),
then the variables we shall want to "separate" will be r and _v. Accordingly let
R(r)H(v_) be a solution of (2.3). The usual technique leads to the separated
equations

dZR n-ldR (2 a)R(2.4)
dr. -t

r dr
t- A -- O,

(2.5) d(* dH) + aHo- O.

This second equation is simply the Pfaffian form of Helmholtz’ equation in the
manifold S(1). As is well known, it has solutions which are single-valued in S(1)
when a =a,, m(m +n-2) (m =0, 1, 2,... ). These are the hyperspherical
harmonics of degree rn and we denote a typical one by Urn(v_). The general
solution of (2.4) is then

r’{ACm+(Ar) +B,+(At)},

where u and are as defined in 1 and (A) F(v + 1)(2/I)Y,(A).
Let () denote any solution of (2.1) inE". Then() (or more accurately its

transformed form) will satisfy (2.3). Accordingly we multiply (2.3) bynm(), (2.5)
by (), subtract and we get

r2f02] n 1 0
bhZlHl(2.6)

r Or
+ {Hmd(,d) d(,dH)}

amH O.

Now the second expression in brackets can be written as d{H(, d)-(, dH)}
which is to say that it is an exact (n 1)-form in the (n 1)-dimensional manifold
S(1). If we denote it by dW, then by Stokes’ theorem we will have

S(1)
dW= JOS(l W;

this is zero because the manifold S(1) is closed in the sense that its boundary 0S(1)
vanishes. Hence if we integrate throughout (2.6) over S(1) we will get

Is n-i O* 2}Hm__am fsrO A HI= O.
( [Or r Or (1

If we suppose, for example, that all our functions are continuously twice
differentiable, then the differential operator appearing here and the operation of
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integration over the fixed manifold S(1) (i.e., fixed with respect to r) can be
interchanged. The result is that

{0
2 n-1 0 ( 2 a__)}I

srZ+-- t- X n,,(_v)(_x)rl 0,
r Or

which is to say that the integral here is a solution of (2.4). We conclude then that if
() denotes any solution of (2.1), then for some choice ofA andB we will have

1
r.(2.7)

This is as far as we can proceed with these general considerations. In any
particular case, the coecients A and B, which will depend on the choice of (),
Will be determined by considering the behavior of each side of (2.7) as r 0.

3. Eles. The simplest case is that quoted in 1 and arises on taking
n N2,

() cos 1x, where I a ,
k=l k=l

m 0 and Ho() 1. It is a simple matter to see that A 1, B 0 and the result,
after putting r 1, is (1.2). Nothing of interest is obtained by replacing any of the
cosines by sines because in all these cases A B 0.

Next consider the case n 2. We shall use the usual notation x, y instead of
x, x etc. If we take () cos ax cos by, where a + b I and Hm() cos mO
(m 0, 1, 2,...), we get

1 o2 cos ax cos by cos mO dO rA(Ir), r= x +,
because one sees at once that B 0. Writing cos ax cos by as a sum of two cosines,
and then using elementary analysis, we derive the value of A. After putting r 1,
which we may do without loss of generality, the result reads

1o {(-1)/J(1)cosm% m even,(3.1) cos ax cos by cos mOdO
O, m odd,

where cos a/, sin b/.
In the same way we can find the following formulas"

1o {(-l)/J(1)sinm,, m even,(3.2) sin ax sin by sin mO dO
0, m odd,

1 0 {0, m even,(3.3) cosax siny sinmOdO= (_l)(_/jm(1)sinm m odd,

1 o {0, m even,(3.4) sinax cosby cosmOdO= (_l)(m_/j(1)cosm m odd,

in each of which has the same meaning as above. By symmetry considerations
the other four integrals of this kind are each seen to be zero for all m.



BF.SS Fucros 489

Naturally as n gets larger, the coefficients A and B become more tedious to
calculate. Therefore we shall merely quote one example from E3: If n 3,
(_x) cos Az, H,(_v) P, (cos 0), then we get, on setting r 1,

l
(-- 1)m/2AJm+(1/2)(A )’ rn even,

cos ,zP, (cos 0)o’(3.5) S-
0, rn odd.

To illustrate the derivation of inequalities from results of this type, let us take
(3.1) for example. If w(O) denotes a linear combination of the functions
cos mO(m- 0, 1, 2,...) such that w(O)>-_0 in 0 -< 0 <27r, let us write the result
which follows from (3.1) as

1 f02"tr(3.6)
2r

COS ax cos by w(O) dO O(a, b).

Then if ea, e2 =-t-1, we have

1 Io2"(3.7)
2-

(l+e cosax)(l+eacosby)w(O)dO>-O.

Let w(0) be normalized so that [’ w(0)dO 2m Then multiplying out in (3.7)
and using (3.6) we get

1 + eO(a, 0)+ e2O(0, b)+ ee2O(a, b) >-0.

Making suitable choices for e and e2, we obtain at once

1 +O(a, b)>-_lO(a, 0)+ O(0, b)l,
1 O(a, b) >-[O(a, 0)- O(0, b)l.

For example, if we take w(O)= 1 + r/cos 20, where -1 _-< r/_-< 1, we obtain these
two inequalities with

O(a, b)=-Jo /a2+b -rla2+b2J2 /a2+b
2

The former of these can be regarded as a generalization of Grtinbaum’s inequality
(1.1) because it reduces to this if we take r/-0 and omit the modulus signs.

Again if we take w(O)- 1 + cos 0 and use (3.4) in this way, we obtain

a

b.ZJl (/a2 + b2)>-_lJ(a)+Jo(b)[1-
/a a +

and

Many interesting inequalities can be found in this fashion, but we shall not
enlarge on the number of examples already given except to illustrate the following
remark. In deducing examples from the representation (2.7), we have so far
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assumed that the function and the parameter A are real, but there is, of course,
no need for this. For example, the representation

1 I0Jo(A) cos ax cos by dO

is valid for all (real or complex) values of a, b, A satisfying a + b A . With , B,
real, let us take a i, b iB, I i. Thus

1 o2(3.8) Io(y) cosh ax cosh fly dO, a2 + f12 y2.

Observing that (cosh ax + e 1)(cosh fly + e2) 0 if e , e2 m 1, we deduce from
(3.8) that

Zo(r) +1 IZo() +Io()1, +=,
Zo(r)- Io()-o(#)1, a’ +#’ r’.

Aeknowleflent. The author wishes to thank R. G. Buschman for several
helpful conversations during the preparation of this paper.
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AN EIGENVALUE ESTIMATION METHOD OF WEINBERGER
AND WEINSTEIN’S INTERMEDIATE PROBLEMS*

DAVID W. FOX AND JAMES T. STADTER"

Abstract. A method of H. F. Weinberger for calculating lower bounds to eigenvalues of
semi-bounded self-adjoint operators is given a new formulation in an operator setting. This analysis
makes clear the relation of this method to the Weinstein-Aronszajn intermediate problems and
completes the study of the method initiated by Bazley and Fox. The operators that are developed here
are useful in showing the monotone properties of the method in a direct and natural way.

Introduction. This article is about a method for calculating lower bounds to
eigenvalues of semi-bounded self-adjoint operators. The method, due to H. F.
Weinberger [6], [7], is given a new formulation in an operator setting that makes
evident its relation to the Weinstein-Aronszajn intermediate problems [1], [5],
[8], [9]. This represents a completion of an analysis of the Weinberger method
started by Bazley and Fox in [2]. The operators that we develop here.are useful in
other ways. They make the demonstrations of the monotone properties, of the
method much more direct; the clarifications that they offer will, we hope,
encourage the application of the method.

In 1 we develop the operators from scratch. The subspaces that enter into
the construction are set up carefully, then as a first step a base operator in the sense
of intermediate operators is constructed. After that the difference between the
base operator and the given operator is used to construct intermediate operators,
and the resolution of the spectral problems of the intermediate operators is
worked out. This section is completed by showing how the method can be used
when only enough information is given to construct operators on a subspace.

Section 2 shows that although the base operators constructed in the method
have considerable freedom, this freedom is without consequence for the inter-
mediate operators. The resulting operators depend only on the subspaces used
and not on the intervening construction. This demonstration casts the operators in
a form from which it is easy to see that the operators have the quadratic form on
which Weinberger’s method is based. The section concludes by showing the
relationship of the matrix problems for our operators on their reducing spaces
with the matrix eigenvalue problems given by Weinberger in his formulation.

Section 3 gives new demonstrations of the monotone properties of the
method based on the operator formulation.

1. Development of the method. The setting of the method is standard. We
suppose that A is a self-adjoint operator in a separable complex Hilbert space
with its inner product designated by (., ). The domain of A is denoted , and
A is assumed to be bounded below and to have the lowest part of its spectrum
made up of eigenvalues , of finite multiplicity lying below the first limit point &.
in its spectrum. We use the customary ordering of the eigenvalues accounting for
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multiplicity"

A--<A2 -<’" "--<A..

The object of the method is to determine lower bounds for these lowest eigen-
values of A, i.e., to find real numbers/ that can be computed precisely and that
satisfy/z _-<A for u 1, 2,. ..

The minimum information that seems to be necessary to develop a general
procedure is that there be known a finite-dimensional space and a number p
such that

(1.1) (Au, u) >-p(u, u) Vu 71 +/-.
Clearly p and 3 must be derived from some special a priori knowledge about A.
By itself (1.1) implies only that A,+ =>p, where n =dirn i13; however by using the
values of A on additional vectors further information is available. It is this
information along with that given by (1.1) that is organized into a lower bound
method.

1.1. Setting up the subspaces. We suppose that 3 and p are fixed and choose
an m-dimensional subspace of . Other than being in , can be completely
arbitrary. An important property of is its rank with , defined by

r rank (3, ) rank {(Pi, qi)},

where {Pi} and {qi} are any bases for and 2, respectively. Clearly r =< m, n. We
make the following decompositions of the suspaces and

(1.2) "-1 /2, where2=0+/-,

and

(1.3) =!131032, where!132=f3 +/-.

The symbols v and 0) denote the linear span and orthogonal sum, respectively.
The decomposition (1.2) is not unique, and it is to be understood in the following
way: the second of (1.2) defines 2 uniquely; then the manifold can be taken
to be any fixed r-dimensional subspace of that, together with 2, spans. The
partition of !13 given by (1.3) is unique.

If 2 is not void, i.e., if r =rank (, )<dim n, then the operator
construction that we are about to outline will take place in 3-, a subspace of of
deficiency n- r, and the method gives lower bounds to eigenvalues of A starting
with the (n-r + 1)st. To avoid that complication, we assume for the time being
that r n so that 3 !13. A little later this restriction will be lifted.

1.2. Construction ot a base operator. As a first step we construct a base
operatorAo depending on the given 3 and p and on the values ofA on 1. For Ao
to be a base operator, it must be smaller thanA, and it must be explicitly resolvable,
i.e., its eigenvalues and eigenvectors have to be determinable to any desired
precision.

Here the requirement that Ao be explicitly resolvable does not enter in a practical way, since we
shall not need to determine its eigenvalues or eigenvectors.
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To carry out this construction we use the fact that the bounded operator Q1 is
completely determined by the requirements on the ranges of Q1 and (I-01)

(1.4) (Ol) c 1, (1- Q1)-L 1.
These imply that Q1 and its adjoint Q* satisfy

(O1) "-- 1, (Qt)- 1,

From (1.4) and (1.1) it follows2 that

and O= 01.

(1.5) ([A-p][I-Ol]u,[I-Ol]U)>=O Vu.
This means that the symmetric operator A1 defined by

(1.6) A (I- O1)g(A p)(I- Q1)

on is nonnegative. Now we define Ao on by

(1.7) Ao=A -A1.
A short calculation gives

(1.8) Ao pI+ (A -p)Q1 + Q*I (A -p)- Q*(A -p)Q1.

Since (Ol)c , it follows that Q*(A-p), as well as (A-0)01 and Q*(A-
o)Q1, are bounded on . Consequently we can extend Ao to all of ) by
continuity. It follows from (1.5) and (1.6) that Ao is self-adjoint on g) and satisfies
Ao<-A.

From (1.8) it is clear that Ao-pI has its range in the finite-dimensional
subspace o given by

(!.9) o 1 V (A -p) 1,

and thus, since Ao is symmetric, g)o is a reducing space for Ao. On- we have
Ao pI, since g]- is contained in the null spaces of O1 and Q*I(A -p). Thus Ao is
explicitly resolvable by diagonalizing a representing matrix for it on o.

It is appropriate here to recall that the manifold 11 is not completely fixed by
(1.2) and that each distinct selection of will in general result in a different base
operator Ao. Nevertheless the intermediate operator we construct in the next step
turns out to be independent of the choice of 1.

1.3. Construction oi intermediate operators. With a base problem in hand,
the remaining part 1 . of can be used to increase the base operator by the
intermediate operator method.3 Of course, for 2 to be nonvoid we suppose
r < rn dim.

The construction is suggested immediately when we write

(1.10) A =Ao+A1,

since A1 is nonnegative andAo is explicitly resolvable. Let Q2 be a projection on

2 orthogonal with respect to the quadratic form of A 1. From the intermediate

z Recall that for the moment
See, for example, [3], [4], [5], or [9] for descriptions of this method.



494 DAVID W. FOX AND JAMES T. STADTER

operator construction4 it follows that the operator5 A Q2 is bounded, symmetric,
and of finite rank on and can be extended to by continuity. Further, it satisfies

(1.11) O<=AIQ2<=A1.

Let A2 be the operator defined by

(1.12) A2=Ao+AIQ2.

The operator A2 is bounded, and by (1.11) it is intermediate between A0 and A,
i.e.,

(1.13) Ao<-AE<-A,

and consequently the eigenvalues of these operators satisfy the parallel ine-
qualities

(1 14) /x0< 2<v=/*v=,, v= 1, 2,

The operator A2, as we shall see a little later, is exactly that of Weinberger when

Before we go further, it is appropriate to record some additional properties of
Q2. Since O2 is an orthogonal projection on 2 in the quadratic form generated by
A 1, it satisfies Q22 Q2 andA Q2 Q’A Q*2A 1Q2, where Q is the adjoint of
02 with respect to the inner product of . An equivalent definition of Q2 on is
given by

(1.15) R(Q2) c 2, R(I- O2) c {A12};.
Since 22 c"c I’(Q1), where ’(Q1) is the null space of Q1, the right side of the
second of (1.15) can be written {(I-Q,)*(A-p),2}+/-. It follows immediately
from this that {R(Q*2) (I-Q1)*(A -p)22. Note that since Q12 0, the vanish-
ing of A1 on a vector u in 2 is equivalent to (Au, u)=p(u,u), which is
independent of 21.

1.4. Resolution of the spectral problem for A2. The operator A2 is also
resolvable by the diagonalization of a symmetric representing matrix on a finite-
dimensional reducing space. In fact, the subspace 322 defined by

(1.16) 12 }1 v (A -p)

reduces A2o First observe that A2 can be written in the form

(1.17) A2=pI+Q*I(A -p)+(A -p)QI-Q*I(A -0)O1 +Q*2A1.

From this it follows that ((A2-pI)-- )(Q*) v (A -p)11V }(O2$) c f)’2. Since
A2 is symmetric, 2 is reducing for A2. Further, on - the projection 02
vanishes, and since 902- c- we have A2 Ao pI on2. Thus the eigenvalue
problem for A2 in S can be resolved by determining the eigenvalues of a
representing matrix on 2.

4 See, for example, [4, p. 434] and [9, p. 80].
When A is not positive definite on 2, the projection Q2 is undetermined to the extent of an

operator into the subspace of 22 on which A vanishes. Since the construction uses Q2 only in the
expression A1Q2, the construction is nonetheless uniquely determined.
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1.5. Intermediate operators on a subspace. Now, we take care of the more
general circumstance in which 1)2 with 2 0. In this case (1.5) is
replaced by (1.1) in the form

(1.18) ([A -p][I- Q]u, [I- Q1]u) >- O

The natural way to deal with this situation is to turn our attention to the part of
A in -. Thus we apply the method to , the self-adjoint operator in
defined by

(1.19) A (I-P2)A (I-P2)

on fq -, where P is the orthogonal projection in on 2. The construc-
tion we have given so far is valid when A is replaced by A, by , and the h by
the eigenvalues A of . This is summarized by

(1.20) A1 (I- Ol)*(A -/9)(./- 01),

(1.21) A =A0+AI,

(1.22) A2 =Ao+A102.
Observe that everything in (1..20)-(1.22) makes good sense. Indeed, (O1)=
and (O)=, are bothin & since -=-v and @2=1 from (1.3).
Further, since c +/- c g); the definition of a already given holds in whenA
is replaced by/. Thereducing space 2 for A2 has the same form as that for A
with A replaced by A, i.e.,

(1.23) r2-1 V (A
Since is a subspace of (9 of deficiency n- r, the eigenvalues of and A

satisfy the inequalities6

(1.24) h i lv+n_r, V 1, 2,....

From this it follows that the eigenvalues/2 of 2 give lower bounds to higher
eigenvalues of A, i.e.,

<=h+n-,, v 1, 2,

2. EquivaJence with Weinberger’s construction. In this section we show that
the operator A2 is independent of the selection of the subspace 1 in (1.2). In
doing this we express A2 in a form that shows it to be the operator corresponding
to the quadratic form of Weinberger’s construction.

2.1. Independence of 1. Although the choice of the subspace deter-
mines Q1 and subsequently Q2, the intermediate operator A2 does not depend at
all on this choice. We show this by demonstrating thatA2 depends on Q Q1 + Q2
only and that Q is, in fact, determined by and is independent of the choice of

We observe first that Q1 and Q2 annihilate each other, that is,.

(2.1) QIQ2=O--Q2Q1.
6 See, for example, [5, p. 71].
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The first follows from {R(O2)cf(01) and the second from
{(I- O1)*( -p)2}+/- c 92(02). Now using (2.1) we rewrite 2 as follows"

/2 Ao+102 ([-- O2)*z1([- 02)
(2.2)

(I- O1 Q2)*(./ p)(I- Ol 02).

Now put O (21 + O: and write A2 in the form

(2.3) 2 A (I- Q)*( p)(I- Q),

where

(2.4) {R(Q)c, (I-Q)c{v(-p)f),2}-t- in.
The first of (2.4) is immediate from the definition of Q. The second follows from

)(I-- O) )(/’-- O1)(Z-- 02)] 9t(1- O) = 3-,
and

91(I-O)=91[(I-O2)(I-O1)]cgt(I-O2)c{(I-Ol) (A p)),2}+/-,
so that

gt(I-O) c-rq{( -p)2}’={ v (A -p)2}- in.
On the other hand (2.4) determines O up to an operator with range in
92(A]-p). This lack of uniqueness does not cause any indeterminacy in the
operator (I-0)*(-p)(I-O); in fact, it corresponds to the nonuniqueness in
02 discussed earlier.

2.2. The quadratic form of z. From (2.3) all that is needed is a brief
calculation to obtain the quadratic form of A2 in the expression which is the
starting point for Weinberger’s analysis. Indeed, from (2.3) we obtain

2= O*O+O*(I-O)+(I-O)*O+p(I-O)*(I-O) one,
and from this the quadratic form

(2u, u)= (AOu, Ou)+([I-O]u, AOu)+(AOu, [I-O]u)
+t(br-O]u, (_r- O)u)

for ue.
For each u in 9 the projection Q decomposes u according to

u Ou+(I-O)u =q+v,

with q e 2, v _t_, and v _t_ (A O) 2. In terms of q and v the quadratic form of 2

is

(Aq, q)+(v, Aq)+(Aq, v)+p(v, v) lu,
which is, in fact, the expression on which Weinberger’s analysis is based.

2.3. Matrices for the bounds. Here we give a transformation of the matrix
eigenvalue problems for 2 on 2 into the form obtained by Weinberger. This
demonstrates in an independent way the equivalence of the methods.
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Recall that 02 1 V (/i --O) is the reducing space for 2. The space 2
may not have the full dimension r + rn since may have a subspace on which
A -p vanishes, and in addition 31 and (A -p) may not be linearly independent.
Starting from a matrix representation forA2 given by a linearly independent basis
for 2, we transform the system of linear equations into that given by Wein-
berger. Two steps are involved: the first is the transformation to a system of
equations in terms of a natural (but possibly dependent) spanning set for 2; the
second is the expansion of the system of equations to order rn + n.

We introduce special bases for 3 and to simplify the calculations. Let
{Pl, P2, , p,} be a basis for 3 such that the first r spana and the last n r span
2" Further, let {q, qz, ",, q,,,} be a basis for such that the first r span and
the last m r span 2. IfA p vanishes on a subspace of , we suppose that this
subspace is spanned by the last rn m’ vectors in the basis for then -p will
be positive definite on the span of {q/a, q/2, ", qm’}.

It follows from (1.4) that O has the explicit representation

(2.5) O1 (.,pi)b.qi where{b.}={(qk, p,)}-.
i,j

Similarly from (1.15) we have on 2
202 E ([I- O1] ", [A -o]q,+r)biqi+r,

i,j

(2.6)
where {b.} {([A -p]q+, qi+)}-.

Suppose {t, &,..., t} is a basis for . In terms of this basis the eigenvalue
problem for on is

(2.7) xg{(A2t, ti)-t2(ti, ti)}= 0,
i=1

A natural spanning set for f2 is {Vl, V2, ", Vm’+r} given by

-o)qi, i=1,2,...,m’(A
P-m,, m’ + 1, m’ + 2, , m’ + r.

/’= 1, 2,.. ,s.

Let F be a nonsingular matrix that expresses the t in terms of the vi and that states
m’ + r-s independent relations of linear dependence among the v, i.e.,

m’+r { ti,

O,

1, 2, , s,

i=s+l,s+2,. ., m’+r.

Now augment the equations (2.7) in the trivial way:

where x2 is arbitrary. In terms of F these are equivalent to

(2.8) xF{(A2v,, vi)-(v,, vi)}F* O,
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where x {x 1, x 2} and F* is the transpose conjugate of F. A tedious calculation
using (2.5) and (2.6) allows us to write (2.8) in the form

(2.9) xr[FG- F-(-o)r* 0,

where/ and are the square matrices of order m’ + r given by

(. ([ P]qi,.A[A P]qi) ([- P]qi, Pi-m’)(2.10) F= (v,, vi)=
\ [P-m’,t P_lq,)"’""--’"-"""""’ (i-’:;’;’--’:i

and

Since from the definitions of and F we have

o .)0 ’0

(2.9) can be put in the form

{yl, 0}F.-a-l[p_ (fi _p)] 0,

where yl= x l{(ti, tj)}. This leads us to consider the equation

(2.12) z[F-(t2 -p)(] 0.

Using the fact that is nonsingular it follows that there is a one-to-one
correspondence of solutions of (2.12) with those of (2.7) for each/2 different from
p.

Assume for the moment that m’ m. Then the transformation of the matrix
problem is completed by eliminating from the matrices. This necessitates the
expansion of the order of the system to m / n. From the definition of A and the
choice of the basis vectors p and q we have

(A-p)qi+ cw+,, i= l, 2,. ,r,
( -P)qi t,=l

(A -p)q, r + 1, r + 2,. , m,

where the constants Cik satisfy

([A -p]q,, pt+,)+ Cik(Pk+r, Pl+r)--O,
k=l

i= 1, 2, , r; l=l, 2,...,n-r.

Using this, the matrix equation (2.12) is transformed to the equivalent equation

(2.13) z[F-(fi -p)G] 0

where

zj i, j=l,2,...,m+r,
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and

]’-- iCij_m_r, j=m+r+l,m+r+2,...,m+n,
i=1

and F and G are the square matrices of order m + n given by

(. ([A p]qi, [A P]qi) ([A p ]qi, Pi-m .(2.14) F= ;-;;[":3]; -,,b;"-, ]

and

(2.15) G t -([A --P]qi, qi) (qi, Pi-m)

Clearly the expressions for F and G show that the equations (2.13) do not depend
on the special bases for and that we have used. Thus we see that the system
(2.13) with F and G given by (2.14) and (2.15), which is pr.ecisely that given by
Weinberger in [6] and [7], is equivalent to (2.7) for on for all eigenvalues
p.

When m’ < m the equations (2.12) can still be cast in the form (2.13)-(2.15),
but at the cost of introducing an m m’ manifold of solutions for each solution of
(2.12). In fact, by augmenting /6 and by m-m’ zero rows and columns
corresponding to the q’s on which (A-p) vanishes, and by adding m-re’
corresponding arbitrary components to f, (2.12) is correct with m m’. Then the
transformation to (2.13)-(2.15) can be made as above. Of course the final F and G
then have a common null space of dimension m-m’.

3. Monotone properties of the operators. In this section we show that the
lower bounds obtained from this construction increase as the space is enlarged,
as 3 is diminished, or as p is increased provided the inequality (1.1) continues to
hold. These conclusions are in accord with the observation that expanding ,
contracting , or increasing p gives more information about A consequently the
bounds should be better. In comparing the bounds obtained by enlarging or
restricting we use similar arguments. In each case the method gives rise to a new
intermediate operator designated by A on an enlarged subspace. The analysis
is carried out by constructing a new operator that is smaller than A in ’ and that
has 2 as its part in .

3.1. Elementary comparisons for projections. The techniques of the
demonstration use a number of facts about projections.

If [., is a positive quadratic form given by [., ] (R , ), R a densely
defined symmetric operator on , and is a finite-dimensional subspace in ,
then we consider

62=mini(u-s), (u-s)]=min[(I- T)u, (I- T)u],
s T

where the minimum on the right is over all linear operators T on with range in. The minimizing T is a projection S on orthogonal with respect to [., ].
From this characterization three easy inequalities follow:
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1. If S is a projection on orthogonal with respect to [., .], and : is any
bounded linear operator with range in , then

(3.1) R (I- S) (I- S)*R (I- S) <= (I- ,)*R (I- ),
where the * indicates the adjoint in .

2. If 1 2 and Sx and $2 are projections on 1 and 2, respectively,
then

(3.2) R (I- $1) -> R (I- $2) and RS <= RS2.
This is just Bessel’s inequality.

3. IfR R2 and (R2) and [., ]1 and [., ] are the quadratic forms
constructed from R and R2, respectively, and if $1 and 82 are orthogonal
projections on with respect to [., ] and [., ], respectively, then

(3.3) R(1- Sa) Rz(I- 82).

3.2. Enlargement o . We suppose that in place of the m-dimensional
space we use a larger m’-dimensional space ’ that includes to construct a
new operator A. The space and the number p stay fixed. The notation will be
the same as that used before but with a prime added. Note that rr’=
rank (, ’). In parallel with (1.2) and (1.3) we write

(3.4) ’=v, =’,
and

(3.5) =, =n’
Clearly ’ implies

(3.6) 2 and 2.
Since is a subspace of e, the operator ’ is defined on ’=, while 2 is
defined on ,which is a subspace of’ of deficiency r’- r. The operator is
given by

(3.7) =+O on =,
where =’- with ’ the part of A in ’ and =(I-O)*(A’-p)(I-O).

Define O2 as the projection on 2 orthogonal with respect to the quadratic
form of and let 2 be the bounded operator on ’ given by

(3.8)

Since 2c, (3.2) implies ,/, 02_-<Q, and consequently

(3.9) 2 =</] on ’.
Now we show that the part of fi*2 in coincides with2. The inclusions (3.6) allow
us to write

(3.10) i=a, 3T 3,
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and to take in the form

(3 11) = 1, -]-1

With this choice of the operator O can be written in the form

where Q is the operator used in constructing 1, and Q satisfies

It follows that (O) c. A short calculation using this shows that the part of
in is and the part of0: is IQ:, so that the part of: in is exactly

Az, as we wished to demonstrate. From this and (3.9) it is immediate that the
eigenvalues of : and satisfy

(3 12) . <’+,_,, p 1, 2,

so that the enlargement of to’ gives lower bounds to eigenvalues starting with
the smaller eigenvalue A_,,+, and whend & and d2 both ive lower bounds to the
same eigenvlue, beginning with A_,+, those given by A & are at least as good as
those from A2. This is summarized by

< A+-,, 1, 2, r’-r,
(3.13)

_,,+,<’ <A.+_,,, =r’-r+ 1, r’-r+2,...

3.3. Contraction of . Now we compare the operator A & constructed using
a smaller space ’ for which (1.1) is valid and using the same p and . Note that
r’-rank (3’, ) satisfies r’<_-r, and that n’-r’<- n-r, where n’= dim Y. Here
we use the notation

(3.14) =1v, where =f3’+/-

and

(3.15) ’= @’2, where ’ f31 +/-.

Clearly

(3.16) 2 12 and 2.
Since is a subspace of 2, the operator is defined on the space

while d is given on the smaller space -. Since we have v and
12, we may write 2; +

V 2 and take

(3.17) i =Qi v- and l-_t_.
With this choice of 1 we can write

1.

From the second of (3.17) and the definition of O we have OO- 0. In addition
O-O2 0 since 2 P({[I) SO that we have

(3.18) (I-01)(I-02)=(I-Oi)(I-O[)(I-02)=(I-O’l)(I-O--02).
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Using (3.18) and the notation 02- Q-[-Q2 we can write A2 in the form

A (z-

For the comparison we consider the operatorz defined on the larger space’ by

’-(I- O)*(Z- Q)*(A’-p)(1- O)(I-
Two observations about 2 complete the argument" First, the part of2 in is
exactly 2; second, we have

which is an immediate consequence of the inequality (3.1). Thus 2 is smaller than
the part of in . As a cosequence gives more lower bounds and better
lower bounds than those of Az. This is summarized by

h_.,+,, v 1, 2,. , n-r,
(3.19)

_,+<’===<a_,,+,, v=n-r+l,n-r+2,....

3.4. Increase in p. If p is increased to po while (1.1) continues to hold and the
spaces and are not changed, the spaces 1, 2, 1, and 2 can be kept the
same. Let be the new intermediate operator constructed using p’, i.e.,

o2=a d(I-Q) one,
where

d= (I- O1)*( -p’)(I- O1).

Since p’gp we have 1, and by (3.3) it follows that

(I- 02)g(I- O) in,
and hence

(3.20) 2A2.
From this it follows that the eigenvalues ’ of are better lower bounds than
those of Az, i.e.,

< < v= 1,2,
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ON THE TREATMENT OF A DIRICHLET-NEUMANN
MIXED BOUNDARY VALUE PROBLEM FOR HARMONIC
FUNCTIONS BY AN INTEGRAL EQUATION METHOD*

R. GONZ/LEZ AND R. KRESS"

Abstract. Using an approach which extends the well-known classical integral equation methods,
we reduce a mixed boundary value problem for harmonic functions to a system consisting of two
integral equations of the second kind. Existence is proved by the Fredholm alternative for compact
operators. The integral equations can be solved approximately by successive iterations. Further
investigations are made on the spectrum of the boundary integral operator.

1. Introduction. Let B be an open domain of ff", m -> 3, with boundary OB
which is decomposable in the form

OB OBo U OBj.

OBD and OBN are nonempty sets and consist of a finite number of disjoint, closed,
bounded Lyapunov surfaces and on which we shall impose Dirichlet and
Neumann boundary conditions, respectively. The complement of B in I is
denoted by B. The union of all the components of B which have boundaries in
OBD(OBN) will be denoted by JD(JN). If / is unbounded we denote the
unbounded component of B by E with boundary OE.

In this paper we shall study the following Dirichlet-Neumann mixed bound-
ary value problem for the Laplace equation:

(1.1) Au 0 in B,

(1.2) U fD on OBD,

(1.3)
0u

fN on OBr,
On

where fo and fN are given continuous complex functions on OBo and OBn, and n is
the outward drawn unit normal to OB. We shall confine ourselves to classical
solutions, that is, we shall consider solutions which belong to Ca(B)f"l C() and
for which the normal derivative Ou/On exists on OBn in the sense of uniform
convergence by approaching OBN from inside B along the normal direction. In the
case when B is unbounded we impose the additional restriction

(1.4) u(x)- 0,

uniformly. Mixed boundary value problems of this type arise in many fields of
mathematical physics, for instance in elasticity, heat conduction and eletrostatics.

By Hayes and Kellner [2] the mixed boundary value problem (1.1)-(1.3) for
harmonic functions in 2 was reduced to a pair of coupled integral equations
consisting of one equation of the first kind and one equation of the second kind. In
general, however, integral equations of the second kind seem to be more

* Received by the editors October 21, 1975, and in revised form April 12, 1976.

" Lehrstfihle fiir Numerische und Angewandte Mathematik, Universitit G6ttingen, D-34

G6ttingen, West Germany.
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advantageous in order to obtain existence and uniqueness theorems by the
Fredholm alternative for compact operators.

Therefore in this paper we shall present an approach which extends the well-
known classical integral equation method of Fredholm for the case when either
OBo or OBN is empty and which replaces the mixed boundary value problem by
an equivalent pair of coupled boundary integral equations of the second kind from
which an existence theorem for the mixed boundary value problem can be
derived. Furthermore, ’this system of integral equations can be solved approxi-
mately by iteration methods. Additional investigations are made on the spectrum
of the boundary integral operator. The eigenspaces and generalized eigenspaces
are studied and by an example it is demonstrated that the spectrum of the
boundary integral operator in general is not real as it is in the limiting cases
OBo or OBey .

Without going into the details we remark that all results remain valid in 2
with some modifications in the proofs due to the behavior of the fundamental
solution In1 at infinity. In a similar way a Dirichlet-Neumann mixed
boundary value problem for harmonic vectorfields was treated in [3].

We note that on each closed surface we have either the Dirichlet or the
Neumann condition. The more difficult problem in which the Dirichlet conditions
are imposed on part of a closed surface and Neumann conditions on the remaining
part is not considered.

2. Equivalent boundary integral equation. Let C(OBo)(C(OBrq)) be the
Banach space of continuous functions 4o: OBo C(4u: OBuC) with norm
[][]:=sup0 [(x)l(llll:=sup0 IN(x)]). We can identify the Banach
space C(OB) of continuous functions : OBC with the Cartesian product
C(OB) C(OBD) x C(OBN).

Define compact linear integral operators A, A’: C(OB) C(OB) by

[ &u(x’)y(x, x’) ds(x)+
/X(D)A:= BN

(’) = f or(x, x’)
o

4o(x’) on (x) on (x’)
s(x’)

o 4(x’) oe(x,on(xX’) s(x’)

and

foB @o,(X’)
OT(x’ x’)

ds(x’)
on(x)

’)(x’) (x’x

(2.2) = )u A’:=
(x )V(x, x’) ds(x’)

on (x’)
s(’)
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where

2 1
/(x, x’)’-(m 2)w,, Ix x’l"-2’

x # x’,

denotes the fundamental solution of the Laplace equation in N" with w,, being the
area of the unit sphere. The compactness of A and A’ follows from the weak
singularity of the kernels on OBo x OBo and OBr, x OBu and the continuity of the
kernels on OBo x OBN and OBu x OBo. As is easily seen by interchange of order of
integrations, A and A’ are adjoint with respect to the bilinear form
(., ): C(OB) x C(OB) - C defined by

(2.3) (’ ):=I d ds Io &Og ds + I NON ds
B BD OBN

that means there holds

(2.4) (Ab, q)= (, A’), b, C(OB).

Extending the classical approach due to Fredholm we seek a solution u of the
Dirichlet-Neumann mixed boundary value problem in the form of a double layer
potential on OBD and a single layer potential on

4,o(x’)’(x’ x’)
U(X)

o o, (x’--7- ds (x’)
(2.5)

I qbN(x’)’y(x, x’) ds(x’)+
BN

with continuous densities bo and brq. The potential u clearly satisfies the Laplace
equation in both B and/ and furthermore u(x) O, Ix oo. From the well-
known jump conditions of potential theory [6, p. 32] we get

(2.6)
u+/- Io 4o(x’)

or(x. x’)
no On (x’--- ds (x’)

+ I. 4m(x’),(x.x’) as(x’)+/-4o
BN

(2.7) Ou+
On

(2.8)

On_
on OBo,

On

o,(x, x’)
cls(x’)+ &u(x’) On(x’---- 1 onOBu,

Br

(2.9) u+ u_ on OBu.

on OBD,

With the indices + and we distinguish the limits obtained by approach-
ing OB from inside/ and B, respectively. Employing the above relations, we
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immediately have
THEOREM 2.1. The potential

u(x)= Io cho(x’)
OY(x’ x’) IoOn(x’ ds(x’)+ , (x’)v(x, x’) ds(x’)

with continuous densities o and solves the mixed boundary value problem

Au 0 in B,

u fo on OBo,

Ou
On

[zv on OB,

D) solves the integral equation(and u(x) - O, Ixl-’ o ifB is unbounded) iff P:= v
dp-Adp=F

whereF:=
fv

Analogously the adjoint operator A’ corresponds to the mixed boundary
value problem in the complement B with Dirichlet conditions on OBN and
Neumann conditions on OBo.

THEOREM 2.2. The potential

v(x) Io qo(x’)y(x,x’)ds(x’)-Io N(x)
BD B

ds(x’)

with continuous densities Oo and bu solves the mixed boundary value problem

Av=0 in J,

go on OBo,
On

v gu on OBu,

(bo) solvesthe integralequation(and v(x) - O, Ix - ifB is unbounded) iff:= q
-A’W=G

where G :=
-gN

As is easily seen from the signs in the jump conditions (2.6) and (2.8), the
operator -A with respect to the potential u from (2.5) corresponds to the mixed
boundary value problem in/ with Dirichlet conditions on OBD and Neumann
conditions on OBN. Thus, we summarize the correspondence of boundary integral
operators and mixed boundary value problems in Table 1.
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TABLE

Operator A A’
Region B
Dirichlet condition
Neumann condition OBrq OBo

Operator -A -A’
Region / B
Dirichlet condition OBD OBN
Neumann condition OBN OBD

3. Uniqueness of the mixed boundary value problem.
THEOREM 3.1. The Dirichlet-Neumann mixed boundary value problem has

not more than one solution.
Proof. Let u be a solution of the homogeneous mixed boundary value

problem. By the maximum principle its greatest and least values are attained on
the boundary OB or at infinity if B is unbounded. If the maximum or minimum is
attained on OBlv by a theorem of Giraud [6, p. 7] from Ou/On 0 on OBN we
deduce u const, in B and then from u 0 on OBo we get u 0 in B. If maximum
and minimum are attained on OBo or at infinity we immediately have u 0 in B.
Hence uniqueness is proved. We remark that Green’s theorem cannot be applied
because we have not assumed the normal derivative Ou/On to exist on OBo.

4. Homogeneous boundary integral equations.
THEOREM 4.1. Letpo be the number ofbounded components of1. Then for

the null space ofI-A (I identity) there holds

dim N(I-A) Po.

Remark. This result also holds in the case OBey . In the case OBo we
have dim N(I-A) 1.

Proof. Let be any solution of the equation

(4.1) -A=0.

Then by Theorem 2.1 the potential u defined by (2.5) solves the homogeneous
mixed boundary value problem. Hence from our uniqueness theorem there
follows

(4.2) u=0 inB.

Making use of the continuity (2.9), we now get u+ 0 on OBu and the maximum
principle yields

(4.3) u=0 in/r.
From the continuity (2.7) we have Ou+/On 0 on OBu. Thus, employing Green’s
theorem, we find

(4.4) grad u 0 in/o,
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which means u H(o), where H(;o) denotes the linear space of all functions
which are constant on the components of Bo and vanish in the unbounded
component E if/o is unbounded. It is obvious that dim H(/o) Po. From
2bD U+-- U_ on OBD we derive )O K(OBD), where K(OBo):=H(o)loo is the
linear space of all functions which are constant on the components of OBD and
vanish on OE if/D is unbounded. Finally, 2bN Ou_/On- Ou+/On on OBN yields

bN=0. Therefore, any solution of (4.1)must be of the form = () with

t e (OBD).

Conversely, let be of the form
0

theorem we deduce

K(x’)
Oy(x, x’______) ds(x’)

Bo On(x’) 2K(x), x /o.

Hence, using the jump conditions, it follows that

(4.5) I tc(x’)
OY(x’ x’)

’)
no On (x ’------- ds (x ’) x (x x OBo,

and

(4.6) Io r(x’)
02y(x’ x’)

no On (x) On (x’)
ds (x’) 0, x OBs,

that is, -A 0. Thus, we have established

(4.7) N(I-A K(OBD x {0},

and therefore dim N(I-A) PD.
THEOREM 4.2. LetPl be the number of bounded components of. Then for

the null space of I+A there holds

dim N(I+A) pu.

Remark. This result holds in the case OBo . In the case OBN , we
have dim N(I+A) 1.

Proof. Using Table 1 at the end of 2 and applying Theorem 4.1 to I+ A’, we
get dim N(I+A ’) pu. Hence by the Fredholm alternative dim N(I+A) pu.

THEOREM 4.3. IfBu is bounded the generalized null space ofI-A is equal to
N(I A) (the Riesz number is one). If1 is unbounded the generalized null space
ofI-A is equal to N(I-A)2 (the Riesz numberis two) and has dimensionPo + 1.

Proof. Let (I)2 E N(I-A)2 and define 1:=2-A2. Then

(4.8) (I)I-A(I) -’0, (I)2-A(I)2=(I)1.

Define potentials U and u2 with layers (I) and (I)2 by (2.5). From the proof of
Theorem 4.1 we already know

(4.9) Ul=0 inBt_JBl,
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(4.10) grad ul 0 in/o.

Applying Theorem 2.1 to the second equation of (4.8) we then find

(4.11) U2- --tD,1 --1/2U + on OBD,

(4.12) 0U2
n 4, 0 on Bu.

With the aid of Ou2//On Ou2_/On on OBo, Green’s theorem yields

Ou2- ds
On

OU2+
Ul+ ds (grad u 1, grad U2) dx O.

Hence

(4.13) grad u2 0 in B.

We now have to distinguish between the two cases where/N is bounded or
unbounded.

(i) Let/v be bounded. In the case B is unbounded, from (4.13) there follows
u2 0 in B. Now (4.11) yields u l/ 0 on OBo, and by the maximum principle
ul 0 in/o. Hence, from bo,1 1/2(ul+- ul-) on OBo we get bo,1 0 which means

=0.
In the case Bo is unbounded we have u 0 in the unbounded component E

of/. Then from (4.11) and (4.13) we again get u2 0 in B and, arguing as in the
previous case, we derive a 0. Thus, (I)2 N(I-A) and if Bu is bounded we
indeed have N(I-A) N(I-A )2.

(ii) Let/u be unbounded. From (4.13) there follows u2 const, in B. Using
OUz+/On--OUz_/On on OBD we get OUz+/On 0 on OBD. Hence U2 "*:/(/O) and
4o,z 1/2(u2+-u2-) K(OBo). From u2+ u2- on OBu we deduce u2+ eonst, on
OBu and therefore u2 const, in/u\E. Thus N,2 --1/2(Ou2+/On OUz_/On) 0 on
OBu\OE. In view of (4.6), the second component of the equation (I)2-A(I)2 (I)1
now reads

Oy(x, X(4.14) thu,2(x) + J0 bv,2(x’) n(x ds(x’) O, x E.

This integral equation corresponds to the Neumann problem in/:=m\/ and, as
is well known, it has one linearly independent solution [6, p. 82]. Let N(OBu) be
the one-dimensional linear space of all functions X defined on OBN which vanish
on OBI,\OE and for which XI0 is a solution of (4.14). Then we have established

any (I)2 N(I-A)2 must be of the form (I)2--(t/) with K(OBD)andthat

X N(OBN).
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Conversely, let :z be of the form cI)2= () where r K(OBo)and X

N(OBv). Then for the potential

w(x) f X(x’))’(x, x’) ds(x’),
E

by the jump conditions and the integral equation (4.14) we get Ow_/On 0 on OE.
Hence w const, in E, and in particular,

Io X(x’)r(x, x’) ds(x’) const., x OBo.
Br

Combining this with (4.5), (4.6) and (4.14) we conclude tI)2-AtI2--tI)I with
bO,l=const, on OBo and &rV,l=0 on OBN. Hence (I-A) (I-A)I=0.
Thus, we have established

(4.15) N(I-A)= K(OBD) x N(OBN),

and hence dim N(I-A)=Po + 1.
To complete the proof it remains to show that N(I-A)3= N(I-A). Let

3 N(I-A)3 and define .:=3 A3, 1:=. A2. Then

(4.16) 1 Aql 0, 2 A. 1, 3 A3 .
Define potentials u 1, u and u3 with layers 1,. and3 by (2.5). Then in addition
to the above results on ul and u, applying Theorem 2.1 to the third equation of
(4.16), we get

(4.17) u3- -&o, -1/2(u2+ u2-) on OBD,

(4.18)
Ou3_

qbiv,2
On 2\On On ! onOBlV.

Since u const, in B, using Green’s theorem and u2/ u2- on OBu, we derive

fB IO OU2+Igrad uzl 2 dx u2+ nn ds

The integral

0//3-- I0 0//3--
=2 u._ds=2 u._ds

B,,, On B On

2 (grad u, grad u3) dx O.

OU3-- IO OU3+u_ ds u_ ds
13o 13o

vanishes because u const, in B and BD is bounded. Now we conclude

grad
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and therefore ua=0 in the unbounded component E. Therefore bN,a
--(Ou2+/On-Ou2_/On)=02 on 0E. Summarizing all results on 2, we find 2
K(OBo) x {0} N(I- A). Thus, 3 N(!-A) and we indeed have N(I-A)2
N(I-A)3.

Arguing similarly as in Theorem 4.2 ve deduce
THEOREM 4.4. If:0 is bounded, the generalized null space ofI+A is equal

to N(I+A) (the Riesz number is one). If Jo is unbounded the generalized null
space of I+A is equal to N(!+A)2 (the Riesz number is two) and has dimension
pN+ 1.

Remark. The above results on the generalized null spaces are different from
the corresponding results in the limiting cases OBo or 0B , where we
always have Riesz number one. In the case of the Neumann problem where
OBo there is Po 0 but we still have dim N(I-A) 1, as mentioned in the
proof of Theorem 4.3. Thus our results are in agreement with the fact of
convergence of generalized eigenspaces for compact operators.

5. Existence of the mixed boundary value problem.
THEOREM 5.1. The Dirichlet-Neumann mixed boundary value problem has a

unique solution.
Proof. In the case Po 0 the homogeneous boundary integral equation

-A- 0 has only the trivial solution. Hence by the Fredholm alternative the
inhomogeneous boundary integral equation-A F has a unique solution
for all F. By Theorem 2.1 we then get a solution u of the mixed boundary value
problem.

In the case po > 0 let k, k 1, , Po, be a basis of the adjoint null space
N(I-A’). Define potentials

v (x) := I0 o,(x’),/(x, x’) as (x’)
BD

Io u,,, (x’) Or(x, x’___2) ds (x’) k
B On(x’)

These functions are harmonic in both B and/, and byTheorem 2.2 they satisfy

(5.2) O/’)k-I-
0 on OBo,an

(5.3) Vk+ 0 on OBu.

From these boundary conditions we conclude Dk H(o) and Vk 0 in/u.
Let/,, 1,. , Po, be the bounded components of/. Choose Po points

x B,, 1,..., p, and define potentials

(5.4) wi(x) := y(x, xi), x # xi.
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Then for the matrix

(5.5)

where

(5.6)

aik := (W/, k)

Wi IOBo
W/:= Owi

we calculate

(5.7) aik Vk (Xi).

Let Ak be a solution of the homogeneous system
PD

(5.8) Akaik O, 1," ", Po,
k=l

and define

PD

v := Y
k=l

Then (5.8) becomes v(x) O, 1,. ., Po, and in view of v H(o) we get v 0
in/o. Remembering v 0 in/N and using v/ v_ on OBo and Ov+/dn Ov_/On
on 0BN, we derive v_ 0 on OBo and Ov_/cgn 0 on 0Bn. Hence by the uniqueness
theorem we conclude v 0 in B. Thus we have

PD

Z Akl)k’-’O inlIm"
k=l

By the jump conditions the potentials Vk are linearly independent since the k’S
are. Therefore Ak O, k 1,. -, Po, and the matrix ak is regular.

Now the inhomogeneous system
PD

(5.9) E A,a,k (F, k), k 1,’", Po,
i=1

(-fo). We definehas a unique solution Ai for all inhomogenities F
fn

PD
F:= F- E ’AiW/.

i=1

Then (/, )= 0, k 1, ,.po, and by the Fredholm alternative the boundary
integral equation -A F has a solution . By Theorem 2.1 this solution of
the integral equation yields a solution t7 of the mixed boundary value problem
with boundary data

PD
a fo fo + E 1iWi on

i=1

On On
on OBN.
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Finally,
PD

U :-- /--" iiW
i--1

solves the original boundary value problem.

6. On the spectrum of the boundary integral operator.
LEMMA 6.1. Let h C be an eigenvalue ofA with eigenfunction alp. Then the

corresponding potential defined by

OT(x, X)(6.1) u(x) := |
o on(x’)

satisfies

ds(x’) + Io (x’)v(x, x’) ds(x’)
BN

(6.2) Au 0 in m\OB,

(6.3) (A- 1)u+ (A + 1)u_ on OBo,

(6.4) Ou+ Ou_
on OBo,

On On

OU+ OU..___(6.5) (A 1) -n (A + 1)
On

on OBN,

(6.6) u+ u_ on OBN,

(6.7) u(x)-O, Ixl-,oo.

Conversely, let A and u be such that (6.2)-(6.7) hoM. Then A is an eigenvalue of
A with eigenfunction dp where bD :=1/2(u+--u_) on OBD and bu:=
-1/2(Ou+/On-Ou_/On) on OBj.

Proof. Let A be an eigenvalue of A with eigenfunction . Then the potential
u defined by (6.1) clearly satisfies (6.2), (6.4), (6.6) and (6.7). Using AO= AO
from the jump conditions we obtain

u=- (A :i: 1)6D on 0BD,

whence (6.3) and (6.5) follow.
Conversely, let A and u satisfy (6.2)-(6.7) and define bo := 1/2(u+-u_) and

4’N := -1/2(Ou+/On-u_/On). Inserting (6.4) and (6.6) into Green’s representation
formula

1I (Ou+(x’_) Ou_(x’) ,)u(x) - o(x’) -(x, x’) ds(x

1 Io ’)
Oy(x, x’)+ [u+(x -u_(x’)] -(x d(x’),
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we obtain

u(x)=
Bo

ds(x’) + Io 6,,(x’)v(x, x’) ds(x’).
BN

Using the jump conditions we get

U+IOBo
OU+/- =A+/-.

Hence from (6.3) and (6.5) it follows that A A.
THEOREM 6.2. The boundary integral operatorA has spectral radiusp(A 1.
Proof. Since A is compact, any nonzero number in the spectrum is an

eigenvalue. Let A be an eigenvalue. Then by Lemma 6.1 the following relation-
ships hold for the corresponding potential:

0a+ 0a_
(a + 1)(a 1)u+7 (a + 1)(a + 1)u_ on OBD,

On

0+ 0_
(A +l)(A-1)u+--y-=(hon +l)(h +l)u_ 0--n-- onOBN.

Integrating over OBo and OBN and adding with the aid of Green’s theoremwe find

(1 +)(1-a)IB Igrad ul2dx --(1 +A)(1-)IB Igrad ul2dx

=]1 +alzI Igrad U]2 dx.

The real part of this equation gives

(6.8) (1 -IA 12) I Igrad u dx l1 + A 12 Is Igrad u 12 dx.

Now assume I,1-> 1, a # 1, a #- 1. Then from (6.8) there follows

IB Igrad u 12 dx In Igrad u{2 dx O,

that is, grad u 0 in R’. Since u vanishes at infinity, from (6.3) and (6.6) we
deduce u 0 in [Rm. Hence by the jump conditions we find = 0. Thus, all
eigenvalues of A except possibly 1 and -1 have absolute value less than one. By
Theorems 4.1 and 4.2 we have 1 or -1 an eigenvalue if PD >0 or P,v >0,
respectively. Since OBD # J and OBN# ( then PD +pv>0. Therefore the
desired result p(A)= 1 is established.

Remark. Since the spectral radius p(A)= 1 the boundary integral equation
can be solved approximately by successive iterations when relaxation methods (in
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case -1 is an eigenvalue) and deflation methods (in case 1 is an eigenvalue) are
combined. Using a modified boundary layer approach due to Brakhage, Leis and
Werner 1], [5, p. 165] one can reduce the mixed boundary value problem to an
integral equation which is uniquely solvable. For the corresponding mixed
boundary value problem for the Helmholtz equation this approach is investigated
in [4]. However, in this case the spectral radius of the boundary integral operator
does not remain less than or equal to one; consequently in the modified approach
successive approximations do not converge.

By well-known results of Plemelj [7] the spectrum of the boundary integral
operators in the limiting cases OBo or OBlv is real. This in general is not
true for the mixed problem. To show this we conclude with the following problem.

Example. Let B be the domain between two concentric spheres. OBo is the
interior sphere of radius 1, and OBN is the exterior sphere of radius R. In spherical
coordinates p, (9 the general function u harmonic in "\OB and vanishing at
infinity is of the form

0 < <1

1 <-p <-R,

R <-_p < oo,

where Y(,,k,)m, k 1,..., kn,m, denote the linearly independent spherical harmonics
of order n in [m. Comparing the coefficients of the three series we easily derive
that (6.3)-(6.6) are satisfied iff

(1-a)aT+ (1 +A)b + (1 +,a.)ck

na7 nb7 + (n +m-2)c7

(1 +A)nb(,b)

=0,

=0,

(l+,)(n+m-2) (,k) (1-A)(n+m-2)d(,,k) O,R2n+m_2 C R2n+m_2

1 ) 1 -(kb(,,k) + R2n+m_2’c R2nm_:idn O,

k 1, , k,,,., n 0, 1, 2, . These equations have a nontrivial solution iff the
determinate vanishes

(1 A){[A (2n + m 2) (m 2)]2 + 4n(n+m-2)}e2n+m_2 O.

Hence, the spectrum of A contains the complex conjugate eigenvalues

1 [ 2/n(n+m-2)i]A,
2n+m-2

m-2+ R,_1+,,/2 n=0,1 2,...
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A CLASS OF GENERATING FUNCTIONS*

L. CARLITZ

Abstract. Generating.functions of the type .,’L’+a")(x)z ", P’+"t+")(x)z" have been
obtained recently. In the present paper a general result of this kind is derived making use of the
Lagrange expansion. A number of applications are given. These include, in addition to the Laguerre
and Jacobi polynomials, the Hermite, Legendre, Bernoulli, Euler and Bell polynomials.

1. The Laguerre polynomial

L(,,,)(x) y. (_1)k
(c 4-1),x k

k=O k!(n-k)!(a+l)k

has the familiar generating function [11, p. 100]

(1.1) L(,,(x)z"=(1-z)-- exp ’XZ
n=O 1--z

Also it has been shown recently [2], [3] that

(1 2) E ]"(t+n)(x)un (1 --D)a+l
e

.=o 1 -/v
where a,/3 are arbitrary complex numbers and v is defined by

(1.3) u v(1 +v)--, v(0) =0.
Moreover if (1.2) is written in the form

(1.4)

then

E L’+t")(x)u A (u, a, ) exp {xB(u,/3)},
n=0

(1.5) Y. L(n-a-(13+l)n)(x)un=
n=0

where

A(-u,a,) exp-XB(-u,)}l-B(- u,/3) ti--- u,i

(l+v)+1(1.6) A(u, a,/3) B(u,)=-v.
1 -/3v

It is also shown in [3] that

(1.7) B u, f (n -1+ 1)n u "]__
and

(1.8) B(-u, -/3-1)= -B(u,#)
-B(u,#)"

* Received by the editors July 22, 1975, and in revised form February 28, 1976.
f Department of Mathematics, Duke University, Durham, North Carolina 27706. This work was
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Thus when u is replaced by -u and fl is replaced by -fl- 1,

l+v"

From these observations the equivalence of (1.4) and (1.5) is immediate.
The Jacobi polynomial

n x-1 1]P(,,’t)(x’ (n+ce)(n+kfl)(_.___) -k(.x+ ]k
k=O k 2

has the familiar generating function [11, p. 69]

(1.9)

where

Y’. P’’t)(x)z" 2"+ta-l(1-z +p)-’(1 +z +p)-t,
n=0

p (1 2xz + z2) 1/2.
Also it has been proved by Srivastava and Singhal [9] that

(1.10) E P’-*"’t-v")(x)z"=(l+u)-’(l+v)-t[l+(1-X)u+(1-tz)v]-1

where u, v satisfy

u =-1/2(x + l)z(1 + u)a (1 + v)"-1,
(1.11)

v -1/2(x 1)z(1 + u)X-m(1 + v)t*.

In another paper ([10]; see also [1]) Srivastava and Singhal have obtained a
result like (1.8) for a more general class of polynomials.

The above results suggest the following more general situation. Let

(1.12) A (z) 1 +
n=l n=l

denote arbitrary functions that are analytic about the origin and put

(1.13) A (z)(B(zff’ Y. c(a)z"/n
n=0

thus defining the sequence {c,a)} depending on the parameter a. We seek a
generating function for

(1.14) 2 c?+’)z"/n !.
n=0

This is carried out by making use of the Lagrange expansion [5, p. 125]. We
show that

A (z)(B(z))TM
(1.15) Y c(,,* +’*")u"/n

,=o B(z tzzB’(z )’
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where

(1.16) u=z(B(z))-.
We then make a number of applications of the general result. In additiola to

the polynomials of Laguerre and Jacobi we treat also the Bell polynomials and the
Bernoulli polynomials of arbitrary order. We remark that in the case of certain
polynomial sets it may be possible to identify the parameter A of (1.10) with the
"variable". For example, we show that the Hermite polynomial defined by

oo Zy’. H,,(x)-. e2xz-z

also satisfies

U e2xz-z2
(1.17) E H,(x +ny)--7

,=0 n: 1-2yz

where u ze -’z. Also a generating function of this kind is obtained for a
polynomial closely related to the Legendre polynomial and, more generally, the
ultraspherical polynomial (see (5.11) and (5.13) below).

It should be noted that more than one parameter can be varied--as for
example in the case of the Jacobi polynomial. Indeed, for the general Bell
polynomial, we may have a countable number of parameters (see (7.5) below). We
remark that the Hermite polynomial is a very special instance of a Bell polyno-
mial.

so that

(2.1)

2. Let c be defined by (1.12) and (1.13). Then by Taylor’s theorem

c?) D"{A (x)(B (x))X },, =o

c? +’") [D"{A (x)(B(x));’ +’"}]x =o-

We now apply the Lagrange expansion [5, p. 125]. Put

(2.2) u z/(4(z)) (b(0) # 0),

where b (z) is analytic about the origin. Let f(z) denote an arbitrary function that
is analytic about the origin. Then

_-v u"
(2.3) (x (x))"

1 u4’(z) ,20
Comparison of (2.3) with (2.1) suggests that we take

(2.4) f(x) a (x)(B(x))’, (x) (B(x))’.

Thus (2.2) becomes

(2.5) u z(B(z))-",
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so that

1- u’(z)

Hence (2.3) yields

A(z)(B(z))+’
(2.6)

S(z tzzB’(z

We may state the following

B(z)- txzB’(z)
B(z)

(x +n) U
--}".C
n=O n!"

THEOREM 1. LetA (z ), B(z be arbitrary functions that are analytic about the
origin and such that

A (0) B(0) 1.

Define the coefficients {c(,,x)} by means of

(2.7) A (z)(B(z)) Y. c)z"/n !,
n=O

where A is independentofz butotherwise arbitrary. Then, for arbitrary tz independent
of z, the generating function

satisfies (2.6), where

(2.8)

(x+n) un

u=z(B(z))-’.

For several parameters, if, for example, c (’’). is defined by

(2.9) Z c(2"z"/n!= A (z)(B(z))’ (C(z)),
n=O

where A (z), B(z), C(z) are analytic in a neighborhood of origin and

A(0)= B(0)= C(O)= 1,

then we have

(2.10) (A +A’n,p.+p.’n) U

n=0 n!

where

A (z)(B(z)) (C(z))
i-z{a’[B’(z)/B(z)]+ g’[C’(z)/C(z)]}’

u z(B(z))-’V (C(z))-’’
A greater number of parameters are treated in the same way.

3. We shall now examine some special cases of (2.6). In the first place, for
/z 0, (2.6) reduces to (2.7), as is to be expected.

Next take

(-xz) B(z)= 1-z(3.1) A(z)=exp
1-z
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and

(3.2) , =-a- 1, /z =-/3.

Thus (2.8) becomes

(3.3) u z(1- z)t.
Clearly, by (1.13) and (1.1),

(, !L(,,,)(x).C

It follows that (2.6) reduces to

=o 1- flz (1- z
Put v z/(1 z), so that

v 1
l+v l+v

1-flz(1-z)-1= 1-fly.

Then (3.4) becomes

(3.5)
,,=o 1-fly

where

(3.6) u=v(l+v)--.
Turning next to the Jacobi polynomials, we have by (1.9),

P(,,’’t)(x) n !2+t[OT{p-l(1 z + O) (1 + z +O)-t}]z o,
so that

n!2’+t+(’+)"[D’{p-(1-z +p)--"(1 + z +p)-t-"}]z=O.
It is convenient to apply (2.3) directly. We accordingly take

f(z) 2"+p-(1- z +p)-" (1 +z + p)-O,

(z)= 2"+(1- z +O)-v(1 +z +O)-and

(3.7) u 2--z(1- z +p)(1 +z +p).
Substituting in (2.3)we get

(3.8)

Z P’+"’t+n")(x)u"=
n--O

Put

2+t(1- z +p)- (1 +z +p)-t
p-z{’I,[(x-z +p)/(1-z +p)]+6[(x-z-p)/(1 +z +p)]}"

+o),

s=1/2(-l+z+p),
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so that

p 1 +r+s,
z:s-r.

Then (3.8) becomes

Z P’+v"’t+")(x){z(1 + r)V(1 + s)}
n=O

(3.9)
r-s-/

1 + r + s +1/2(r-s){y[(x + 1 + 2r)/(1 + r)]+ 6[(x 1 2s)/(1 + s)]}"
Now put

(3.10) t z(1 + r)V(1 + s) (s r)(1 + r)V(a + s).
To show the equivalence of (3.9) and (1.10), it suffices to show that

{ x+l+2r x-l-2s}+6 1 +(1 + y)r + (1 +6)s(3.11) l+r+s+1/2(r s) y
l+r l+s

and

r= 1/2(x + 1)t(1 + r)-V (1 + s)-6-1,
(3.12)

s -1/2(x 1)t(1 + r)-v-a(1 + s)-.
By (3.10), (3.12) reduces to

r=1/2(x + a)(s r)(1 +s)-1,
(3.12’)

s -1/2(x a)(s r)(a + r)-1,
while (3.11) is

(1/2 r-s)(1/2 r-S_r)=O.(3.11’) / (x-1)]r-S +6 (x+l)l+s
Since (3.11’) is implied by (3.12’), the verification is completed.

4. The Hermite polynomial H, (x) may be defined by

Z 2xz(4.1) E H, (x)--i= e
n=0 n.

so that

H, (x [D’ e2z-Z]z =o.

Replacing x by x + ny this becomes

(4.2) Hn (x + ny) [D’ eZz-z+Z,Z]z =o.

We accordingly take

f(z)=e2xz-z2,
(z)=ez
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and

(4.3)

Hence (2.3) yields

(4.4)

-2yzu=ze

U
2xz-zZ

H,,(x+ny)u=e
=o n! 1-2yz"

This result is presumably new.
It is of some interest to give a direct proof of (4.4). Since

Hk (x + ky) ,,E (2ky)k-"g. (x),

it follows that

ll
k

Z
k k{k(4.5) kY’=o H(x+ky)-(=. =o e- o= kin(2ky)-H(x)"

By (4.1) the right-hand side of (4.4) is equal to

1 z
(4. H

Comparing (4.6) with (4.5) it is evident that (4.4) is equivalent to

-2kyz k-n

1 2yz n. =
e -n(2ky)

that is, to

e 2"yz (k+n)-------(2yze-2’z)k.(4.7)
1--2yz k=0 k!

Replacing 2yz by z and n by a this reduces to the known identity [5, p. 126,
no. 214]

e’ (k+a)k
(ze-Z)(4.8)

1-z =0 k

which holds for all a.

$. For the Laguerre polynomial L’)(x) one can also obtain a generating
function analogous to (4.4). Indeed one can now get a "mixed" generating
function for L(2/a")(x + ny).

By (1.1) we have

L(x) =n! D (l-z)--exp I-Z z 0

Hence

(5.1) L(’+t")(x+ny)=nl[Dz{(1-z)-’-a"-’,, exp(-(x+ny)zll- ,}]z=0"
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We accordingly take

f(z)=(1-z)-’-exp 2

(z) (1 z)- exp
1

Thus

’(z) /3 y
(z) 1-z (l-z))

so that (2.3) yields

t.(+a")(x +ny)u"
n=O

with

(l-z)-’-1 exp[-xz/(1-z)]
1 [z/(1 z)] + (yz/(1 z)]

(5.3) (yz)u=z(1-z)texp
1-z

For y 0, (5.2) reduces to (3.4). For fl 0, (5.2) becomes

(l-z)-- exp [-xz/(1-z)]
(5.4) Y. L(,,)(x + ny)u

=o 1 + [yz/(1 z)2]
where u again is given by (5.3). A direct proof of (5.4) is not difficult.

If we put v z/(1-z), (5.2) becomes

(5.5) y. LC.+.)(x+ny)u (l+v)’:’+1 exp (-xv)
,,=0 1-pv+ yv(1 +v)

where now

(5.6) u v(1 + v)-t-I exp (yv).

A generating function like (5.4) can also be obtained for a modified Legendre
polynomial. Rainville [6] has noted that the polynomial

4,. (x) (1 xZ)"/ZP. ((1 X2) 1/2)
satisfies

where

eIo(tX) E .(x)t"/n!,
n-’O

(z/2)2,,
Io(z) ,,=oE (n !)2

Replacing x by 1Ix and t by xz, it follows that

(5.7) eZlo(z) E .(x)z"/n !,
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where

(5.8)

that

(5.9)

(x) x= (x 2 1)

It follows from (5.8) and the familiar generating function

P,,(x)z" =(1-2xz "-Z2)-1/2
n=0

Y’. ,,(x)z" ={1-2xz+(x2 1)z2}-/2

Expanding the right-hand side, we get

By (5.7),

and therefore

(5.11)

where

(5.12)

Cn(X)=2r<=n 2r+1/ r

-’, (x + ny) n ![D’{e(X+"Y)Zlo(z)}]z=o

u" eXZlo(z)Y ,(x +ny)--=
,=o n! 1- yz

u ze-YZ.

The generating function (5.11) is readily extended to

(5.13)
U 1-’(a +1/2) eXZ(z/2)-’+l/ZI,,,_l/z(Z)E (.(x + ny).= 1 yz

where

(5.14) (.)(x) x"(.) (xz- 1) P,

and

I, (z) Y’. (z/2)’ +z"

.=o n !F(a + n + 1)’

P’)(x) denotes the ultraspherical polynomial defined by

Y’. P(,,’)(xlz" (1-2xz +z2)-’.
n=O
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6. We now construct some examples of a different nature. Let

(6.1) S(n, k) . 2 (-1)g- ]"
=0

denote the Stirling number of the second kind and put

(6.2) A,(x) S(n, k)x.
k=O

It is well known (and easily verified) that

Z
(6.3) E A,(x)--. exp (x(e- 1)).

n=0

It follows from (6.3) that

A,(x) nl[O7 exp (x(ez- 1))]z=o,

so that

(6.4) A,(x + ny)= n liD7 exp ((x + ny)(ez- 1))]z =o.
We therefore take

Thus, by (2.3), we have

f(z) exp (x(ez- 1)),

(z)=exp (y(eZ-1)).

u" exp (x(ez- 1))
(6.5) ., A,,(x + ny)

,=o n! 1- yz eZ

where

(6.6) u z exp (-y(e 1)).

Making use of (6.3), (6.5) becomes

U Z
k

(6.7) Y A,,(x+ny)-.=(1-yzeZ)-1 , Ak(X)-...=0 k =0

Also it follows from (6.3) that

(6.8) A,.,(x+y)= (nk)Ak(x)A,,_k(y).
k=0

Thus the LHS (left-hand side) of (6.7) is equal to

, -. Ak(X)An-k(ny) Ak(X).. A,.,((n+k)y)-..
=0 k =0 k =0

Since, by (6.6), u is independent of x, it follows that (6.7) is equivalent to

(6.9) ., A,,((n + k)y)-. (1- yz e)-1.
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By (6.6) and (6.3)
_

k oo Z
n

=exp (ky(ez- 1))= A,,(ky)-.
rt-----0

(7.1)

where

Z
k

(7.2) E(x,z)= Xk-...k=l

For brevity we shall write

(7.3)

By (7.1) and (7.3)

Z
An(Xl, X2,’’’,x,,)-..=exp{U(x, z)},

n=0

A,, (x)= A,, (Xl, x2,’" ", x,,).

A,, (x) [D7 exp {E(x, z)}]z=0,

and so (6.9) becomes

u )-1 Z
(6.10) A,,((n+k)y)-.=(1-yze A,,(ky)-. (k=0,1,2,...).

n=O n=0

Presumably (6.10) holds for all k.
In particular, for k 0, (6.10) reduces to

U
eZ)-1.(6.11) ., A,,(ny)--=(1-yz

n-=0

In the next place, the LHS of (6.10), by (6.6) and (6.3), is equal to

oo l"zi zm " n
(-ny).2 A,,((n + k)y) , A(-ny).--4=

n=0 1=0

Hence we get the rather curious identity

., . A,,((n + k)y)Am_,,(-ny)
=0 =0

(6.12)
=(1-yze)- Y Am(ky)- (k=0, 1,2,...).

n’t=0

Needless to say, (6.8) does not apply to the sum

., A,,((n+k)y)A,,,_,(-ny).
n=0

This sum suggests a connection with Abel type sums [7, Chap. 1] that we shall
not pursue.

7. The polynomial A(x) is sometimes called a single-variable Bell polyno-
mial. The general Bell polynomial [8, Chap. 2] may be defined by
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so that

(7.4)

We therefore take

It follows that

(7.5)

An(x+ny)=[D exp {E(x, z)+ hE(y, z)}]z=O.

f(z) exp {E(x, z)},

qb(z) exp {E(y, z)}.

oo u exp {E(x, z)}Y. A,(x+ny)--=
n=0 n! 1 zE’(y, z)’

where E’(y, z) (O/Oz)E(y, z) and

(7.6)

Clearly, when

u z exp {-E(y, z)}.

X XI X2 X3

An (x) reduces to An (x) and (7.5) reduces to (6.5). Moreover, (6.8) generalizes to

(7.7) A,(+y) A()A_)
k=0

and the remaining formulas of’ 6 can also be generalized. A like remark applies
to the formulas of 4 since, by (4.1) and (7.1),

Hn (x) An (2x, -2, 0, ., 0).

A special case of An (x) of some interest is defined by

(7.8)

It follows that

(7.9)

Z
An(x1, X2).I exp {Xl sinh z +xz(cosh z 1)}.

n=0

An(Xl, X2)= An(Xl, x2, Xl, x2, ").

Formula (7.5) becomes

(7.10) An(x +ny,x+nY)n=
n’-O

where now

exp {X sinh z + x2(cosh z 1)}
1 z (y cosh z + y2 sinh z)

(7.11) u z exp {--Yl sinh z y2(cosh z 1)}.

$. The Stirling numbers of the first kind are defined by

(8.1) (x)n =x(x+l)"" (x+n-1)= Sl(n, k)x k.
k=0
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Since

(8.2) ,,o= (x),,. (1 z)-" exp x
k=,

we again have a special case o a Bell polynomial. Thus specializing (7.5) or
directly we have

u" (1 -z)
(8.3) ,=o2 (x + ny),,. 1- (yz/(1 z))

where

(8.4) u z(1-z)r.
Formula (8.3) can also be thought of as a special case of the Laguerre

polynomial identity (5.2).

9. A set of polynomials {fn (x)} is called an Appell set if

(9.1)

This is equivalent to

(x)=nf._,(x) (n 0, 1, 2,. .).

Z
(9.2) ’. f,, (x). A (z) exz, A (0) # O,

where A (z) is an arbitrary power series in z.
Since

and

we take

Therefore we have

f,, (x) [D’{A (z) eXZ}]z=o

f, (x + ny) [D’{A (z) e(X+"Y)Z}]z=o,

f(z)=A(z) yze b(z)=e

u" A(z) e
(9.3) E f,,(x + ny)---:=

,,=o n! 1-yz

where

(9.4) U =ze-yz.

Certain special Appell sets are of particular interest. The Hermite polyno-
mials (with a slight change in notation) furnish an important example. Other
instances that have received considerable study are the Bernoulli and Euler
polynomials defined by [4, Chap. 2]

Z Z e
(9.5) E B,, (x)--

,=o n! eZ-1
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and

z" 2 e
(9.6) Y’. E,,(x)-- eZ,,=o n! + 1’

respectively.
Specializing (9.3) we get

U 1 z e
(9.7) E B,,(x+ny)

,=o n! 1-yz ez-1

and

u" 1 2 e
(9.8) E,,(x+ny)--=

n=0 n! 1-yz e + l’

in each case

(9.9) u z e -’z.

However we can go considerably further. Bernoulli and Euler polynomials of
higher order are defined by [4, Chap. 6]

(9.10) E B(,,’)(x).. z_ 1
eXZ

and

(9.11) E E(,,’)(x).= eZ + l
e

n=0

respectively.
For (9.10) we take

f(z)
e

exz,

( z
4(z)=

eZ-1
er"

It follows that

(9.12)

where

UX B’+"t(x + ny)--=
n=o n!

[z/(e 1)] e

1- yz-B +[flz eZ/(ez- 1)]

(9.13) U e -yz.Z
e

Similarly

(9.14)
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where

(9.15) u Z
e+l
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A NOTE ON STIELTJES MOMENT SEQUENCES*

LEOPOLD SIMARf

Abstract. In this note we derive some inequalities on Stieltjes moments of different distribution
functions having some moments in common in the sequence and show how these inequalities can be
used in the comparison of some compound processes.

1. Introduction. Analyzing the Stieltjes moment sequence of a distribution
function we know from the Stieltjes moment problem (Shohat and Tamarkin [2])
whether its spectrum is reducible or not to a finite set of points. (The order of a
distribution function is the number of points of its support.)

In this note we give two important relations between the moment sequences
of distribution functions of different order having some common moments in their
sequence, and we emphasize the importance of these theorems in the comparison
of compound processes.

Consider a nondecreasing positive (>=0) function F(x) defined on [0, o). The
Stieltjes moment sequence of F is the sequence/Zk, k 0, 1, 2," ", where:

[’k X
k dF(x).

We restrict attention throughout this note to those F(x) whose moments all exist.

2. Two theorems.
THEOREM 1. Let F(x) be a nondecreasing, positive (>-_0) function defined on

[0, oo) with Stieltjes moments tZo, I1,’", which all exist. Assume F(x) is not
reducible to a finite set ofpoints.

Let there be a nondecreasing, positive (>-0) function F" (x) that is defined on
[0, oo) and is purely discrete with n points of increase and with Stielt]es moments
’o, ’, ", which all exist and such that k [-li,k fog" k 0, 1, 2, , 2n 1. Then,
1k 11,k for all k >-2n.

THEOREM 2. Let F"(x) and F’(x) be two nondecreasing, positive (>-_0)
functions that are defined on [0, ) and are purely discrete of order n and m
respectively, with n < m.

Let (’o, ’1, be the Stielt]es moment sequence ofF’(x) and (IZo, tz,
that ofF (x).

If the sequences are such that vj tzj, ] O, 1,. , 2n 1, then <- Izfor all].
Strict inequality holds for at least ] 2n.

Those results are applications of the theory of principal representations for
special Chebyshev systems. (See Karlin and Studden [1, Chap. 2].)

3. Comments. It may be noted that Theorems 1 and 2 are widely applicable
because the functions need not be normalized to 1.

As an example, consider a compound process defined as

(1)
P(g =j)= f-(x) dG(x)

Received by the editors April 1, 1975, and in revised form February 16, 1976.
f Center for Operations Research and Econometrics, Universit6 Catholique de Louvain, 3030

Heverlee, Belgium.
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where G is an arbitrary probability distribution function. If f- (x) can be factorized
as x g(x) h(j), we can define

(2) x dF(x)

where

(3) F(x) g(t) dG(t).

Since i=o P(O ])= 1, the moments of F(x) defined by (2) and (3) all exist.
Therefore we can compare compound proces.ses with different compounding
distributions G using the two theorems since P(0 ]) h (/")./zi. This was done in
Simar [3] for compound Poisson processes ((x) x e-X/.i!)jn order to compute a
maximum to the likelihood function of a given sample on 0.
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THE ADDITION FORMULA FOR
LAGUERRE POLYNOMIALS*

TOM KOORNWlNDER"

Abstract. Bateman’s addition formula for Laguerre polynomials of order zero is generalized to
the case of order a >0. The result is obtained as a limit case of the addition formula for disk
polynomials.

1. Introduction. This note answers a question posed by Askey [1, p. 83]. An
addition formula for Laguerre polynomials L(x) ( >0) will be derived which
reduces to Bateman’s addition formula [2, p. 457] for a 0 and which leads by
integration to Watson’s integral representation [16] for the product L(x)L(y of
two Laguerre polynomials.

This addition formula turns out to be a limit case of the addition formula for
the so-called disk polynomials which are orthogonal polynomials in two variables
on the unit disk. If r, @ are polar coordinates on the unit disk then the addition
formula is an orthogonal expansion of

L(x2 -t- y2-2xyr cos qt) exp (xyre iq’)

in terms of disk polynomials of order a- 1 depending on r and

2. Preliminaries. Let Jacobi polynomials P(."’)(x), Laguerre polynomials
L(x) and Bessel functions J(x) be as defined in Erd61yi et al. [6]. It will be
convenient to use the slightly different functions R(."’)(x), (x) and ,,(x),
respectively, which are defined by

(/) .’/r(,,/)R(’)(x)=P (x)/r. (1),

(x) e-(/XL(x)/L(O),
(x) v( + )(1/2x)-(x).

Laguerre polynomials are a confluent case of Jacobi polynomials by the limit
formula

(2.1) e(/2)xo,(x) lim R(,,’)(1 2/3-x),

which holds uniformly for x in bounded sets. The functions (x) satisfy the
inequality

(2.2) I(x)l -< 1 (a >-0, x _-> 0),

(cf. Erd61yi et al. [6, 10.18(14)]).
Let z x + iy, x iy, x, y . For a >-1 and for nonnegative integers

m, n the so-called disk polynomials RT,,,,,(z) are defined in terms of Jacobi
polynomials by

1)z’-" if rn ->n,
(2.3) R,.(z) R,,._m)(2ze 1)e._ if rn =< n.

* Received by the editors April 5, 1976, and in revised form July 16, 1976.
f Mathematical Centrum, Amsterdam, the Netherlands.
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It is easily proved that the polynomials R,n(z) are orthogonal polynomials of
degree rn + n in x and y on the unit disk with respect to the weight function
(1 x 2 y2)% In fact, disk polynomials are characterized by the following proper-
ties:

(i) R,n(z)= const, z’3" +polynomial of degree less than m +n;
(ii) L2+y2<l R,,,(x +iy)p(x, y)(1-x2-y2)’dxdy =0 for every polyno-

mial p(x, y) of degree less than rn + n;
(iii) R,,(1)= 1.
These polynomials were first studied by Zernike and Brinkman [17]. The

notation R,,(z) was introduced by the author [7, p. 18].
It can be proved that Ig:,,.(z)l_-< if a _->0, Izl----< 1. However, we shall only

need the estimate

(2.4) IR=,.(z)I 6(m") for rn --> oo,

uniformly for Izl--< 1, where a >-1 and n are fixed. This estimate follows from
Szeg6 [14, (7.32.2)] by using (2.3).

3. The addition [ormula [or Laguerre polynomials. Let a > 0. The formula

R,, (cos 01 e i.1 cos 02 ei*’-+ sin 01 sin Ozre i*)
a ()(7)(a+n+l)k(a+m+l)l

(3.1) --k0 10 a + k + (a +i; + k),

(sin O)+R++l (cos 0 e)m-k,n-I

(sin o2)k+IR/k+l (cos 02 ei’)R-1m-k,n-I k,l (re i*)
is called the addition formula for disk polynomials; cf. )apiro [13, (1, 21)] and
Koornwinder [8, (5.4)]. For a 1, 2, 3, both authors independently obtained
this formula by interpreting disk polynomials R,%.(z) as spherical functions on the
homogeneous space SU(a + 2)/SU(a + 1). Since both sides of (3.1) are rational
functions in ce, the case of general a then follows by analytic continuation.

By putting bl 4,2 0, x sin 01, y sin 02 in (3.1) and by substituting (2.3)
in (3.1) we obtain for m ->_n, a >0, 0-<_x -<_ 1, 0=< y -<_ 1"

R ,.-.)(2(1 X2)(1 y 2) _[_ 2x2y 2/.2 q.. 4xy(1 X2)1/2(1 y2)1/2r cOS t 1)

((1-x2)1/2(1-y2)/2 +xyre*)

(3.2) y]
a (a + n + 1)(a + rn + 1)1

k=O =o Ce + k + l (a + l)k(a

xk+lR(a+k+l’[m-n-k+l[)(l(,-k)(,,-1) 2X 2 (1--X 2)(1/2>lm-n-k+l[
Y k+le(a+k+l’lm-n-k+ll)(l(m-k)^(n-l) 2y z)(1 y 2)(1/)lm-’-k+llR’-l(rk, ei’).

Here rn A n denotes the minimum of rn and n. Both in (3.1) and (3.2) the right
hand side is an orthogonal expansion of the left hand side in terms of disk

-l(rei,).polynomials R k,l

Let us next replace x by m-1/2x and y by rn-1/2y in (3.2). Denote this new
formula by (3.2’) and let rn --> oo. First we calculate the formal limit case of (3.2’) by
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taking termwise limits. Using (2.1) we obtain

(x2+y2-2xyr cos $) exp (ixyr sin $)

(3.3) (7), a (a +n +1)
k=O l=o a + k + 1 k !(ol + l)k(Ce + k)l

xk+*++*(X2)Y-k+l’+-+*(Y2)R’-ak,l(r e ’’),
where x ->0, y ->0, 0_-<r_-< 1, 0_-<ff <2zr, a >0, n =0, 1, 2, . For fixed x, y, a, n
the convergence of the left hand side of (3.2’) to the left hand side of (3.3) is
uniform in r and (p. Denote the right hand side by

Ck,l(X, y, Ol)B)R k, (re’’),
k=0 1=0

where Ck, =--0 if > n. Then the coefficients Ck, denote the Fourier coefficients of
the left hand side with respect to the orthogonal functions R’,-[a(r e i). We shall
prove that this Fourier series uniformly converges in r and ft. Then the identity
(3.3) actually holds.

Let a and n be fixed and let x and y be in bounded sets. Then, by (2.2) and
(2.4) there is a constant M> 0 such that

a-1ICk,t(x, y, ee, n)gk, (re’)l<-_M’/k!,
uniformly in r and ft. Hence the Fourier series is uniformly convergent in r and

Integration of (3.3) gives the product formula

(3.4) "(X2)n(y2) 2acr-a n(X2+ y2 + 2xyr cos

cos (xyr sin if)r(1- r2)
(x, y _->0, a >0).

By putting r cos cos 0, r sin sin 0 cos p in (3.4) and by substituting
Poisson’s integral representation for Bessel functions we obtain

(3.5)
(x2)&’d(Y2)= F(a + 1)

(x2 2

F(a + 1/2)F(1/2) + y + 2xy cos 0)

-/2(xy sin 0)(sin 0)2’ dO
(x, y _-> 0, a >-1/2).

The case -1/2<a _-<0 follows by analytic continuation. This formula is due to
Watson [16]. Askey [1, pp. 82, 83] applied this product formula to define a
convolution structure for Laguerre series, thus extending earlier results of
McCully [10] for the case a 0. However, this convolution structure is not
positive and it is not defined for all L a-functions.

If we put r 1 in (3.3) and let a $ 0 then we obtain the addition formula

’(x2+ y2_ 2xy cos ) exp (ixy sin

(3.6)
1 (n+k)Y"

k
xk.k.(x2)ykk.(y2) e

k=O

iktP

"" -, X n--l(X y l=ln-l(y 2) e
/=1



538 TOM KOORNWINDER

This formula was stated without proof by Bateman [2]. Later three different
proofs were given by Buchholz [3, p. 144], Carlitz [4] and Miller [11, (3.14)], [12,
(4.127)]. Miller’s proof uses group theoretic methods.

4. Remarks.
Remark 4.1. For x y, r 1, 0 formula (3.3) implies the identity

1 E ce (a + n + 1)k +l+__.+l(x2))
k O O Ct + k + k (- -lk(d -+-k x

g 2

Inequality (2.2) is contained in this identity. Expressions for ((x + y)2) and
((x- y)2) follow from (3.3) by putting r 1 and

Remark 4.2. Askey [1, pp. 82, 83] applied the product formula (3.5) to define
a convolution structure for Laguerre series, thus extending earlier results of
McCully 10] for the case a 0. However, it was pointed out in Askey 1] that this
convolution structure is not positive and that it is not defined for all L -functions.
More satisfactory results might be obtained in terms of the functions A.,(x, t)
which are defined by

(4.1) A.g(x, t) e
L(0)

x0, tsR, n=0,1,2,...,.

For suitable functions f on [0, )x we can define a Fourier transform

. 1
f(x, t)A._,(x, t)x & dt(4.2)

with (formal) inversion formula

(4.3) f(x, t)= E f (n, )A.,(x, t)l l ( +
d.

Then the product formula (3.4) takes the form

(4.4) A.,(x2, s)A.,(y 2, t)

--1 2 y2

r(1 r) dr dO, > O,

which implies a positive convolution structure associated with the above Fourier
expansion.

Remark .3. For 0, 1, 2,. the functions A,,(x, t) can be interpreted
as zonal spherical functions on a certain homogeneous space. Let Nq-1 (with
elements (z, t) e Cq- x N) have the structure of a nilpotent Lie group N by the
multiplication rule

(z ., t). (z, t) (z +z, t + t+Im (z, z}),

where (.,.) denotes the Hermitian inner product on Cq-1. Let G be the
semidirect product of U(q- 1) with N, where u U(q- 1) acts on N as the
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automorphism (z, t)-(uz, t). This group G (the so-called group of bordered
unitary matrices) and some of its representations are discussed by Vilenkin [15]
and, in the case q 2, for instance by Miller [11], [12]. The space R2-1 can be
considered as the homogeneous space G/U(q- 1). Zonal functions of (z, t)
Raw-1 only depend on Iz[a and t. It turns out that convolution for zonal functions on
this space is commutative. The functional equation

f(x)f(y) Ik f(xky) dk, x,yG

for spherical functions f on the group G with respect to the compact subgroup K
can be reduced in the above case to a formula with the structure of (4.4), a q 2.

q-2 2Thus the functions (z, t) An., ([z[, t) are identified as spherical functions on
2q-1 as a homogeneous space of G. It would be of interest to extend the results in
Vilenkin [15] in such a way that the addition formula (3.3), a q- 2, is obtained
from the group theoretic interpretation, thus extending results by Miller [11], [ 12]
in the case q 2.

Remark 4.4. It was pointed out in Koornwinder [9, 5, Remark 8] that an
addition formula for Laguerre polynomials cannot be obtained as a limit case of
the addition formula for Jacobi polynomials. However, in a very recent paper
Durand [5] succeeded in deriving an addition formula for Laguerre polynomials n
this way. His result is a finite expansion of

L(X2 "- y 2 2xyrt xyr2)
in terms of certain polynomials in r and t which are products of Hermite and
Bessel polynomials.

Acknowledgment. The author would like to thank the referee for calling his
attention to [11], [12] and [15].
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A SYMMETRICAL ADDITION FORMULA FOR THE LAGUERRE
POLYNOMIALS*

LOYAL DURANDf

Abstract. We present a symmetrical addition formula for the general Laguerre polynomials
L’(Z) with argument Z x + y + 24xy rt-xyra. The formula involves a finite sum of Laguerre and
Hermite polynomials, and can be integrated to give a new product formula for L’(x)L’(y). This
addition formula is obtained as a limiting case of Koornwinder’s addition formula for the Jacobi
polynomials.

1. Introduction. Koornwinder [1] .recently derived a symmetric addition
formula for the Laguerre polynomials L(x) as a limit of the addition formula for
the disk polynomials [2], [3]. Koorwinder’s result can be written as

exp (- r e-i4")L:(x + y +2xy r cos )

(1)
2 E (a + k + l)

F(a + k)r(n + 1)
k=O/=0 F(k + 1)F(n + a + k + 1)

(-1)k-l

(xy)(1/2)(k+t)L:+_+l(x)L:+_+l(y)pl’-l,k-l)(2r2-- 1)rk-te-i(k-l)4""

This expression reduces for r 1 and a --> 0 + to Bateman’s addition formula for
L,(x) [4, p. 457], [5] and may be integrated [1] to give Watson’s product formula
for L:(x)L:(y) [6],

(2)

L:(x)L:(y) 2-1/2
r(n + a + 1) I e-,/xy 4’ Ja-(1/2)(4xy sin 4’)

F(n + 1) o (xy sin

L:(x + y + 2x/xy cos O)(sin )2 dO.

A different limit of the addition formula for the disk polynomials leads to
Koornwinder’s addition formula for the Jacobi polynomials [7]-[9],

(3)

PC.’a(xy +4i "x2 /i-y2 rt +1/2(1-x)(1-y)(r2-1))
k

X Ck,t(n, a, )[(1--X)(1--y)](x/z)(k+l)[(l+x)(1 +y)](1/2)(k-l)
k =0 1=0

19(o+k+l,+k-l)[..’ig(a+k+l, rk--,-k ,),-k +k-O(y) -IPl"--l’a+k-l)(2r-- 1)C_l(t).

* Received by the editors March 11, 1976.
"t" Department of Physics, University of Wisconsin, Madison, Wisconsin 53706. This work was

done while the author was at the Theoretical Division, Los Alamos Scientific Laboratory, University of
California, Los Alamos, New Mexico. This work was supported in part by the University of Wisconsin
Research Committee with funds granted by the Wisconsin Alumni Research Foundation, and in part
by the U.S. Energy Research and Development Administration.
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Here P’t)(z) and C(z) are the usual Jacobi and Gegenbauer polynomials [10],
[11, especially Chap. 10]. The coefficients Ck.t(n, a, 13) are given by

Ck,l(n, a,/3) 2-2k (c. + k,+ l)(fl + k I)
(4) F(/3)F(n +/3 + 1)F(n k + 1)F(a + k)F(n + oe + + k + 1)

F(/3 + k + 1)F(n +/3 + 1)F(n + ce + + 1)F(n + ce +/3 + 1)"

2. Procedure and result. It is the purpose of this note to point out that a
symmetrical addition formula for L(Z) different from (1) can be derived as a
limiting case of (3). Our procedure is suggested by the observation that the
Laguerre polynomial L’2(x) can be obtained as a confluent limit of the Jacobi
polynomial p,,t3)[10, 5.3],

(5) L(x) lirn P(,,"’)(1 _2).
We note also that [10, 5.6]

(6) lim/3-"/2F(n + 1)C(x/x= H, (x),

where Hn (t) is the usual Hermite polynomial [10], [11, especially_ Chap. 10]. If we
replace x, y, r, and t in (3) by 1-2x/[3, 1-2y/[3, rx/, and t/@, take the limit
/3’ oo, and use (5), (6), and the relation

(7)

lim -lPa-t3-1’t3+k-l)(2r2-- 1)

=lim
F(/+a-fl) 1)fl-tzFl(-l, ix+k; ce-fl; 1-fire)

F(a-fl)F(/+

(-1)l2Fo(-l, + k, r)
r(/+ 1)

:r l
r(/+ )r( +)

we find that

(8)

k

L(Z) }-’. ’. (--1)/(t + k + l)
k=01=0

F(a + k)r(n k + 1)
F(n + a + + 1)F(k + 1)

(Xy)(1/2)(k+l)

n-k )Ln-k I,y)

Z x + y 2xy rt xyr2.

It is tempting simply to replace x and y in (3) by 2x]fl and 1 2y/fl, and then to take the limit

fl - oo with r and fixed. The result is a well-defined double series, but one which cannot be integrated
to obtain a product for L’(x)L’(y).
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Note that both sides of (3) and (8) are polynomials in x, y, r, and t, so there is no
problem with the limiting process.

The addition formula can be put in a somewhat more useful form by making
the substitution r =-ei and summing on m k- instead of I. This gives our
basic result,

k

L(Z)= (--1)k(a+2k--m)
k =0 =0

F(a + k)F(n k + 1) (xy)k_(1/e)m
F(n + a + k m + 1)F(m + 1)

(9) ,+ek-m, ,L+ek-m, _,ek+m(_eLn-k tx) n-k tY) ei(ak-m)q’L -2iq’)Hm(t),

Z x + y +2xy t ei xy e .i.
This expression can be inverted to obtain a product formula for L(x)L(y) by
using the orthogonality relations for the Hermite polynomials [10, 5.5] and the
following relation derived in the Appendix"

2i(k’-ke )*lFl(k m + 1, a + 2k m + 1, e-ei)lFl(-k’ + m, -a 2k’

+ m + 1, -e -ei*) dff
(10)

2"ffSk,k, k, k’ >-_ m.

The result is as follows"

(11)

’+2k-m(X)L_+k(xy)k-(1/2)mLn_k -re(y)

(_ 1)m,rr_3/22_m_1F(k m + 1)F(n + a + k m + 1)
F(n k + 1)F(a + 2k m + 1)

fo db dtL:(Z) e-i(2k-m)4’lFl(k m + 1, a + 2k m

+ 1, e -ei’) e-’2Hm (t), 0 -< k -< n, 0 -< m =< k.

In particular, for k m 0, we obtain a result quite different from (2),

L(x)LO(y) 1/2,n._3/2 r(n + + )
F(n + 1)F(a + 1)

dO dtL(Z)IFI(1, o + 1, e -ei’) e-.
We conclude by noting that Koornwinder’s addition formula (1) gives a

symmetrical double series expansion of

exp (-,xy re-iO)L(x + y + 2ff-xy r cos ).

Because of the exponential, one of the series does not terminate. In contrast, (9)
gives a finite symmetrical expansion of the polynomial L(Z), and appears,
therefore, to be the natural addition formula for the Laguerre polynomials. Other
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addition formulas are known [12, Chap. 4],[13, Chap. 8, 5],[14, 5, Remark 8],
but these are generally unsymmetrical, and with the exception of that given in [ 14,

5, Remark 8], involve infinite series.

Appendix. The orthogonality relation for the confluent hypergeometric
functions given in (10) can be derived as follows. We begin with the orthogonality
relation for the Jacobi polynomials [10, 4.3.3],

(A.1)

(A.2)

I P,"’t)(t)P,,’t)(t)(1 t)"(1 + t)8 dt h’8,,,,,

2"+8+1F(n +a + 1)F(n +/3 + 1)hg,8

(2n + a +/3 + 1)F(n + 1)F(n + a +/3 + 1)"

This relation can be written as a contour integral by introducing the Jacobi
functions of the second kind, O,"’8)(t), defined for general complex argument by
[10, 4.61]

O,8)(t 2.+.+8 F(n + a + 1)r(n +/ + 1)
(t- 1)-"-"-l(t + 1)-8

F(2n + a +/3 + 2)
(A.3)

2Fl(n+l,n+t+l;2n+cr+[3+2;12--_t), larg (t+ 1)1 < or.

For n an integer, the function (t- 1)" (t + 1)8Q’8)(t) is analytic in the complex
t-plane cut from -1 to + 1, and has a discontinuity across the cut which is just
-iTr(1 t) (1 + t)SP’8)(t), t real, 1 -< t _-< 1. The Jacobi polynomial P?’8)(t) is of
course continuous across the cut. We can use the relation of pff,8) to Q,8) to
rewrite (A. 1) as

(A.4)

(a,8) (a,8P (t)P, )(t)(1 t)" (1 + 08 dt

f (,8) t p(.,8)Q,, () ,, (t)(t-1)"(t+l)8dt=

where the contour C circles the interval [- 1, 1] in the positive sense. If we extend
the contour to circle [- 1, 1] twice, and make the change of variable t 2r2 1, we
obtain the relation

(A.5)

O’8)(2r2-1)P,’8)(2r2-1)(r2-1)"r28+a dr 2-"-8-2

where the contour Cr circles the interval [-1, 1] in the r-plane once in the positive
sense. It will be convenient to rewrite this equation for the parameters of interest,
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a ---> a fl l, fl fl + m, n ---> k m, n’---> k’- m as

[ir(a -fl + k m)r( + k + 1)]-1 1 ,kcn(’-t3-1’O+m)(2r2--m 1)
c,

(A.6) P,:-l’+m)(2r2-1) (r2-1)--lr2+2"+1 dr

r[(a + 2k m)r(k m + 1)r(a.+ k)]-16kk k, k’_-> m.

Equation (A.6) is in a form suitable for application of the limiting procedure
which led to (7) and (8). If we replace r by r/fl in (A.6) and take the limit/3 - oo,
making use of (7) and the relation

(A.7)
lim fl+k[F(a -fl + k re)r(/3 + k + 1)]-1 c(--l’+’)(2flr2-ek- 1)

1/2[F(c +2k-m + 1)]-lr-2’-2k e-1/rzlFl(k-m + 1, o +2k-m

we find that

-i fo+
(A.8)

2qrtkk, k, k ’>- m.

Alternatively, with r e i0,

1F1 k-m+l,a+2k-m+l, 1F1 +m,-o-2k’+m+l,

1 r2k, -2k-1 dr
r ]

(A.9)

2re2i(k’-k)O1Fl(k--m + 1, + 2k-m + 1, e

27rtkk, k, k ’>- m.

-2i’)lFl(-k’ + m, -or 2k’

+ m + 1, -e -2ie/) dO

This is the relation needed to invert (9) and obtain the product formula (11) for
L’(x)L’(y). It is apparently new.
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L2-STABILITY AND -INSTABILITY OF LARGE-SCALE SYSTEMS
DESCRIBED BY INTEGRODIFFERENTIAL EQUATIONS*

R. K. MILLER]" AND A. N. MICHEL,:

Abstract. New results for (i) L.-stability, (ii) L2-instability, and (iii) asymptotic stability, in the
sense of Lyapunov for a large class of large-scale dynamical systems (also called composite systems,
interconnected systems, and multiloop systems) described by Volterra integrodifferential equations
are presented. These results allow usage of frequency domain techniques. A simple example is given
which illustrates how the various theorems can be applied.

1. Introduction. New results for L2-stability and L2-instability for a class of
large-scale systems (also called interconnected systems, composite systems, mul-
tiloop systems, and the like) described by Volterra integrodifferential equations
are established. It is shown that when the large-scale systems considered are
bounded input bounded output stable on La (BIBO stable on La), then they are
also asymptotically stable in the sense of Lyapunov. The present results are
proved for several forms of the describing equations, including the case of
multiple-input multiple-output systems (MIMO systems) with interconnections.
For the case of MIMO systems, conditions are established which guarantee
instability when at least one subsystem is unstable.

In the present approach, the objective is to analyze large-scale systems in
terms of lower-order subsystems and in terms of the system interconnecting
structure. The results are applied to an example to illustrate the use of the theory.
We have chosen a well known integroditterential model which has enough
complexity to illustrate the various possibilities.

The present BIBO stability results are motivated by those of Sandberg [20],
[21] and Zames [24], [25] for single loop systems while the Lyapunov stability
result is motivated by a result of Grossman and Miller [5]. The instability result
constitutes a generalization of work by Vidyasagar [22]. Recent related results for
BIBO stability of large-scale systems are due to Porter and Michel [17], [18] and
Lasley and Michel [8]-[10]. For a general introduction to Volterra integral
equations, refer to the monograph by Miller [11]. For additional specific informa-
tion on resolvents which will be needed, refer to Grossman and Miller [5], [6] and
Miller [12]. For a comprehensive summary of BIBO stability results, refer to [2]
and [23].

2. Notation and preliminaries. Let C [cu] denote an rn x n matrix and let
C’ be the transpose of C. If C and D are real rn n matrices, then C->D means
cij => dij for all and . Let ! denote the identity matrix, let R / [0, o) and let R
be the Euclidean m-space. If x Ix1, , x,,,] Rm, then Ixl is the norm of x. Let
Lp (orL if m needs to be emphasized) denote the set of all Lebesgue measurable
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functions f:R + - R such that Ilfll. [ If(t)lp dt]1/p is finite. When p 2, L2 is a
Hilbert space with inner product (f, g) o f(t)’g(t) dt and Ilfll). <f, f>l/=. Given a
subspace Xc L2, X- {f: (f, g) 0 for all g X}. Also, let Loo (orL if m needs
to be emphasized) be the space of essentially bounded functions f: R /

-* R and
let IlflL-ess sup,__>0 If(t)l. Let C[O, oo] be the set of all continuous functions

f: R /
--> R" and Co {f C[0, oo)lf(t) - 0 as --> oo}, the subset of C[0, oo) which

goes to zero as oo.
Given a function [ Lp, let IT denote the truncation of f at time T, that is

fT(t) =f(t) on 0 =< =< T and fT(t)= 0 if t > T. Also, let Lpe denote the extended
space of Lp (see, e.g., Zames [24], [25]):

Lpe {f: fT Lp for all T> 0}.

Thus Lpe is the space of all locally Lp functions f(t) defined on 0 <- < oo.
If H: te--> L12e, n is said to be L2-stable ifnmaps L2 into L. In this case the

gain of H, written g(H) is the smallest number K such that II(Hx)dl2-<- gllxdl2 for
all x te and all T> 0. If the stable set of H, S(H) {x L: Hx LI2} is a proper
subset of L, then H is said to be L2-unstable. In this case the conditional gain of
H, written &(H), is the smallest number K such that II(nx) ll2 <-gllxdl2 for all
T> 0 and all x in the stable set S(H). In the special case where S(H)= L2, H is
stable and &(H)= g(H). H is interior conic (C, r) if II(nx) -Cx ll2 <-rllx ll for
some real constant r-> 0 and some matrix C.

Let e denote the class of linear time-invariant operators on Lpe having the
following properties: If H e, then there is a function h Lie and two sequences
{h} and {ti} such that t <ti+l with tl O, t] -> o0 as ]- oo and

(1) (Hx)(t)= , hix(t-ti)+ h(s)x(t.-s) ds
i=1

for all x Lpe. The class will consist of all H6e such that the corresponding
function h(t) and sequence {hi} satisfy the conditions

Ihil < oo, Ih(t)l dt < oo.
i=1

Let H*(s) and h*(s) denote the Laplace transrms of the operator H and of
h(t), respectively (see (1)), where s =r+jr, j= /-1 and o-, r6R 1. IfH, then
the representation H*(s) is guaranteed to converge for all s with Re s r =>0.
The function H*(jo2) is essentially the Fourier transform or frequency response of
1t. The resolvent of H, denoted by R, is the operator R e given by

R*(s) (sI-H*(s))-1.

Given H ,H is said to have property F when det (jooI- H*(flo)) # 0 for all
o e R I. Moreover H will have property L if det (sI- H*(s)) # 0 for all s such that
Re s => 0. It is known (see, e.g., Grossman and Miller [6] and Jordan and Wheeler
[7]) that if hi 0 for all > 1, H has property L if and only if R e. Also, H
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has property F if and only if there is a finite set of points {Sl, $2, SN} in the half
plane Re s > 0 such that det (sjI-H*(sj)) 0. For such an H one can find a set of
matrices M-k, nonnegative integers . and an operator S such that

(2) R*(s)= S*(s)+ Y, Y, M./(s-sj), (Re si >0).
j=l k=O

The operator S is called the residual resolvent of H. (If R has property , then
there are no such points si and so the resolvent and residual are identical.) The
resolvent R and residual resolvent S are always of the special form

Rx(t)= r(t-u)x(u)du, Sx(t) s(t- u)x(u) du,

respectively. The matrix functions r(t)=fro(t) and s(t)=[so(t)] are called the
kernels of the operators R and S, respectively. When H and has property L
(or F) then r0 Co CI L2 (or s0 Co Ci L2) for all indices and ].

It is well known (see [2] or [23]) that the gain H of on the space L2 is

g(H)= esssup IH*(yo)l.

IfH and has propertyL then by the same reasoning the gain of the resolvent is

g(R) ess sup I(]to-H(]to))-ll.

A regular operatorH is an element of t’ such that for the corresponding sequence
{hi}, hi 0 for all i> 1. If H is regular, the resolvent kernel r(t)=[ro(t)] has
continuously differentiable elements ro(t on R + (see Grossman and Miller [6]).
Also i0 6 L1 71 L2 Yl Co when H and R 5’.

A linear integrodifferential equation with kernel H6e and forcing function
f 6 L2e is the equation

(t)= Hy(t) +f(t), tO,

with initial condition y(O)= Yo. By a solution y(t) we mean a function which is
absolutely continuous on any finite interval 0 = T with derivative )(t) satisfy-
ing the equation at almost all points t R +. If H and [ it is well known
that this linear equation has a unique solution. Indeed, if r(t) is the kernel of the
resolvent R, then

(3) y(t) r(t)yo + r(t- s)[(s) ds,

or y R[y0 +]’], where is the delta function.
All nonlinear integroditterential equations considered herein are of the form

(N) .(t) Hx(t) +B(t, x,) +f(t), t >= O,
with x (0) x0. Here H e, f L2e, xt denotes the truncation of x at time t, and B
is a continuous functional from R/ C[0, oo) into R n. These assumptions insure
that (N) has a solution (which will be unique if the functional B satisfies the usual
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Lipschitz condition). If one thinks of B(t, x,)+f(t) as known, then from (3) the
following variation of constants formula follows"

(V) x R[Sxo+f]+R[B(t, xt)].

Remark 1. Let r(t) be the resolvent kernel of the regular resolvent R. If B has
the regular form
(4) B(t, x)= B(t, x(t))+ h(t-s)B(s, x(s)) ds,

then (V) can be put into an alternate form. Since

i(t)=r(t)h+ r(t-s)h(s)ds=r(t)h+r,h(t),

where denotes convolution, then r, h --rh. The last term in (V) is of the
form

R[B +h B]=R(B)+r * h * B2=R(BO+(i-rhO * B2
R(B hB2) + t: B2.

Thus, (V) can be written in the alternate form

(v’) x=R[xo+jq+R[B(t,x(t))-hB(t,x(t))]+e, Be(t,x(t)).

Equation (N) is called L2-stable (i.e., BIBO stable on L) if for eachf L and
initial conditions x0 R ", all solutions of (N) are in L2. Otherwise (N) is called
L-unstable. System (N) is called stable in the sense o]’ Lyapunov if for any e > 0
there is a 8 > 0 such that when Ix01--< and [fl12 -< 8 then Ix(t)[ < e for all t -> 0. It is
asymptotically stable in the sense ofLyapunov if in addition there is a 8o > 0 such
that x(t) Co when Ixol -< and Ibel[=--<

3. Main results. Systems are considered which can be described by the set of
nonlinear integroditterential equations

N

(5) (t) , [Hx(t) +B(t, xit)] +f (t)
j=l

for k 1, 2,.... N and t-> 0, with initial conditions x(0)= x0. Here x" R+-
R", fkLk, Hk]’L;e --) L2e is in e, Xjt (X]) is the truncation of x and B is a
continuous nonlinear functional. Letting x [xx, x2," , x, ]’, f
[fl, f2, ",f]’, B [ BI, ", Y, B]’ and H= [/-/;k ], system (5) assumes the
form (N) with initial condition Xo [xlo,""", Xvo]’ e R where m 1 n. The
matrix ofgains g(B) is defined as g(B) [g(Bq)]. The matrix of gains g(C) of any
other matrix C is defined similarly.

When (N) is of the form (5), one speaks of a large-scale system (N) with
decomposition (5).

THEOREM 1. ff g(Bkj) < cx3 for all k and j, ifH= [/-//;.] Lt’, ifHhas property L
with resolvent R [Rij], and if the successive principal minors of the test matrix
I- g(R)G(B) are all positive, then (5) is L2-stable.

THEOREM 2. LetBq be regular in the sense o[ (4), letH [Hk;] be regular,
satis[y property L, have resolvent R [Rk;] with kernel [rk;], let Tk; be the operator
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defined by tTkiX tk * X, and let T [Tk]. If the successive principal minors of the
test matrix I- g(R)g(B h1B2) g(T)g(B2) are allpositive, then (5) is LE-stable.

THEOREM 3. Ifthe hypotheses of Theorem 1 andHis regular or Theorem 2 are
true, then (5) is asymptotically stable in the sense of Lyapunov.

Remark 2. In some applications of Theorem 2, B1 hlB2. In this case the
term g(Bl- hlB2) in Theorem 2 is zero.

Remark 3. Consider the system of equations

2(t) f (t) +,.= G(t, x(t)) + M(t-s)N(s, x(s)) ds

where G is interior conic (m, r) andN is interior conic (n, w). In this case
one can rewrite the equation for 2 (t) as

02 (t) (t) + mx(t) + M(t s)nx(s) ds
]=1

N

+ [Gki(t, xi(t))- mkiXi]
j=l

+ M(t-s)[N(s, x(s))- nx(s)] ds.

is equation has the correct form for eorem 2 sinceB IGor(t, x(t))- mx],
g(B) N [r],B [M (N(t, x)- nx)], g(B) N g([M])[w], h [m], and
h (t) [M(t)n].

Of spedal interest in applications are systems described by (5) with 0 for
all ], i.e., MIMO systems of the form

N

(6) k (t) HkXk (t) + Bki(t, Xit) +fk (t),
j=l

k 1, , N, with Xk (0) Xko. This equation can be viewed as an interconnection
of N isolated subsystems of the form

(7) (t): (t) (t),

Zk(O) Zko, k 1,"’, N, with intemonnecfing structure specified by Bki, k, ]
1,...,N.

COROLLARY 1. In (6) assume that
(i) Hk with stable resolvent Rk, k 1,. ., N;
(ii) g(Bk) <, k, j 1,... N;

(iii) fk L2, k 1,. N; and
(iv) the successive principal minom of the test matrixM=[mii] am all posifive,

where

g Ri)g Bi ), i:

t-g(Ri)g(Bi ), j.

en system (6) is L2-stable andforHregular also asymptotically stable in the
sense ofLyapunov.
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Under certain assumptions one can show that if at least one of the isolated
systems (7) is L2-unstable, then the interconnected system (6) is also L2-unstable.

THEOREM 4. Assume thatfor system (6) the following conditions hold:
(i) Hk, k 1,..’, N;
(ii) g(Bq) < oo, i, j 1,..., N;

(iii) .L2, j= 1,...,N;
(iv) for each k, H satisfies either proper Fand/orproper L andfor at least

one ko it satisfies proper F only; and
(v) let M=[mq]=[g(Bq)g(Ri)], and let p(M) be the special radius of M.

Assume that either p(M) < 1 or p(M) 1 and mq > 0 for all i, j 1,. ., N.
en system (6) is L2-unstable.
Theorem 4 is a corollary of Theorem 5 given below. is result yields

sufficient conditions for L2-instability of interconnected systems described by
equations of the form

ek fk BkX,
(8) j=l

x R(e + D),
kk=l "’, where fk, kL, ek, Xk L, Rk and Bk L2 L.

kDefine Xk {x L: RkX L2 }, the stable manifold of Rk.
THEOREM 5. Suppose (Xk {O} for at least one k ko and g(Bk) < for all

k and ]. Let M=[mq]=[g(Bq)gc(R)] and let p(M) be the spectral radius of M.
Assume that eitherp(M) < 1 orp(M) i and mi > 0 for all and]. Iffk+ Vk (Xk )X
for all k andfk +Vk 0 when k ko, then system (8) is LE-Unstable, i.e., xL2 for
at least one value .

Remark 4. For BIBO stability results of system (8) refer to Porter and Michel
[17], [18] and Lasley and chel [9]. Theorem 5 may be viewed as the instability
counterpart of the results of [9], [17], [18]. Theorem 5 is a generalization of a
result reported in [22]. Specifically, in [22] it is required that all subsystems be
L2-unstable and all k 0.

4. example. The use of the theory presented above will now be illustrated
by studying the stability of a coupled core nuclear reactor. is well known
physical model is sufficiently complicated to illustrate both stability and instability
results. We wish to give a proof of the physically reasonable assertion that with
weak interactions between cores, stability (or instability) of the individual cores
implies stability (or instability) of the entire system. Most importantly we can also
give a computable method of deciding what we mean by "weak interactions".

For a general discussion of reactor models, refer to [1]. The point kinetics
model for a reactor with N cores, as described in [16], is given by

p(t):O-e-flp(t)++ &Cij(t)
(9) 1 s Pko rt

Jo hk(t-- S)pk (S) ds,

6ii(t) Aij[pj(t) cij(t)]
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for j= 1,....N and i=1,...,6. Here pj(t)=[P(t)-Po]/Po and cii(t)
(AijAj/P.oii)(Ci(t)-C/j0), where P. denotes the power in the ]th core, Ci repres-
ents the effective concentration of the ith precursor in the jth core,/3ii, Aij, ei, eki,
and Ai are positive constants,/3i 6__1/3i, and hkj(t) is the coupling function
relating neutron migration from the kth to the jth core. P0 and Cio are the
equilibrium power and precursor concentrations in the jth core while pi is the
reactivity in the jth core. Assume that

p(t) W.(t- s)p(s) ds

is correct at least to linear terms, where the feedback function W. is in L1.
Solving for ci(t) in terms of p(t) one has

ci t c O e x’t + Ai ex’t pi

Substituting ci(t) into the equation for/i(t) and linearizing, one obtains

#j(t) f.(t) (ej + flj)pj + W . pj+ ( 6, iAij e_X,jt) . pj

(10) 1 Pk0+-- k=
ek’P-- hk’ * Pk,

with p(0), ] 1,""", N given.
Corollary 1 is now applied, with x =p and nj 1 for all ], with

+-- W.(t-s)+
= lie x

6

.(t) F co(O)
i=1

and

1
Bjk (t, Xt)=-- (hk * x)(t).e,.o

The resolvent Ri has Laplace transform Rf(s)= 1/Di(s) and is stable if and only if

WT(s)

in the half plane Re s ->_ 0. This condition can be checked graphically by plotting
the Fourier transform of Di(s). Moreover, 1/g(Ri) is equal to the minimum
distance from the graph of Di(jo), -oo < o < oo, to the origin in the complex
plane. If the successive principal minors of the test matrix M I-[g(R)g(Bij)]
are all positive, then for all initial values pj(0) and ci(0) the solutions of (9) are in
L2 f-) Co. Moreover, they are stable in the sense that given e > 0 there exists > 0
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such that when Ip(0)l and [c0(0) =<8 for all/and], then Ip(t)l and [c0(t)l-< e
for all and j and for all t ->_ 0.

If Di (rio) # 0 for -oo < o < oo and/" 1,- ., N but D(So) 0 for some So,
Re So>0 and some ], and if the matrix M [g(Bo)gc(Ri)] has spectral radius less
than one (e.g., weak interconnections between cores), then Theorem 4 implies
that (10) is L2-unstable. Since for this type of linear systems, L2-stability and
asymptotic stability in the sense of Lyapunov are equivalent (see [12]), this implies
that (10) is Lyapunov unstable. The results in [14] imply the fact that when a
linearized equation of the form (10) is Lyapunov unstable, this instability will
carry over to the corresponding unlinearized equations (9). Thus, the solutions of
(9) are unstable.

5. Proof of main results. Presently the results of 3 are proved.
Proof of Theorem 1. The variation of constants formula (V) applies. Thus,

(11) x(t) r(t)x(O)+Rf(t)+RB(t,

on 0--<t< m. For any T>0 define vectors Ilxll 11/11’, IIx(0)ll EIx,(0)lY and
]]File [[ILl]2]t. Then

Ilxll --< [llri, ll=RIIx(o)ll / g(R )llFIl= / g(R g(B)llXll,
or

[I- g(R)g(B)]llxll -<- [llroll2]llX(O)ll / g(R )llFII2.
Since the successive principal minors of the test matrix I-g(R)g(B) are all
positive, this test matrix has an inverse p whose entries are all nonnegative (see
[3], [15]). Thus,

(12) Ilxll --< ([llr, II=]llx(0)ll + g(R)IIFII=).
Since (12) is true for all T>0, the proof is complete.

Proof of Theorem 2. The variation of constants formula (V’) applies. Thus,

x(t) r(t)x(O) + Rf(t)

+ R[BI(t, x(t))-hlBe(t, x(t))] + t: * Be(t, x(t))

on R /. For any T> 0,

or

IIxIl I-Ilro II:]llx(o)ll + g(R)IIFII: + g(R)g(B, hB:)IIXIIT
/ g(i’)g(B.)llXllT

[I- g(R g(B h1B2)- g(i’)g(Be)]llXllT <= [ll,;ll=311x (0)11 / g(R )IIFII=,

The assumed condition on the test matrix implies (as in the proof of Theorem 1)
that it has an inverse p whose entries are all nonnegative. Thus,

IIXIIT <-- p ([llrijll=]llx(o)ll + g(R )IIFII)

for all T> 0. This completes the proof.
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Proof of Theorem 3. The proofs under the hypotheses of Theorem 1 and of
Theorem 2 are essentially the same, so that only one case will be considered.
Assuming the hypotheses of Theorem 1, it will be shown that (5) is asymptotically
stable in the sense of Lyapunov.

Note that if s, q L2, then the convolution s, p Lo and indeed by the
Schwarz inequality, I(s * p)(t)l--< Ilsll=lllb.. Moreover, r q9 Co (see for example
Rudin [19, p. 4]). Since R is L.-stable, the kernel r L2 fl Co and (11) implies

Ix (t)l : EIIr,llo]llx(0)ll + EIIr,II=]IIFII= + [llr,ll=]g(B)llXlb..

The last inequality and (12) imply that

I, (t)l _-< [llr,slloo]ll (o)11 + [llr,sll]llFIl

+ [llrII]g(n)o ([llr, Ib.]llX(O)ll + g(R)llFIb).

This proves the Lyapunov stability.
To show that x Co, use (11). Since r Co and since s, p Co whenever

s, p L2, (11) implies that x Co for all x (0) R and all f L2.
Proof of Theorem 4. Equations (6) can be written in the equivalent form

N

(13) ek(t):fk(t)+ Z Bki(t, xit),

(14) ik (t) HkXk (t) + ek (t),

Xk(O)-" Xko k 1,... ,N. Choosing Xko--O for all k and integrating (14), one
obtains Xk Rkek. This equation along with (13) are in the proper form for
Theorem 5 to apply.

ProofofTheorem 5. The proof is similar to the proof of Theorem 3 in [22]. For
purposes of contradiction, assume that Xk L2 for all k. If p(M) < 1, then one can

replace each value g (/-/) by g (/-/)+A and each value g(Bi) by g(Bi)+ A, where
A is small and positive. If A is sufficiently small, the new matrix M will still have
p(M) < 1 but now all entries of [m] are positive. Assume that this replacement
has been accomplished. Then mq > 0 for all and j and by the Perron theorem
(see, e.g., [4, p. 53]), there exist numbers A > 0 such that A [A 1," ", Am] is a row
eigenvector corresponding to the dominant eigenvalue p(M) of (M)...Put z.=Y=IBx=Y,i___IBiR(e v). Then zi=f+v-(ei+v). Since
(f + v) X and (ei + v) X, it follows that zi L. and

Since I + v, > 0 for at least one ko and since all A, are positive, it follows that

(15) x, ll,ll > Y. ;,lle, + ,11.
i=1 i=1
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The definition of z and the assumptions given yield the estimate

IIz, ll=-<- Y IIB,xll=--< Y g(B)llxll=
j=l j=l

(16)
<- . g(Bo)&(R)lle +11 E molle +11.

j=l j=l

Since A is a row eigenvector of M it follows that

E ;,m, pM)
i=1

for all j. Thus, (16) and p(M)_-< 1 imply that

Y A, IIz, ll =< Y. Y. A,m,lle / oll=
j=l i=lj=l

Y. p(M)lle / olh -< lle =.
j=l j=l

This contradicts (15) and the theorem is proved.

6. Condung remarks. At this point some additional comments are in
order.

1. It is emphasized that the present results yield not only LE-stability and
L2-instability conditions for systems described by integrodifferential equations,
but also asymptotic stability conditions in the sense of Lyapunov.

2. Some (but not all) of the results presented offer the advantage of allowing
stability analysis of complex systems in terms of lower order subsystems and in
terms of system interconnecting structure.

3. It is possible to analyze large classes of problems by the present results,
using frequency domain techniques (with all the practical advantages which such
techniques offer).
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ON THE PRODUCTS OF SOLUTIONS OF SECOND
ORDER DISCONJUGATE DIFFERENTIAL EQUATIONS
AND THE WHITFAKER DIFFERENTIAL EQUATION*

PHILIP HARTMANf

Abstract. Let x"-q(t)x =0 be a disconjugate differential equation on (--<)a <t <to(-<o).
Let x Xo(t) > 0 be a principal solution at to and x y(t) > 0 a linearly independent solution (e.g., a
principal solution at a). The paper deals with an investigation of the monotony and convexity
properties of the product u xoy under suitable conditions on q. Applications are made to the
modified Bessel equation (with u tI(t)Kv(t)) and to the Whittaker differential equation.

1. Introduction. The first part of [3] concerns sufficient conditions on a
positive monotone q to assure that the differential equation x"+ q(t)x 0 has a
pair of solutions x(t), y(t) such that w [x2(t) + y2(t)]l/2 > 0 satisfies w > 0, w’ _-< 0,
w’’-> 0 or satisfies w > 0, w’_-> 0, w" <_-0. We deal here with an analogue of this
question in which we consider a differential equation

(1.1) x"-q(t)x =0,

where q(t) is positive and continuous for t >0. In this case, (1.1) has a principal
solution Xo(t), unique up to multiplicative constants, determined by the in-
equalities

(1.2) Xo>0, x<0, x>0
(A. Kneser; cf., e.g., [4, p. 357]). Also if a solution x y(t) satisfies

(1.3) y>0, y’>0, y">0

at some t to>0, then (1.3) holds for => to. In this situation, it is natural to ask for
conditions on q(t) which imply that, for some y(t) (say, a principal solution
x y(t) at t=0), the product u xoy has specified monotony and convexity
properties. This question is suggested by a result in [5] on modified Bessel
functions corresponding to the case

(1.4) q(t) 1 + tilt2, fl 1.,2

which states that if u=>1/2, then (1.1) has the solutions Xo(t)= tl/ZKv(t), y(t)=
tl/Zlv(t) with the properties that u u(t)= tI(t)K(t) satisfies

(1.5) u>0, u’>0 fort>0, u->1/2.
Here tl/ZKu, tl/2Iv are standard solutions of (1.1), (1.4) and are principal solutions
at c, 0; cf. [10, pp. 77-80].

We discuss general monotony properties of products u xoy of solutions of
(1.1) in 2 and general convexity properties in 3. Section 4 deals with the
modified Bessel equation (1.1), (1.4), where we show that if u > 1/2, then there exists

* Received by the editors June 26, 1975.

" Mathematics Department, Johns Hopkins University, Baltimore, Maryland 21218. This work
was supported by the National Science Foundation under Grant GP-MPS71-03219A03.
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r - > 0 such that
u>0, u’>0, u"<0 fort>0,

u’"<0 for0<t<-, u’">0 fort>%
and if 0< u <1/2, then there exist numbers ’1, "/’2 such that 0<(-/3)1/2< ’1 <

u>0 fort>0, u’>0 for0<t<-l, u’<0 fort>-l,

u" < 0 for 0 < t < ’2, u" > 0 for > ’2.

Section 5 concerns the more general Whittaker differential equation.

2. Monotony of u = xoy. In what follows, we assume that q in

(2.1) x"-q(t)x =0

is continuous on (- o__<)a < t < w(_-< ). Often we assume that q _-> 0 is
monotone, q const, near o, and that

(2.2)
q(t) dt if o <.

Thus in the case o < c, q is nondecreasing and q(w)= c. Furthermore, (2.2)
implies that (2.1) has a solution x Xo(t), unique up to constant factors, satisfying
(1.2); cf. [4, Exercise 6.7, p.-358]. Below x y (t) is a linearly independent solution
which is positive for near o, so that (1.3) holds for near o. Sometimes we assume
the existence of such a y(t) > 0 on (a, o).

We shall use the notation

(2.3) ro X’o/Xo and r y’/y,

when Xo, y > 0, so that we have the Riccati equations

(2.4) r=q-r and r’=q-r2.
Also, we define

2 2__(2.5) ho (X’o)Z-xq =xo(ro q), h =(y’)2 yZq yZ(rZ_q),
so that, when q is monotone,

(2.6) dho Xo dq and dh y2 dq,

and ho and h are monotone. For reference, we state
PROI’OSITION 2.1. Let q >=0 be continuous on (a, o), q(c) lim q(t) exists as

tc, O<-q()<-o, and X=Xo(t), y(t) be solutions of (2.1) as specified above.
Then X’o/Xo-* -ql/2(c) and y’/y - ql/2(c), as t-. Also u() lim u(t) exists
as t-.o, with 0<=u(c)=<; furthermore, u(c)=0, 0<u()<c, or u()=o
according as q(c) o, 0 < q(c) <, or q() O.

The first part of this statement, concerning the limits of X’o/Xo and y’/y, goes
back to Poincar6 and Perron. The second part follows from an application of
l’H6pital’s rule to

Xo(t)y(t) (const.) y-2(S) ds/y-Z(t),

as in [2, p. 573].
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PROPOSITION 2.2. Let q >--0 be continuous on (a, to), nonincreasing [or
nondecreasing], q const, near to and satisfy (2.2). Then

(2.7) 0 > X’o/Xo > ql/2 [or X’o/Xo < q 1/2 < 0]

for a < t < to. Also, if (1.3) and

(2.8) y’/y>ql/2>O [or 0 < y’/y < ql/2]
hold for some t to, then they hold for to <= t < to, and, in any case, (1.3) and (2.8)
hold near to. Hence if (1.3) and (2.8) hold at t= to, then for to<= t <to,

(2.9) U xoy > O and u’>0 [or u’ < O].

Note that (2.9) follows from (2.7) and (2.8) since

(2.10) u’= u(ro+r), where r0 X’o/Xo, r y’/y.

If to , this proposition is essentially contained in I-7] (cf. [4, Exercise 3.9, pp.
514 and 579]). If to <, a similar proof is valid if one notes that when (2.2) holds,
then there exists only one solution x Xo(t), up to multiplicative constants,
satisfying (1.2) for near to,

Remark. If we omit the assumption "q const, near to", the strict inequalities
in (2.7) and (2.8) should be replaced by the corresponding weak inequalities.
Similar comments apply throughout this paper.

PROPOSITION 2.3. Let q be continuous and (2.1) disconjugate on (a, to). Let
x Xo(t) > 0 be a principal solution at to and x y(t) a positive solution on (a, to)
linearly independent of Xo(t).

(i) Let q satisfy the conditions of Proposition 2.2. Then u xoy > 0, u’> 0
[or u’ < 0] near to, u’ has at most one zero, say , on (a, to) and u’ changes signs
at t z if it exists.

(ii) Assertion (i) remains valid if -< a and (a, to) is replaced by [, to).
(iii) Let < t+ < to. Let q satisfy the conditions above with (a, to) replaced by

(t+, to) and q < 0 on (a, t+), so that q >-_ 0 is nondecreasing on (t+, to). Then the
conclusions of (i) remain valid.

(iv) In particular, in (i)-(iii),

(2.11)

(2.12)

u’(t) <= 0 for some near a (e.g., u (a +) oo)

u’<O on (a, z) and u’>O on (z, to) [oru’<O on (a, to)I,

u’(t) >= 0 for some near a (e.g., u(a +) O)

u’>O on (a, to) [oru’>O on (a, ’) and u’<O on (z, to)].

Proof. (i) We consider only the case of nondecreasing q, as the other case is
similar. It follows from Proposition 2.2 that X’o/Xo < _ql/2 <=0 on (a, to) and that
0 < y’/y < q 1/2 near to. Thus h < 0 near to and, since dh <= 0 by (2.6), we have two
possibilities: either

(2.13) h <0 on (a, to) or h =>0 on (a, tl) and h <0 on (tl, to)

for some tl (a, to). In the first case, u’ < 0 on (a, to) by (2.10). In the second case,
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u’<0 on (tl, to) and (r0+r)’<0 on (a, tl)since r<0 and r’_-<0. Differentiating
(2.10) gives

(2.14) (u’/u)’=(ro+r)’.

As u > 0 and the right side is negative on (a, tl), it follows that u’ has at most one
zero on (a, tl).

(ii) This is clear from the arguments above.
(iii) Similar arguments give X’o/Xo<-ql/2-<0 on (t/, to) and there exists

tl It/, to) such that h _-> 0 on It/, tl] and h < 0 on (tl, to). Since q < 0 implies r < 0
and r’< 0 on (a, t/), the conclusions follow from the arguments in case (i).

Proposition 2.2 with to was essentially used in [5] in the proof of (1.5).
Actually, this proposition, with both to c and to < c, implies (1.5) without
using, as in [5], the asymptotic behavior of Iv(t), K,(t) at t 0 to verify (2.7), (2.8)
for small > 0. More generally, we have

THEOREM 2.1. Let q > 0 be continuous, nonincreasingfor c <_) < < c,
qconst, near c and o, and

I q d oo ira > -oo.(2.15)

Then (2.1) has solutions x Xo(t) and x y(t), unique up to multiplicative con-
stants, satisfying (1.2) and (1.3) on (a, oo). They also satisfy O>x’o/Xo>-q 1/2,
y’/y )ql/2>O, U=xoy >O and u’>O on (ce, oo), and 0< u(oo)<oo oru(oo)=oo
according as q(oo) > 0 or q(oo) O.

This is a consequence of Proposition 2.2. In fact, one obtains Xo(t) by a direct
application of this proposition with "nonincreasing q", while y(t) is obtained by
an application of the case "nondecreasing q" after the change of independent
variable t--> (and y(t) Xo(- t) in terms of the corresponding Xo(t)).

TI-IZORZM 2.2. Let -o<t0<. Let q >=0 be continuous on (-oo, oo),
nondecreasing [or nonincreasing] on (-oo, to) and nonincreasing [or nondecreas-
ing] on (to, oo), and q const, for large > 0 and large t > O. Let x Xo(t) > O,
y(t) >0 be principal solutions at oo, -oo. Then there exists a number " such
that u xoy > 0 satisfies u’ < 0 [or u’ > 0] on (- oo, ), u’ > 0 [or u’ < 0] on (,

Remark. In the first [i.e., unbracketed] case, [or -] can be replaced by
to <oo [or a > -oo] if (2.2) [or (2.15)] holds and q const, near to[or a].

Proof. Consider only the first [unbracketed] case, as the other is similar. By
Proposition 2.3 (ii), u’ > 0 near oo and u’ has at most one zero on [to, ). Replacing
t by t and applying the same proposition, we see that u’ < 0 near -oo and u’ has
at most one zero on (-oo, to]. This implies the theorem.

THEOREM 2.3. Let ce < t_ < t+ < to. Letq be continuous and (2.1) disconfugate
on (a, to), q >= 0 nonincreasing on (a, t_), q < 0 on (t_, t+), q >= 0 nondecreasing on
(t+, to), q const, nearce andto, (2.2) and (2.15) hold. Letx Xo(t) >0, y(t) >0 be
principal solutions at to, t a. Then there exists (, to) such that u xoy > 0
satisfies u’ > 0 on (a, ) and u’ < 0 on (-, to).

Proof. The proof is similar to that of the last theorem except that we apply
Proposition 2.3 (iii) on (ce, t+) and (t_, to).

In 5 on the Whittaker functions, we shall have to deal with the situations in
the following two theorems.
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PROPOSITION 2.4. Let q be continuous on (a, to), (2.1) disconjugate on (a, w),
q const, near w, and (2.2) holds. Leta < t_ < t+ < to. Letq >= 0 be nonincreasing on
(a, t_), q <0 on (t_, t+), q >=0 nondecreasing on (t+, to). Let x Xo(t)>0 be a
principal solution of (2.1) at to and x y (t) > 0 a solution linearly independent of
Xo(t). Then u’ < 0 near to and the set {t: u’= 0} consists of O, 1 or 2 subintervals of
(a, to). These subintervals can reduce to points, and do reduce to points ifq is strictly
monotone on (a, t_). If u’ > 0 for some near a, then {t: u’= 0} consists of exactly
one interval (or point).

Proof. We shall sketch the proof leaving details to the reader. In this proof, we
use the fact that xoy’-x’oy is a constant (> 0), so that r > to.

Applying the proof of Proposition 2.3(iii) to the interval (t_, w), we obtain
tl [t+, to) such that (ro+r)’<0 on (t_, tl] and u’<0 on (tl, to). Also, ho>0 on
(t_, to), h -> 0 on (t_, tl].

Since dho >= O, dh >-0 on (a, t_], we have the following possibilities: either

(2.16) ho 0 on (a, t_)

or there is a t2 (ce, t_) such that

(2.17) ho < 0 on (c, t2),

and either

ho=>0 on It2,

(2.18) h ->_ 0 on (a, t_)

or there is a t3 G (a, t_] such that

(2.19) h<O on(ce, t3), h>-O on[t3, t].

Case 1. On (2.16), (2.18). In this case, (r + ro)’ _-< 0 on (or, t_), hence, on (a, tl).
Thus {t" u’ 0} is at most one interval in (a, t_].

Case 2. On (2.16), (2.19). In this case, (r+ro)’<=O on [t3, tl]. On (a, t3),
q 1/2 < r < q 1/2 and Irol "= q 1/2. By r > to, ro < q /2 < r < q /2, so that ro + r < 0.

Hence u’< 0 on (a, t3). Consequently, u’< 0 on (a, to).
Case 3. On (2.17), (2.18). On (or, t2), -qa/2<ro<ql/Z<r and so, u’>0. On

[t2, tl], (r + ro)’ < 0. Thus {t" u’= 0} consists of exactly one interval in [t2, t_].
Case 4. On (2.17), (2.19), t3 > t2. On It3, tl], (r + to)’ =<0. On [t2, t3), ro <

-q/Z<r<ql/2, so that u’ < 0 on [t2, t3). Hence u’ < 0 on [t2, to). Finally, on (a, t2),
(r + to)’> 0. Consequently, u’ < 0 on (a, to).

Case 5. On (2.17), (2.19), t3<=t2 On It2, tl), (r+ro)’<=O. On (t3, t2),
ro<ql/2<=r, so that u’>0 on (t3, t2] and {t" u’ =0}fq(t3, to) is a subinterval of
[t2, tl]. On (a, t3), (r + to)’> 0 and {t" u’= 0} fq (a, t3] is either empty or is an
interval. This completes the proof.

PROPOSITION 2.5. Let q be continuous and (2.1) disconjugate on (a, oo), and
qconst, near oo. Let a < t+ < to <. Let q < 0 on (a, t+), q >= 0 nondecreasing on
(t+, to), q > 0 nonincreasing on (to, ). Let x Xo(t), y(t) be as in Proposition 2.4.
Then u’> 0 for large and the set {t" u ’= 0} consists of O, 1, or 2 subintervals of
(or, oo). These subintervals can reduce to points, and do reduce to points if q is
increasing on (t+, to). If u’ < 0 for some near a, then {t" u’= 0} consists of exactly
one interval (or point).
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Proof. We have tl [t+, to] such that 0 > ro > q 1/2 on (tl, ), ro <= ql/2 on
[t+, tl], r < 0 on (c, t+). For y, we have the possibilities" either

(2.20) r > q 1/2 on [t+, ), r’ < 0 on (a, t+)

or there exists t2 and t3 such that t+ _-< t2

r > ql/2 on (t3, o), ir <_ ql/2 on [t2, t3],
(2.21)

r’< 0 on (ce, t2).

Case 1. On (2.20). On (tl, c), we have 0 > r0>-q 1/2 and r_>-q 1/2, so that
u’> 0. On (a, tl), (r + ro)’ < 0. Thus u’> 0 on (a, c).

Case 2. On (2.21), tl < t2. On (t3, o0), we have u’> 0. On [t2, t3], (r + ro)’ _<- 0.
On (tl, t2), q 1/2

r0 ----< q 1/2 < r, SO that u’ > 0 on (q, ). On (a, tl), (r + r0)’ =< 0.
Thus u’> 0 on (a,

Case 3. On (2.21), tl --> t2. On (t3, c), u’ > O. On [tl, t3], we have (r + to)’ --< 0.
On (t2, tl), q 1/2 r -> q 1/2 > ro, so that u’ < 0. Hence {t: u’ 0} fq (t2, cX3) consists
of an interval in It1, t3]. On (a, t2), (r + ro)’ <= 0 and so {t: u’= 0} (a, t2) is either
empty or is an interval. This completes the proof.

Remark. Results of this section can be transferred from equations (2.1) to
those of the form

x"+p(t)x’-q(t)x =0,

by transforming the latter into

d2x/ds2_ q(t) exp (2 p(r) dr)x O,

where ds exp (-tp(r) dr) dt.

3. Convexity of u xoy. We investigate the sign of u" by the use of the
standard Liouville change of variables

(3.1) z =ql/ax and s= ql/2(r) dr

and Appell’s [1] equation

(3.2) u"’ 4qu’ + 2q’u 4ql/2(ql/2u)’,

satisfied by the product u xy of any pair of solutions x(t), y(t) of (2.1). By (3.1),
(2.1) becomes

(3.3) d2z/ds2- l(t)z =0,

(3.4) Q(t) 1 +q"/4qZ-(5q’)Z/16q3= 1 +(q’/qS/4)’/4q3/4,

and t t(s) is the inverse of s s(t) in (3.1). Thus the analogue of (2.2) for (3.3) is

(3.5) O(t)q 1/2(t) dt a3 if q 1/2(t) dt < oo.
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The solutions x0, y of (2.1) become the solutions q 1/4X 1/4yo, q of (3.3), and their
product is

(3.6) U q 1/2Xoy q 1/2U and dU/ds Cl-I/2(cla/2u)t.
We verify that Propositions 2.1-2.3 have the following consequences.

PROPOSITION 3.1. Let q C2(a, w) be positive, satisfy (2.2) and (3.5), and
have the properties that O >=0 is nonincreasing [or nondecreasing] on [to, w),
a < to < w, and O const, near oo. Then

(3.7) O>x’o/Xo+q’/4q > -(Oq)/ [or < -(Oq)/2<0]

for t >-to. Also if (1.3) and

(3.8) y’/y+q’/4q >(Oq) 1/2 [or <(Oq) ’/2]
hoM for t to, then they hold for to <= < o; and, in any case, they hold near
Hence ifq > O, O >= 0 are nonincreasing [or nondecreasing] on [to, w), not constant
near oo, and if (1.3) and

(3.9) U=Xoy>O and u’>0, u"’>0 [oru’<O, u"’<0]

hoM at to, then they hoM[or to <= t < w. If, in addition, w oo and 0 < q(oo) <__ oo,
then for to < <

u>0 and u’>0, u"<0, u’">0
(3.10)

[or u’ < 0, u"> 0, u’" < 0].

.Remark 1. If O is monotone and o =oo, then (3.4) shows that q(t) is
monotone for |arge t, and so q(oo)= lim q(t) exists, oo, with 0 =<q(oo)__< oo.

Remark 2. If q C3, then O’ > 0 if

(3.11) q>0, q’=>0, q"-<0,, q"’->0,

since (3.4) gives

(3.12) O’=q’"/4qZ-9q’q"/Sq3+(15q’)3/16q4.
Thus if (3.11) holds, then q > 0, O are nondecreasing.

Proof. The assertions concerning (3.7) and (3.8) follow by applying Proposi-
tion 2.2 to the equation (3.3), instead of (2.1). If (3.7) and (3.8) hold, then
(q/Zu)’>O [or <0] and, by (3.2), u"’>0 [or u’"<0]. This, when combined with
(2.9) in Proposition 2.2, implies (3.9). Note that the statements concerning the
sign of u" on (3.10), (3.11) follow from the fact that if u(oo) exists (finite) and
u’u">O, then u’(oo)= 0 and u’u"<O.

THEOREM 3.1. Let q C2(o, 0(3) satisfy the conditions of Theorem 2.1 and
have the property that (9 >= 0 is nonincreasing on (a, oo), Oconst, near a and
and

O(t)q Ilk(t) dt oo, q/(t) dt

Then the solutions x xo(t), y(t) o" (2.1) in Theorem 2.1 satisfy

O>x’o/xo+q’/4q>-(Oq)/, y’/y+q’/4q>(Oq)/>O
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and u =xoy >0, u’>0 and u’">0 on (a, oo); also u"<0 on (a, oo) ifq(oo) > 0.
This is clear from Theorem 2.1 and Proposition 3.1. For applications to the

modified Bessel equation, we need the following variant.
THEORV.M 3.2. Let q C2(a, c) satisfy the conditions of Theorem 2.1,

Iq 1/2(t) dt= oo and q 1/2(0 dt

and have the properties that Q >=0 on (a, oo) and, for some toe (a, oo), Q is
nondecreasing on (a, to] and nonincreasing on [to, oo), Qconst, near a and to.

Then the solutions x Xo(t), y(t) of (2.1) in Theorem 2.1 satisfy

U=Xoy>O, u’>O on (a, oo),

u’" < O on (a, z) and u’" > O on(z, oo)

for some z (a, c). Furthermore,

(3.14) q(c)>Ozu()<=u"<O on [’, c),

u"<=Oforsometneara(e.g., u’(a)=cx)=>u"<O on(a, z],

(3.16) a -oo: u"< 0 on (a, z].

Proof. Theorem 2.2 is applicable to the differential equation (3.3) on
s < oo and gives the existence of - (a, oo) such that U q 1/2u satisfies U> 0 on
(a, oo), U’ <0 on (a, z) and U’>0 on (-, oo). This gives (3.13); cf. (3.2). The first
implication in (3.14) follows from Proposition 2.1. The other implications in
(3.14), (3.15) are clear. Finally, (3.16) follows from u’>0 and (3.13), (3.15).

4. On the modified Bessel functions. The differential equation

(4.1) x" (l+/3/t2)x=0 where/3 u2

has the positive solutions Xo(t)= tl/2Kv(t), y(t)= tl/2Iv(t) for >0. These solu-
tions satisfy (1.2), (1.3) for t > 0 if u => 1/2, and for large if 0 _<- , < 1/2. Corresponding
to (4.1), we have

(4.2) q= 1+tilt2 fort>0 and Q= l+fl(6t2+fl)/4(t2+fl)3,

(4.3) Q’= 3fit(/3 -4tz)/2(t2 +/3)4,

where q > 0 and Q is defined for > 0 if/3 ->_ 0 (u ->_ 1/2) and for > (-/3) 1/2 if fl < 0
(0 -< u < 1/2). For t > 0, let

(4.4) u u(t)= tI(t)K,(t).

TIaEOREM 4.1. Let , >1/2 (i.e., fl >0). Then

(4.5) u>0, u’>0, u"<0 fort>O,

(4.6) u’"<0 forO<t<z, u"’>0 fort>z

for some z ’ > O, where u’"= 4ql/Z(q1/Zu)’.
Proof. In view of (4.2) and (4.3), Theorem 3.2 is applicable with a 0 and

to fl 1/2/2. Standard power series expansions (cf. 10, pp. 77-78]) show that if u is
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not an integer, then

(4.7) u" < 0 for small > 0;

cf. Proposition 4.1 below. Hence u" < 0 follows from (3.14) and (3.15) if u is not hn
integer. If u is an integer, we use (3.14), (3.15) and continuity considerations.

(i.e., 0 > > 1/4). Then there exist numbersTHEOREM 4.2. Let 0 <= u < =-
7"2 such that 0 < (_)1/2 < 7"1 < 7"2,

(4.8) u>0 fort>O, u’ > O on(O, 7"1) and u’ < O on (7"1, o),

(4.9) u"< 0 on (0, 7"2) and u"> 0 on (7"2, o13).

Proof. Since u(0)=0, it follows from Proposition 2.3(iii) where t/=
(-/3)1/2>0, that there exists 7"1>0 satisfying (4.8). Also, Proposition 2.3(iii)
applied to the equation (3.3) on the s-interval corresponding to t/ < t < c gives
the existence of 3 E (t+, ) such that q 1/2U > 0 on (t+, c), (q 1/2U)t> 0 on (t+, 7"3)
and (q 1/2u)’ < 0 on (7"3, c). It is clear from u() <c that u’(c) 0 and that there
exists 7"2 E (7"1, 7"3) such that u"> 0 on > 7"2, u"(7"2)= 0.

If it is verified that 7"1 > (__/)1/2, then it follows that u"<0 on ((_)1/2, 7"2)
since u’">0 on this interval. Hence Theorem 4.2 is a consequence of the
following:

PROPOSITION 4.1. Letu > -1/2. Then u’>Ofor 0< t-<[2(1 + 51/2)(8/,t2-1 l)] 1/2
and u"<0 for 0<t--<4(8t2-t-1) 1/2, i.e., 7"1>[2(1+51/2)(8u2+1)]1/2->_
[2(1 -I-51/2)] 1/2 and 7"2 > 4(8U2+ 1)1/2=>4.

In the proof of this proposition, we shall use
LEMMA 4.1. Let R (r) be continuous on 0 < r < w and v (r) a solution of

(4.10) d2v/dr2 +R (r)v 0

which is positive for small r > O. Let 0 < h(r) C2(0, oo) be such that h(r)v(r) - 0 as
r O, and

(4.11) R l(r) =- h-4(r){R (r)- h(r)[1/h(r)]’’} is nondecreasing

on an r-interval (ro, oo while R (r) <- 0 on (0, ro), 0 <- ro <- w. Then

(4.12) c>= h3(r)v(r)dr>=O forO<X<w.

If, in addition, v has at least two positive zeros and rl < r2 are the smallest, then

fo
x

Ior2 v dr >= O for r2 <X< w.(4.13) >= h3vdr>= h 3

The inequality "-> 0" in (4.12) [or (4.13)] can be replaced by "> 0" ifR l(r) is not a
constant on 0 < r <X [or 0 < r < r2].

Proof of Lemma 4.1. The change of variables w h(r)v and ds hZ(r) dr
reduces (4.10) to

d2w/ds2+Rl(r)w =0, where r= r(s).
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If the interval 0 < r < w goes over into (-oo __< )a < s < ol, then the second Sturm
comparison theorem and the alternating series argument, as applied in Hartman
and Wintner [6! (cf. 14, Exercise 3.5, p. 513 and p. 578]), imply that

oo>__ h 3v dr hv ds w ds >_ O,

where S s(X). The arguments in [6] also give the last part of Lemma 4.1.
COROLLARY 4.1. Let 0 < h(r) C2(0, oo) satisfy h(r)r+/2 -> 0 as r - O, and

2(4.14) R(r) h-4(r){1-T/r2 h(r)[1/h(r)]"}, 3, tz -,

satisfy the conditions ofLemma 4.1 with co c. Then

(4.15) oo>= h(r)r/J,(r)dr>O forX>O.

The integral exceeds a positive constant iX >- const. > 0.
This follows from the fact that v =r/J,(r) is a solution of (4.10) with

R (r) 1 3,/re.
Proof of Proposition 4.1. This proof will depend on the formula

2u(t/2) (r + t)-/J.(r) dr for u > -1/2, > 0;

[10, p. 435]. It is readily verified that formal differentiations are valid. Two
differentiations give

u’(t/2) (r + t-)-/rJ(r) dr,

u"(t/2) -6t (r + t)-S/rJ(r) dr.

Thus in view of Corollary 4.1, it is sutticient to show that (4.14) satisfies the
conditions of Lemma 4.1 when x 2, and h(r), for fixed t, is either of the
functions

(4.16) h(r)=r/2(r2+t2)-/2 and O<t2<(l+51/2)(8u2+1)/2,
(4.17) h(r)=ra/Z(r+t2)-5/6 and 0<tz<4(8v2+1).

In the case of (4.16), a straightforward calculation gives

rSR (r) 2r6- 2tar2 + (43’ + 3)t4 + (43, + 3)tZr2.
The coefficient of 4 is 43, + 3 2re, so that R > 0 for r2 =< (43/+ 3)/2. Also

rSR’ 2rZ{r4 + (43’ + 3)2/16-[t-(43, + 3)/4]2}+ (43, + 3)t4,
so that R] >0 if r2> (43" + 3)/2 and

t2-<(1 +51/2)(43,+3)/4=(1 + 51/2)(8u2 + 1)/2,
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2since 3’ =/ z,/ 2 v.
In the case (4.17), we have Rl(r)--(r2+ t2)4/3R2(r),

Rz(r) t4/2-(4y + 3)t4/4r4 (4y + 3)tZ/2r2 + r2 + 2t2 7

5 4 r2t2riR2 A +(43,+3) +2r6 ifA=2rZ-(4y+3).

If A --<0, i.e., r2_--< (4y+3)/2, then R>0. If A >0, we write
5rlR 2 A (2r4/A t2)(t2 + r2)

Hence R->_ 0 if A > 0 and

t2<-4r4/2A 4T+3+[A +(43, +3)2/A]/2,
where 2r2 A + 4y + 3. But

A + (4y + 3)2/A _-> 2(47 + 3) for A > 0,

so that R->0 if A >0 and 2_-<2(47+ 3) 4(8v2+ 1). This completes the proof.

5. On Whittaker’s differential equation. This equation is

(5 1) x"-(1/4-K/t+/t2)x=O, where/3 v2

and K, v are real constants; cf. [9, pp. 88-91]. This is the special case of (2.1) with

(5.2) q (t) 1/4- / +/ 2 (t2- 4t+48)/4t2 e(t)/4t2.
We shall assume that

(5.3) 0,

for otherwise the change of variables 2t reduces (5.1) to (4.1). We shall also
assume , u are chosen so that

(5.4) (5.1) is disconjugate on t > 0.

Note that

(5.5) q(t)=O<=>t= t+/-= 2K + 2(2-/3)/2.

Thus it follows that

(5.6) q > 0 for > 0<=>either/3 > 2 or/3 >= 0, <= 0.

In particular, these conditions are sufficient for (5.4). They are not necessary; e.g.,
(5.4) holds if t < 1/2 (cf. [8, p. 89]). See also [8, pp. 182-183].

In the case of (5.2), the function (3.4) is

(5.7) O 1 412Kt3- 3( + 2/3)t2 + 12t-42]/p3(t).

Simple calculations give

(5.8)

(5.9)

(5.0)

(5.11)

q’ (t- 28)/t3,
O’= 24tH(t)/pa(t),

H= tt3- 2(K 2 + 2/3)t2 + 2:( 2 + 5/3)t + 4/3(/3 32),
H’= 3t2- 4(: 2 + 2/3)t +2(2 + 5/3),
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(5.12) H’(t)=OCr>t= T+ {2(2+2/3) +/- [2(8/3 + 2)(/3 t(2)]1/2}/3.
Thus if 0, then

(5.13) H’ 0 on (-c, o) <::> 2/8 </3 < 2.
But if/3 ->_ 0 and/3-/2 0, then

(5.14) T+<0 and H’<0 fort>0 ifx<0,

(5.15) T+>0 if>0.

When (5.4) holds, the standard solutions x N(t) and x W(t) of (5.1)
are positive principal solutions at t=0 and t=o; cf. [9, pp. 88-91]. We shall
consider monotony and convexity properties of

(5.16) u u(t) N(t) W(t).

THEORFM 5.1. Let < 0 and >= 0 (i.e., >- 1/2). Then q > O, q’ < 0 and O > 0
for t > 0. (i) If 0 <= <-- 3t 2, then O’ < 0 for > 0 and

(5.17) u>0, u’>0, u"<0, u"’>0 fort>O.
(ii) If >3, then there exist positive to, " such that O’ >0 on (0, to) and

O’< 0 on (to, c), and

(5.18) u>0, u’>0, u"<0 fort>O,

(5.19) u’" < 0 on (0, ), u"’ > 0 on (z, oo).

Proof. Let < 0 and/3 >_- 0. Then the inequalities q > 0, q’ < 0, O > 0 for > 0
follow trivially.

(i) If 0_-</3 <x, then H’<0 for all t, by (5.13) and (5.10), and if x-</3 -<
3x 2, then H’ <0 for t>0 by (5.14). Since H(0)= 4/3(/3- 3x2)_-< 0, it follows that
H< 0 for > 0, and so O’ < 0 for t > 0 by (5.9). Thus (5.17) follows from Theorem
3.1.

(ii) If <0 and/3 > 3x2; then H’ <0 for t >0 and H(0)>0, and so the
existence of to is clear from (5.9). Hence (5.18), (5.19) follow from Theorem 3.2
(in particular, from (3.14) and (3.16); cf. I-9, p. 88]).

THFORZM 5.2. Let > 0 and let (5.4) hold. Then there exists a - > 0 such that
u > 0 on (0, oo), u’> 0 on (0, z) and u’ < 0 on t > z.

Proof. Case 1./3 _>2. In this case, q(t) >0 for t >0, except that q(2) 0 if
/3=, q’<0 on (0,2/3/x) and q’>0 on (2/3/, oo), by (5.6) and (5.8). The
existence of - follows from Theorem 2.2 and the Remark following it.

Case 2.0 </3 <. In this case, q < 0 if and only if (0 < )t_ < t < t/, q’ < 0 on
(0, 2/3/) and q’ > 0 on (2/3/, oo). The existence of - follows from Theorem 2.3.

Case 3./3 _-< 0. In this case with > 0, q < 0 if and only if 0 < t < t/, while q’ > 0
on (0, oo). The assertion follows from Proposition 2.3(iii) in the case (2.12), since
u(+ 0)= 0. This completes the proof.

Remark. In Theorem 5.2, let H (hence O’) be positive for > t/ > 0. [This is
the case, e.g., if -K2/8 [ R

2 (SO that H’=> 0 for all real t) and if H(t+)>-0.]
Then Proposition 2.3(iii) applied to the differential equation (3.3) on the
s-interval corresponding to > t/ > 0 implies the existence of - e (t/, oo) fl (z, oo)
such that u’"> 0 on (t/, -) and u’" < 0 on (-, oo). Here we have used the analogue
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of (2.12), i.e., U=ql/2u -0 as t- t+. We illustrate this in the case fl K2>0, so
that t/ 2,

q=(t-2K)2/4t2,
Q= 1-4(2t-)/(t-2)4,

THEOREM 5.3. Let -1/4<=fl <0 (i.e., 0--<u<1/2) and <0. Then there exist ’1
and ’2 such that 0< ’1 < 2, u’>0 on (0, ’1), u’<0 on (, r2) and u’>0 on

Proof. Note that t in (5.5) satisfies t_ < 0 < t+, so that q < 0 on (0, t+) and, by
(5.8), q’ >0 on (0, to), q’< 0 on (to, ) with t0 2fl/x > t+ >0. Proposition 2.5
implies therefore that either u’ > 0 on (0, ) or that rl, 2 exist, as asserted. Let fl
be fixed, -z=fl < 0. The proof will depend on the use of continuity arguments for
varying r 0.

If 0, there exists a ro > 0 such that u’> 0 on (0, o) and u’ < 0 on (to, ).
This assertion is contained in Theorem 4.2 (after the change of variable 2t). In
particular, u’(o + 1) < 0. By continuity considerations, u’(ro + 1) < 0, for small
-r > 0. Hence a, r2 exist for small -r > 0.

This argument makes it clear that the set of x < 0 for which za, T2 exist is open.
It will be shown that it is also closed on r < 0. Since q(t) is strictly monotone on (0,
2fl/r) and on (2fl/r, ), the proof of Proposition 2.5 shows that u"(s)O if
u’(s) 0. Thus by the implicit function theorem, ra() and r2(r) are continuous on
the r-set (in < 0) on which they exist.

Suppose 1 and exist on 0 > r > to. The behavior of the factors N(t),
W,(t) of u near 0 show that there is a constant C(ro) such that 0< C(ro)
() < rz(r) for small -o>0.

In the proof of Proposition 2.5, it is clear that t2 t2(r), t3 t3(r) exist for
0 > r >o and that t+(x) t2() < to < t3(K). By continuity considerations, t2(o),
t3(ro) exist and t+(ro) tz(ro) to(to) t3(xo). Since 2() < t3(r) by the proof of
Proposition 2.5, we have that t2() < t3(x) t3(o) + 1 for small r o > 0. Thus
there exists a sequence r l, r2," such that 0<, <to, ro lim , and rio
lim a(r,), 2o lim T2(gn) exist as n. We have C(0)1020t3(0)+ 1.
The case 1o r2o is impossible for otherwise u’ 0 on t > 0 but u’(lO) 0 when
r to. Thus , T2 exist for ro (and 1(o) 1o, 2(o) 2o). is completes
the proof.
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FILTER STABILITY IN DYNAMICAL SYSTEMS*

JOSEPH AUSLANDERf

Abstract. Lyapunov stability of a closed (in general noncompact) set in a dynamical system is
studied by means of a pair of neighborhood filters of the set. In this way, several distinct stability
notions arise (which coincide if the set is compact). Stability of the trivial solution of nonautonomous
systems of differential equations is included as a special case. Necessary and sufficient conditions for
filter stability are given in terms of families of Lyapunov functions.

Introduction. In this paper we develop the elements of a theory of stability
for closed noncompact invariant sets in locally compact dynamical systems. The
results are, in some respects, analogous to those for compact invariant sets [4].
There are, however, some substantial differences. In particular, there is no
obvious way to define Lyapunov stability of a noncompact set. The "neighbor-
hood" and "e- 6" definitions, which obviously coincide for compact sets, are
different in the noncompact case. Rather than choose one of these as our
definition, we define "filter stability" which includes both as special cases. For
each pair of neighborhood filters and - of the closed invariant set M, we have a
notion of "(g, ) stability."

In the study of stability of compact invariant sets, certain set functions,
"prolongations," and real valued functions, "Lyapunov functions" have proved
to be useful. We introduce " prolongations" and "(, ) Lyapunov functions"
which play similar roles. In general, the existence of an (’, ) Lyapunov function
does not imply stability. Thus we are led to the notion of an "(, ) Lyapunov
family"; the existence of such a family is equivalent to (g’, ) stability. We also
briefly consider filter attraction and asymptotic stability.

Other discussions of stability of noncompact sets occur in [3], [4], and [8].

1. Definitions. Let X be a locally compact metric space, with metric d. If
Mc X, and r > 0, we write S(M, r) for the set of points whose distance from M is
less than r, int M and 0M for the interior and boundary ofM respectively, andM
(or just ) for the neighborhood system of M.

By a dynamical system or flow on X, we mean a continuous action of the
additive group of real numbers on X. If x X, t R, we denote the action of t on
x by xt. If x X, the orbit, positive semi-orbit, and omega limit set of x, are,
respectively, the set y(x) [xt/t R], y+(x) [xt/t >- 0], and o(x) t>=o y+(xt).
A subset M of X is said to be invariant (positively invariant) if, whenever x X,
y(x) cM (y*(x) c M).

At this point, we introduce the idea of filter stability. Recall that a filter on a
set X is a nonempty collection of nonempty subsets of X, which is closed under
finite intersections, and which contains every superset of each of its members.
Suppose, as above, a dynamical system is given on the locally compact metric
space X, and letMbe a closed invariant subset of X. A neighborhoodfilter ofMis a
filter cM. Note that V is itself a neighborhood filter, as is a// q/, the

* Received by the editors April 23, 1975.
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collection of metric neighborhoods of M (U6 R if and only if U S(M, e), for
some e > 0).

If , is a neighborhood filter of M, we denote by / the positively invariant
members of ; +=[/+(F)/F g-]. The collection -+ is a filter base (the
intersection of any two members contains a third) and we write {&--+} for the filter
generated by /. Thus {-} consists of the supersets of positively invariant
members of .

Now suppose that if and , are two neighborhood filters of M. Then we say
that M is (, ) stable provided that c{ge+} (so certainly c ’). Then M is
(, ,) stable if and only if, whenever F , there is an E ’ such that T/(E) c F.
We say that M is stable if it is (, ) stable; clearly this is the case if and only if
{+}= . Examples of this are topological stability (=AcM) and metric (or
"e- 6") stability (=

IfM is (g’, ) stable, and *’ and ’ are neighborhood filters with *’ and
’ , obviously M is (ge’, ,,) stable. However, there is, in general, no relation
between ’ and , stability, even when one of the filters is contained in the other.
For example, an invariant line in a parallel flow in the plane is metrically stable but
not topologically stable. On the other hand, consider a dynamical system on the
set [x/x >= 1] with singular points at all x (3 ,=1.2,... In, n + 1/2"] and such that, if
n+l/2"<x<n+l, then xt-->n+l as t->oo. Let M={1, 2, 3,...}. Then M is
topologically stable (for.example, by Theorem 3); however, for no 6 > 0 is it the
case that ,+(S(M, 8)) S(M, 1/4), so M is not metrically stable.

Stability notions of the trivial solution of nonautonomous systems of differen-
tial equations can be formulated as special cases of (’, ,) stability. For, consider
the n-dimensional system (NA)’Yc =f(t, x),f(t, 0)=0, (t ); we assume that f is
sufficiently smooth on " so that, given any (to, Xo)x ", there exists a
unique solution qb(t, to, Xo) defined for all t, which depends continuously
upon (to, Xo) and which equals x0 for t to. The trivial solution x 0 is stable if,
given any e >0 and any to, there exists 6 6(e, to)>0 such that ilxoll< 
implies Ilk(t, to, xo)ll < for t => to, and is uniformly stable if 6 depends only 6n e,
[1]. Now, by a familiar device, we may form the associated (n + 1)-dimensional
autonomous system (A)")) g(y), where y (t, x), g (1, f). The solutions of (A)
define a dynamical system in n/l for whichM [(t, O)/t ] is a closed invariant
set. It follows easily that the solution x 0 of (NA) is stable if and only if M is
(, 0?/) stable, and is uniformly stable if and only ifM is /stable. (Note that the set
[(t, x)/llxll< 6(e,t), t R] is a neighborhood of M--this follows from’continuous
dependence on initial conditions.)

It is natural to inquire whether a closed invariant set M is stable for some
neighborhood filter o. If the question is posed in this way, it has a trivial
affirmative answer. In fact, if o is any neighborhood filter of M, then obviouslyM
is {-} stable. For this reason, we impose an additional condition, "sufficiency" on
those neighborhood filters which we consider" a neighborhood filter will be
called sufficient if its adherence fq [F/F s ] is equal to M. Hence o is sufficient if
and only if whenever x X M, there is an F such that x F.

The consideration of stability for various neighborhood filters is only of
interest when the closed invariant setM is not compact. The reason for this is that
ifM is compact, and is a sufficient neighborhood filter which contains a compact
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set then coincides with M, the complete neighborhood filter. Indeed, suppose
M is compact, and let be such a neighborhood filter. Let W be a compact
member of and let U Wt, with Uc W. If z W U, let Vz with z Vz,
and let Nz be an open neighborhood of z with Nz f) Vz and Nz fqM .
Now W\ U is compact, so there are Zl,’",z/1 W\ U such that
W- U (Aj= Nzj. Let V (3j= 1Vzj f) W. Then V and V U. It follows that
U -, and therefore o% M.

We recall the definition of that prolongation of a point [9]. If x X, the (first)
prolongation of x, Dl(x) fqucx T+(U). Note that y D(x) if and only if there
are sequences {xn}, {y/l} in X, with x/1 x, yn y+(x/1), and y/1 y. A compact
invariant set M is Lyapunov stable if and only if DI(M)=M (where
DI(M) IOxtDl(X)) (see [9]).

We generalize this notion by defining the prolongation of a set relative to a
neighborhood filter. If A X, and 0% is a neighborhood filter of A, the -prolongation of A is the set D(A) VIF T/(F). If " and are neighborhood
filters of A with -c q3, then obviously D(A) D(A).

2. Results.
LEMMA 1. LetA be a closed subset ofX. Then Dx(A) cl (-JxeA Dl(X)).
Proof. Clearly the right side is contained in the left side. Now, let y Dx(A).

We show there is a sequence x/1 A, with y, Dl(X/1) and y/1 y. If not, there is an
r > 0 such that S(y, r) is compact and such that Dl(X) f’) S(y, r) , for all x A.
Then every x cA has a neighborhood Ux such that y+(Ux)S(y,r) (. Let
U=t-JxA Ux. U is a neighborhood of A, and 7+(U)f3S(y,r)=, so
y+(U) f)S(u, r/2)= , and y Dx(A). This contradiction completes the proof.

THEOREM 1. Let M be a closed invariant set in X. Then the following are
equivalent:

(i) Dx(M)= M.
(ii) D(M) M, for some neighborhood filter .
(iii) D (x) M, for every x M.
(iv) M is f stable, for some sufficient neighborhood filter q.
(v) Mis (g, ) stableforsome neighborhoodfilters and, with sufficient.
Proof. Obviously (i) implies (ii). If (ii) holds, and x M, Dl(X) c D(M) M,

so (iii) holds. If (iii) holds, Dx(M) cl UxD(x) M (using Lemma 1), and (iii)
is proved.

Now, (ii) obviously implies that {/} is sufficient. Since, as we have observed,
M is always {-+} stable, (iv) holds with {/}. Finally, suppose M is stable,
where is sufficient. Then if y M, there is a G such that y G. Let G’
such that 3,/(G’)c G, so y 7+(G’). Hence D(M)= M, so (iv) implies (ii).
Obviously (iv) implies (v). If (v) holds, c {g+}, so {+} is sufficient, and (iv) holds
with (q {/}. This completes the proof.

A closed invariant set M satisfying any one (hence all) of the conditions in
Theorem 1 will be called conditionally stable. In this case, let

o [/is a sufticient neighborhood]
filter and M is stable. J

Let -* v[/0], the filter generated by finite intersection of elements of
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t_J[/ o]. Then M is * stable. For, let Wo *. Then W0 W1 (’1. f’) Wn
(W/ o), and there are U/c V (i 1, 2,..., n) such that U and
7+(U/) c W/, so 7/(U1 ... f) Un)c W1 f’l. fq W c W0. We have proved:

THEOREM 2. IfMis conditionally stable, there is a unique maximal sufficient
neighborhood filter -* for which M is * stable.

An example of conditional stability is equi-stability, as defined by Bhatia and
Szeg6 ([7, p. 84])--M is equi-stable if, for any x M, there is a 6 6x > 0 such that
x 7/(S(M, 6)). This is just the assertion that {0-///} is sufficient.

Our next result concerns topological stability, which, as we will show, is
closely related to compactness of prolongations (see also [8]). First we require a
lemma.

LEMMA 2. Letx X. Then DI(X) is compactifand only if, whenever {x}, {t,,}
are sequences with x. --> x, t. > 0, then {xnt. } has a convergent subsequence.

Proof. If DI(X) is not compact, then there is a sequence {z.}, with no
convergent subsequence, and z. Dl(X). Then one easily obtains sequences
x. -> x, tn > 0 such that d (x.t., z.)-> 0, so {x.t. } has no convergent subsequence.
Now suppose D(x) is compact. Let K be a compact subset of X with DI(X)
int K. If x. -> x, t. > 0 and {x.t. } has no convergent subsequence, then, for n _-> no,
x int K, xnt K. Let 0 < z < t such that x,z OK, and a (subsequence of)
x,-, x* OK, so x * D (x) and x* K, a contradiction.

In our next theorem we assume that the set M has no interior. This is not an
essential restriction, for if int M , we may consider the stability of the
(invariant) set M* M int M with respect to the subflow on X* X int M.
Obviously M* is stable in X* if and only if M is stable in X. It is also possible to
consider the stability of M directly by defining a "relative" prolongation [2] but
the statement of the theorem in this context is rather cumbersome.

THEOREM 3. LetM be a closed invariant subset ofX, with int M . Then
the following are equivalent:

(i) M is topologically stable.
(ii) If x M, D1(x) is compact subset ofM.

(iii) Dl(X) is compact, for every x M, and M is stable, for some sufficient
neighborhood filter .

Proof. (i) :ff (ii). Since is sufficient, Dl(X) M, for every x M, by Theorem
1. Suppose Dl(X) is not compact, for some x M. Then there are sequences x, x,
t, > 0 such that {x,t, } has no convergent subsequence (Lemma 1). Since M OM,
we may suppose xn M. Let W =X IA 1,2,... {x,t, }. Then W , and, if U ,
x, U, for n >= no, x,t, 7+(U) W so 7+(U) W. This contradicts topological
stability.

(ii):ff(i). Let W, and let W*=[xW/7+(x)f-lOW=f]. Now
7/(W*) W, so, to prove topological stability, it is sufficient to show that W* W.
If not, there is an x M such that W* is not a neighborhood of x. Then there is a
sequence z, - x such that z, W*. Now z, W, so there are t, > 0 such that
znt, 0 W. Since Dl(x) is compact, (a subsequence of) zt, - z 0W. Thus z
Dl(X) M, which is a contradiction.

Obviously (i) and (ii) imply (iii), and (iii):ff (ii), by Theorem 1.
We now turn to the role of real valued functions in the study of filter stability.

In the compact case, the stability of M is equivalent to the existence of a
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"Lyapunov" function for M [4]. If M is not compact, the existence of a single
Lyapunov function is not sufficient for filter stability of M. This is because a
neighborhood filter of a noncompact set does not, in general, have a countable
base. In order to obtain a satisfactory analogue of the compact result, it is
necessary to consider families of Lyapunov functions.

We now give the precise definitions. Let M be a closed invariant subset of X
and let ’ be a neighborhood filter of M. A real valued function v defined on some
positively invariant E0 q will be called a weak Lyapunov function for M
provided"

(i) v => 0 and v-1(0) M.
(ii) If x E0, > 0, then v (xt) <- v (x).

(iii) If e >0, v-a([0, e)) .
Note that a weak ’ Lyapunov function need not be continuous.
A family of real valued functions on X will be called an (g’, -) Lyapunov

family (for M), provided:
(i) Each v is a weak Lyapunov function.

(ii) If F, there is a v and fl > 0 such that v-l([0, )) (22 F
(equivalentlyfor every F o%, there is a v such that inf [v(x)/x F] > 0).

If {x,} is a net in X and a neighborhood filter of M, we write x, M
provided {x,} is eventually in every E . If x, M and v is a weak g’ Lyapunov
family for M, then v(x,) -. O. In fact, if is an (, o%) Lyapunov family for M, then
x, M implies that v(x,)- O, for all v 6 , which in turn implies that x, M.
Therefore, if is an o% Lyapunov family for M (meaning an (, ) Lyapunov
family), and {x,} a net in X, it follows that x, M if and only if v(x,) O, for all
v.

THEOREM 4. Let dp be an , ) Lyapunov family ]’or M. Then M is , o)
stable.

Proof. Let F6 and let v ,/3 > 0 such that v-([0,/3)) = F. Then E
v-l([0,/3)) . If x E, >0, v(xt) <= v(x) </3, so xt E. Then y+(E) E F and
M is (, o%) stable.

Our next result establishes necessary and sufficient conditions for (, )
stability in term of Lyapunov families.

TI-IEORE 5. Suppose X is second countable and and are neighborhood
filters ofM, with osufficient. ThenMis , ) stable ifand only if there is an , o)
Lyapunov family for M.

Proof. Sufficiency has been proved above (Theorem 4). We prove necessity.
Suppose M is (.ge, .) stable, and let F -. Let x 6 F-M and choose Ex such
that x y+(E) and y/(E) F. (The existence of such an Ex is guaranteed by
(, ) stability and sufficiency of .) Let Wx be an open neighborhood of x such
that Wx F and W (q T+(E) . Then F-M OF_t W. By the Lindel6f
covering theorem, there is a countable subfamily { Wx} of { Wx} such that F-M
Ui=12... Wxc Let B,q be defined inductively by Ba=y+(Ex,),...,Bi
B f’l’. ’. 71Bi_ 71 y--+-). Then B1 = B2"" and fq i/i M. (For, if y 6 F-M,

+Ey Wx,, some i, so y / (,), so y B.)
Now define v on X by v (x) inf [ 1/k Y/(x) 6B]. (If y+(x) is contained in

no B put v (x) 1 .) Clearly v --> 0, v-(0) M, and v (x, t) v (x) (x 6 X, > 0).
Note that each B is positively invariant, so, if x B, v(x)<=l/k. If e >0, let
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1/k <e, so/)-1([0, 8 )) /9 -1([0, 1/k))Bk 6g’. Hence /)--1([0; 8))I c and v is a
weak g’ Lyapunov function. If x e F, x e Bk (k 1, 2,...), so v(x)= 1. Given
Fe , we have constructed a weak g’ Lyapunov function which is bounded away
from 0 on the complement of F. This completes the proof.

Our final result on this topic shows that either a single Lyapunov function
suffices or uncountably many are necessary.

THEOREM 6. SupposeMis stable. If has a countable base, then there is an
Lyapunovfunction v such that the singleton {v} is an Lyapunovfamily. On the
other hand, if o does not have a countable base, any Lyapunov family must be
uncountable.

Proof. Suppose {F1, F2," "} is a countable base for . We may suppose that
F1 F2 ’-" and that each F is positively invariant. Define v by v(x)= 1/k
if x Fk\Fk+. It is clear that {v} is an - Lyapunov family. If {/)1, /-)2, "} is an -Lyapunov family, then the collection {v-([0, 1/k))/i, k 1, 2,. .} is a countable
base for o.

Now we turn to attracting and asymptotic properties. If g and are
neighborhood filters of M, we say thatM is an (g’, o) attractor provided there is an
E0 e $’+ such that, if x e E0, Fe , there is a T T,F > 0 such that xt F, for t -> T.
The maximal such E0 e g’+ will be called the domain o]’ (, ) attraction.

If the T in the above definition depends only on F, M will be called a uni]’orm
(, ) attractor. If M is both an (g’, ) attractor and (g’, ) stable, we say that it is, ;) asymptotically stable.

Note that if M is an ($’, o) attractor, with sufficient, then, if x e E0, its
omega limit set to(x) is a (possibly empty) subset of M. Also, if M is a uniform
(g’, ) attractor, and if E e g’ implies Et e g’ (t >= 0) thenMis (g’, ) asymptotically
stable.

Consider again the system 2 =]’(t, x), f(t, 0) and the closed invariant set
M=[(t, 0)/t->0] in N,+I. A number of "asymptotic stability" notions may be
phrased in these terms. We omit the definitions (see [1]), and just remark that the
trivial solution x 0 is"

(i) quasi-asymptotically stable if and only if M is an (c, q/) attractor.
(ii) asymptotically stable if and only if M is (2;, 0//) asymptotically, stable.
(iii) quasi-uni]’orm-asymptotically stable if M is a q/attractor.

(iv) uniform-asymptotically stable if M is 0//asymptotically stable.
THEOREM 7. LetM be stable, and let b be an Lyapunov family ]’or M.

Then M is asymptotically stable if and only if there is an Fo + such that
lim,_.oo v(xt) 0 ]’or v and x Fo, and is uniformly asymptotically stable, i]’, ]’or
each v b, lim,_.oo v(xt)= 0 uniformly on Fo.

Proof. This is a consequence of the equivalence of x, M and v(x,)O
(v ) for nets {xn} in X.

THEOREM 8. Let M be a closed invariant set. Then the following are
equivalent"

(i) M is a topological attractor, (i.e., an 2f attractor).
(ii) There is a neighborhood Wo]’Msuch that, ]’or every x W M, T+(x) is

compact, and to (x M.
(iii) Mis an attractor, ]’or some sufficient neighborhoodfilter, and y+(x is

compactfor all x in some neighborhood WofM.
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Proof. Part (ii) obviously implies (i), and using the remark in the previous
paragraph, it is easy to see that (iii) implies (ii).

We prove (i) implies (ii). If (ii) fails, there is a sequence {x} with xi M,
xi-->xM such that either (ct) 7+(xi) is not compact, or ([3) there is an x
to (xi) M. In either case, we may suppose x W. In case (o0, there is, for each ], a
sequence {t} such that {xit} (n 1, 2,. .) has no convergent subsequence. Let
W.=X kJ {xit}. Then each W. is a neighborhood of M which violates the
attractor property. In case (13), we proceed similarly. That is, choose sequences
{t} such that t -> eo (as n -> co) and xit -> x M. Again take W. X kJ {xit} to
violate the attractor property.

To complete the proof, we note that (i) and (ii) clearly imply (iii).
Our final result shows that topological stability, together with a rather weak

attraction property imply topological attraction.
THEOREM 9. LetM be topologically stable. Suppose there is a W r such

that if x’ W, to(x’) f-I M . Then M is a topological attractor.

Proof. We first observe that if x, z Xwith z s to (x), then to (x) c Dl(Z). For,
let y to(x). Then there are sequences s,,, t,, --> oo such that xs, -, z, xt, --> y. We may
suppose t > s,,, so t s,, + ,, with z, > 0. Now (xs)z, x (s, + z,) xt --> y, and
y Dl(Z). (For a related result, compare [3, Lemma 4].)

Now, let x’s W and suppose z to(x’)fq M. We show y+(x’) is compact. If
not, {x’t} has no convergent subsequence, for some t,-->oo. Then, if U is a
relatively compact neighborhood of {x’}U D(z), there is a sequence s, --> oo such
that {x’s,,} OU. Then (a subsequence of) x’s, x" ox x" Dl(Z), by the
above observation, which is a contradiction. Hence y+(x’) is compact. Since
o(x’) D(z), o(x’) is compact. By Theorem 7, M is a topological attractor.

Acknowledgment. I would like to thank Peter Seibert for useful conversa-
tions on the topics of this paper.
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THE POINCARI-BERTRAND FORMULA:
A DERIVATION AND A GENERALIZATION*

L. C. BAIRD, S. SANCAKTAR AND P. F. ZWEIFEL]"

Abstract. The Poincar6-Bertrand formula is derived without recourse to arguments involving the
complex plane. The derivation is also modified to yield a generalized formula which is seen to simplify
some calculations which arise in transport theory.

1. Introduction. The Poincar6-Bertrand formula (PBF) concerns changing
the order of integration in a certain class of singular integrals:

g(x, y)
dx dy -’rreg(z, z)+ dy dx(1) (X y)(y Z) (x y)(y z)

where the singularities are integrated as Cauchy principal values. The PBF holds
whenever z (-1, 1) provided g(x, y) satisfies the H61der condition discussed in
Appendix A. The most noteworthy feature of the PBF is the residual term,
-.trZg(z, Z). Fubini’s theorem, which concerns less singular integrals, might lead
one to expect a residual term of zero.

It turns out that PBF plays an important role in describing the diffusion of
neutrons through a nuclear reactor [1, p. 69]. Several years ago, the nuclear
engineering community became involved in a controversy regarding the physical
significance of the residual term [4], [5], [6], [7], [8], [9]. It soon became apparent
that there was a degree of confusion regarding the mathematical origins of this
term. The confusion was understandable, for derivations of the residual term are
traditionally shrouded in esoteric discussions of residues and boundary values of
analytic functions [3], [10, p. 61], [12], [13, p. 242]. The controversy was
eventually resolved in a mathematically acceptable fashion [6]; but the ultimate
conclusions were not altogether satisfying from an intuitive point of view.

It is in this context that the authors have felt compelled to work out a new
approach for the derivation of the PBF. We present here a derivation which is
conceptually simpler than any now in the literature. In particular, we avoid the
complex plane by a judicious use of integral tables. Our basic line of reasoning is
elementary, and the origin of the residual term is manifestly obvious.

Our quest for a conceptually simpler PBF derivation has not necessarily led to
a savings in computational effort. In a sense, we do not even avoid the complex
plane, for residue analysis was certainly (though not unavoidably) used to
construct the integral tables which we must ultimately use. Nevertheless, we feel
that our derivation fills the need for a conceptually simpler approach to PBF. That
approach is essentially spelled out in the opening paragraph of 2. The remainder
of our derivation is simply a filling in of details.

* Received by the editors May 28, 1974, and in final revised form March 29, 1976.

" Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061. The first
author is now with the Department of Medical Physics, University of Wisconsin--Madison, Madison,
Wisconsin 53706. This work was supported in part by the National Science Foundation under Grant
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We also introduce a generalized PBF, which is useful in certain practical
applications. The generalization consists of adopting a modified principal value
convention which can simplify (or even eliminate) the residual term. In Appendix
C the generalization is applied to an integral arising in neutron transport theory.
The modified principal value turns out to be a natural choice for the problem in
question, and the resulting residual term quickly gives an answer otherwise
requiring a significant amount of additional computation.

2. The derivation. Our derivation makes a direct appeal to the definition of
the Cauchy principal value. Letting 11 and Ie denote the double integrals on the
left and right sides of (1), respectively, we have (see Appendix B)

(2a) 11 lim lim IA g(x, y)
dA,

00 (x y)(y z)

(2b) I2 lim lim lim Ia g(x, y)
dA

y-o -o -o (x y)(y z)

where dA denotes integration over the regions, A1 and A2, defined by Figs. 1 and
2. A cursory examination might have led one to believe that 11 and I2 differ only in

FIG. 1. The region, Aa, which is the domain ofintegrationforI
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X -I

/
/

/
/

Y= -I

FIG. 2. The region, A2, which is the domain ofintegrationfor

=1

a reversed order of integration. However, we now see that they also differ with
respect to the domains of integration, A1 and A2. This difference in the domains is
the crucial feature which ultimately leads to the residual term

(3)

(4)

I1 I2 -rZg(z, z ).

To obtain this result we take the difference of equations (2):

g(x, y)
dxI1 12 lim lim lim

(x y)(y z)
dy.

T40 a40/3->0 l_A2

We now proceed to evaluate the right-hand side of (4). To this end it is convenient
to partition (A1- A2) into the twelve regions {R1,.. ", R12} shown in Fig. 3. The
integral over the nth region will be denoted by Jn. Thus

(5)

12

I1-I2 lim lim lim
T40 a40/340

12

lim lim lim lim J.
64->0 ,,/40 ->0/34->0 n=l

12

-lim E J,,
n=l
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where the quadruple limit is simply denoted by "lim". The remainder of our
derivation consists of the mundane task of evaluating the limit of each J,, integral.
In each case the limits of integration are obtained from the geometry of Fig. 3.

FIG. 3. The 12 regions of (A1 A2). The parameter t is a small constant. Diagonal lines bounding
the shaded regions are parallel to y x. The remaining diagonal lines are parallel to 2Ty-
(z +/+-a)x.

The H61der condition on g(x, y) assures us that the integrand is bout,tied on
any closed set excluding the lines of singularity. Thus

(6) ]limJl[_<-(limln dA) sup Ig(x, y)l-O.
(x,y)R

Therefore

(7)

Similarly

lim J1 O.

(8) lim J12 0.

A brief study of Fig. 3 shows that if (x,y)ER6 then (2y-x,y)ER5,
(2z x, 2z y) RT, and (2z- 2y + x, 2z y) e Rs. Furthermore, these four
points are located symmetrically with respect to the lines of singularity. We also
observe that (x- y)(y- z) only varies with respect to algebraic sign at the four
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points in question. In view of these comments, the following equation is easily
deduced:

J5 -Jr- J6. J7 -.[- J8
(9) = g(x, y)-g(2y-x, y)+g(2z-x, 2z-y)-g(2z-2y+x, 2z-y)

6 (x-y)(y-z)

Applying the Lemma of Appendix A we obtain

(10)

It follows that

(11)

[J5 + J6 + J7 + J8l -< 22+pA IR (X y)p/2-1 dA.

lim (J5 + J6 + J7 + Js) O.

Noting the continuity of g(x, y) we have

(12) lim J4 g(z, z lim J
where

(13)

J14 (X y)(y 2)
dA

IzZ+V-t f 2r-z-* 1

+ (2vr-z(v-+)-v(+t+v))/(v+t-,) (x y)(y z)
z+v+t IY-t 1

.+
z+r-t 2vy-z(-+,)-v(++v)/(v+t- (x-y)(y-z)

t ._o (In yY)(ln)

dx dy

dx dy

Equations (12) and (13) imply

(14) lim J4 O.

Similarly

(15) lim J9 0.

We use the transformation

(16) x-z -ye

and again invoke the continuity of g(x, y) to obtain

(17) lira J2 g(z, z) lim J
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where

J’z x y)(Y z
dA

+/3 +2z)-(3,+/3-a) e-U)/2

1 \
) dy du

y-z

(18) .,Io 6 + ye 1- e
; In---------

,,/3-o 6 1 +e-

In
e + 1_ du

y-,o eu- 1

-Tra/4.

du

The last step has been accomplished by appeal to a table of definite integrals 11,
p. 70]. Thus

2

(19a) lim j2
r

g(z, z).

The remaining integrals are evaluated similarly to obtain
2

(19b) lim J3 g(z, z),

2

(19c) lim J10 g(Z, Z ),

2

(19d) lim Jll -g(z, z).
4

The PBF (equation (3))is obtained by combining (5), (7), (8), (11), (14), (15), (19).

3. The generalized PBF. The usual PBF (equation (1)) employs a principal
value convention which deletes a symmetric neighborhood about each line of
singularity: (x y), (y z), (z x). One can modify this convention by letting the
deleted neighborhoods become asymmetric strips along the lines of singularity.
We shall denote these asymmetric strips as being the regions between each of the
following pairs of lines:

(20a) y z + aa,

(20b) y=z-a,

(21a) y x + b,
(21b) y=x-,
(22a) x z + cy,

(22b) x z y,
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where a, b, c > 0. We define the generalized Poincar6-Bertrand formula (GPBF)
to be that formula obtained if 11 and 12 are evaluated via the asymmetric principal
values. To obtain the GPBF we repeat the arguments of 2. The details of the
computation are not particularly interesting and will be omitted. The final result is
the GPBF

(x y)(y z)
(23)

dxdy=g(z,z)(-Tr2+lnb In c-In c In a-In a lnb)

+If I g(x, y)
(x-y)(y-z)

dx dy

where the singularities are integrated as asymmetric principal values ?a la equa-
tions (20), (21), (22). A doubly generalized PBF could have been generated by
choosing one set of asymmetry indices {a, b, c} for 11 and a different set for I2.

We see that the asymmetry indices have rendered (1) and (23) formally
dissimilar. An analogous effect occurs when an asymmetry index is used with a
one-dimensional principal value"

f.(X) dx
X symmetric X asymmetric

lim + dx lim + dx
(24) o x -,o x

lim f(x)x- dx
--0

f(0)In a.

This result is just another form of a well-known theorem [2, p. 11] which says that
different regularizations of nonlocally-integrable functions differ only by multi-
ples of the delta distribution.

It is interesting to note that a suitable choice of asymmetry indices completely
eliminates the residual term in (23). Thus the generalized PBF is sometimes
formally equivalent to Fubini’s theorem.

An application of the GPBF appears in Appendix C.

Appendix A. A variety of conditions on g(x, y) could be stipulated under
which the PBF would be valid. We shall adopt the H61der condition used by
Muskhelishvili [10, p. 11]. That is, we require that there exist constants
A, B, P, O > 0 such that for any two points in the domain of g(x, y) we have

(A.1) Ig(x2, y2)-g(xl, y)l<=alx2-x[" +Biy2-Yl[.
Clearly there is no loss of generality in assuming that A B and P Q. Thus (A. 1)
reduces to

(A.2) [g(x2, Y2)-g(xl, yl)l<Alx2-xl[e +Aly2- ylle.
We note the fact that the H61der condition implies that g(x, y) is continuous.

The following lemma is needed in the evaluation of (9).
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LEMMA.

(A.3)

where

G(x, y) lg(x, y)l lg(2y -x, y) + g(2z -x, 2z-y)
(A.4)

g(2z- 2y+ x, 2z- y)[.

Proof. We first establish the result

G(x, y) -<_ [g(x, y)- g(2y x, y)]
+ [g(2z x, 2z y)- g(2z 2y + z, 2z y){

(A.5) <-al2x-2yle +a [-2x +2yle

2’+ealx-yle

<__22+eAIx-y[e.
On the other hand,

G(x, y) <= Ig(x, y)- g(Zz 2y + x, 2z y)]
(A.6) + [g(Zz x, 2z y)- g(Zy x, y)[

<-A[2z-2y[’+Al2y-2z[e+AI2z-2y[e +Al2z-zyle.
Thus

(A.7)

Appendix B. It will be convenient to extend the domain of g(x, y) to include
the region (Ixl-> 1->lyl). Any H61der continuous extension of g(x, y) will be
acceptable; for example,

(B.1) g(x, y)= g(+ 1, y) if +x a

We will now proceed to show that equations (2) are valid representations of I1
and 12. We first consider 11, which was originally defined to be the left side of (1)-

(B.2)

where

f (c, ly zl)(, Ix yl)
11 lim lrno J_

g(x, y)y
dx dy

-’o (x-y)(y-z)

,1 1 if a -< b,
(B.3) b)

0 otherwise.
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The question to be answered is whether or not (B.2) is invariant under an
interchange of the/3 limit and the dy integration:

i_l I_ g(x, y)y(, [y z1)3,(/3, Ix0 ?--- lilTlo (x y)(y z)
dx dy

lim
g(x, y)y(a, [y z[)7(, Ix yl)

/30 (X y)(y Z)
dx dy

I_l f_ I_lim lim
g(x, y)7(a, [y- z I)[,/(v, Ix- Y])-3’(fl, Ix- Y[)]

/30 uo0 (X y)(y Z)
dx dy

+ lim y(- 1, x) + y(x, 1) dx dy

(B.4) lim +
/30

lim 3,(x, -1)+
+ vO -/3

+
+

"g(1, x) (x-y)(y-z)dxdy
lim + lim + g
--,o +o, ,,--,o -t ,,+,, (x- y)(y- z)

dx dy

f
min{-1,y-v}

lira lim
g(x, y)

dx dy
t3--,o -,o

,,y-t3 (x y)(y z)

[ (x,
lim lim

g Y
--,o -8

,-o .’max{1,y+,,} (x y)(y z)
dx dy.

Equation (B.4) is seen to involve points outside the original domain of g(x, y).
This situation is justified in the opening paragraph of Appendix B.

The three terms of (B.4) will be handled individually. We first restrict our
attention to the term

Ta lim + lim + g
dx dy

/30 +a -,0
-t3 -y+ (x-y)(y-z)

{I_z- Izl } IyY+t (x,)- (2Y(B.5) lim + lim
g y g x, y

dx dy
t3--,o +o, ,,-,o +,, (x y)(y z

{’J;-a+Iz }Iv
y+t (x’ g(2yy- y)

llim +o X y y z)
dx dy.

We now invoke the H61der condition to obtain

(B.6)
{I_ Iz } Iyy+ 2eA (x y)e-1

rll =< li_,m /

lim
1 1-fi

e

0.

dx dy
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Having disposed of Ta, we turn to the term

(B.7)

3

f
min{- 1,y-v}

T2 lim lim
/3-0 v-*0 ,y_/3

g(x, y)
(x-y)(y-z)

lim
g(x, y)

-o
_

(x y)(y z)
dx dy.

dx dy

Letting

(B.8) S

we easily obtain

Ig(x, y)
sup

y_/3 x<___l
-1__<y=</3-1

(B.9)
I__3-1 fy-1 [--1IT2[ lim S Ix y dx dy

/3-->0 --/3

lim flS 0.
/30

Similarly

lim
g Y dx dy O.(B.10) T3 lcQm

-/3 -0Omaxtl,y+l (x--y)(y--z)

In view of (B.6), (B.9), (B. 10) we conclude that the zero does indeed belong on the
left side of (B.4). That is, (2a) is valid. The validity of (2b) is established by
applying the preceding argument to I2 instead of 11.

Appendix C: An application of GPBF. In many areas of linear transport
theory the Boltzman equation is solved in terms of so-called "singular eigenfunc-
tions" which, for one speed neutron transport theory, take the simple form [1,
Chap. 4]

cv 1
+a()(-).(c.1) () T -Here u is the "eigenvalue", / Vx/V is the normalized x-component of the

neutron velocity and c is a nonnegative parameter. The usual (symmetric) Cauchy
principal value is denoted by .

In performing eigenfunction expansions in order to solve boundary value
problems in transport theory, it is necessary in certain cases to integrate
"products" of these eigenfunctions [6]. By redefining theprincipal value in terms
of an asymmetric we can eliminate the term involving 6(u-pt) [2, p. 11]
specifically

cv
3

1
(C.2) (/x) T ap__
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where a means that integrals involving 1/(u-/z) are to be performed on the
interval

where

lim [-1, v-a]U[u+aa, 1]
t--0

(2)/(c,,)a=e

Clearly it is easier to multiply expressions like (C.2) than those like (C.1).
When the order of integration is reversed with such a product one must take

care to use the correct asymmetric PBF. This is no increase in labor over the usual
case [ 1, p. 70], in which the symmetric PBF has to be used anyway. In particular, a
typical integral which occurs in transport theory is obtained from applying
"orthogonality" to an eigenfunction expansion of the form

(C.3) (/z) A(u)q (/x) du

where

(C.4)

On the right-hand side of (C.4) if the order of integration can be reversed, the
integration over/x can be carried out. Thus, according to the GPBF (equation (23)
with a b =c =e2)/c)) we must substitute a term u(Tr2+(4,t2)/(c2u2)). This
immediately gives the Case normalization coefficient N(u) [1, p. 71] with no
further work.

When products of more singular eigenfunctions are piled up, even greater
simplifications occur. One such application occurs in a specific derivation of the
family of spectral projections for the transport operator [14], but the details ai’e
similar to the case derived above.
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AN INVARIANCE PROPERTY OF SOLUTIONS TO SECOND ORDER
DIFFERENTIAL INEQUALITIES IN ORDERED BANACH SPACES*

RUSSELL C. THOMPSON?

Abstract. Let B be a Banach space, K be a cone in B and I [a, b]. Conditions are imposed on
f(x, u, u’), f: I B B -, B such that the following invariance property holds: u" + f(x, u, u’) -K,
u(x 1) K, u(x2) K, a =< x < x =< b implies u(x) K for all x [x 1, x2]. From this property, comparison
theorems for solutions to differential inequalities are obtained. These comparison results give
sufficient conditions for C functions to be subfunctions with respect to two point boundary value
problems. These results extend earlier results in R" by Heimes to more general types ’of partial
orderings in both infinite and finite dimensional spaces. The approach taken in this paper relaxes
certain coupling restrictions present in earlier results of this type.

Introduction. In this paper, we investigate an invariance property of solutions
to second order differential inequalities in a Banach space B in which the
inequality relation is induced by a cone K in B. The invariance property can be
briefly described as follows: conditions are imposed on the function f(x, u, u’) such
that if u(x) is twice continuously differentiable in [a,b] and satisfies u"+
f(x. u, u’) -K, u(x) K, and U(X2) cK, then u(x)K for all x Ix1, x2] where
Xl, XE[a,b], Xl<X2, f: [a,b]BBB, and -K= {-u: uK}. This property
is a generalization of the-minimum principle for one dimensional, second order,
ordinary differential equations (cf. [6]). Using this invariance property, we
develop comparison theorems for solutions to differential inequalities. Such
results play an important role in the existence theory for two point boundary value
problems based on Perron’s method (cf. [2], [3]). The comparison theorems give
sufficient conditions for twice continuously differentiable functions to be subfunc-
tions with respect to two point boundary value problems and also give conditions
under which solutions to boundary value problems are unique when they exist.
They have also recently been used to obtain error estimates for the numerical
method of lines in the approximate solution of elliptic boundary value problems
(cf. [12]).

Our conditions on f(x, u, u’) are extensions to general partial orderings of
some conditions used by Heimes in [2]. By making this extension, we are able to
obtain comparison results for a larger class of equations. These results permit
coupling to occur in the u’ variable and also more general types of dependence on
u. The work in the present paper makes use of some techniques developed by
W. Walter [17] and Volkmann [14], [15] in studies of first order equations using
quasi-monotone functions. Their results on quasi-monotone functions have been
extended to results on flow invariant sets for initial value problems (of. [7], [16]).
The approach used in these results on flow invariant sets has also recently been
applied to show existence of solutions to boundary value problems for second
order differential equations in a Banach space (of. [8]). Some general studies of the
role of differential inequalities in obtaining upper and lower bounds on solutions
to boundary value problems have been made recently by J. Schr6der; see [9], 10],
[11] for further references in this area.

* Received by the editors December 11, 1975, and in revised form May 10, 1976.
? Department of Mathematical Sciences, Northern Illinois University, De Kalb, Illinois 60115.
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The remainder of this paper is arranged in the following way. In 1, some
basic properties of cones in a Banach space are reviewed. These properties are
used in the development of the invariance property. A detailed development of
these cone properties can be found in [4]. Section 2 contains the proof of the
invariance property in the special case where u"+(x, u, u’)int (-K). This
restriction is removed in 3 in the case where f(x, u, u’) satisfies a Lipschitz
condition in u’. In 4, we use the results in 2 and 3 to derive comparison
theorems for solutions to differential inqualities. A theorem on upper and lower
bounds for solutions to boundary value problems in terms of solutions to
differential inequalities is obtained and the uniqueness of solutions to boundary
value problems is discussed. The final section contains some examples which
illustrate the results in the paper.

I. Definitions and some fundamental properties of cones in a Banach space.
Let B be a real Banach space with norm I. and let B* denote the set of
continuous linear functionals on B. The norm of an element b of B* will be
denoted by IIbll. A cone in B is defined to be a nonempty, closed, convex subset K
of B with the properties" ax K for each x K, ce _-> 0; and at least one of x and -x
is not an element of K. We denote by int K, the interior of K. If int K # , thenK
is called a solid cone. If K_B is a cone, then it is possible to define a partial
ordering _-< in B in the following way: for x, y B, x_<- y if and only if y-x K. This
partial ordering has the usual properties of the sign of inequality (cf. [4], [5]).
Further, if K is a solid cone and y-x e int K, then we write x < y. In terms of the
partial ordering _-<, the statement x K is equivalent to x_-> 0.

A linear functional b B* is called a positive linear functional if b(x)_-> 0
whenever x_-> 0. If Xo eK and Xo int K, then there exists a positive linear
functional b such that b(xo)- 0. If b is a positive linear functional, b 0, and
Xoe int K, then b(xo)> 0. The set of positive linear functionals on K is a closed
subset of B*. Since b(x)_-> 0 for all x K, it follows that K is contained in the
closed halfspace C, {x B [b (x) _>- 0}. Thus the positive linear functionals are
support functionals for the convex set K. If b is a positive linear functional, then so
is ab, a > 0, and furthermore {x B [b (x) -> 0} {x B[ab (x) => 0}. If K is a cone in
B, then K is the intersection of all the closed half-spaces which support it. We will
denote by U* the closed unit ball in B*, U* ={b B*[ I1 11--<1 ; and K* will
denote the collection of all positive linear functionals in B*. If Y{_ K* and
K (3{C[b Yf}, then we will say that fff generates K. So, for example, ifB R ’,
then ff{={bl,’’’ ,bn} where bj(x) =xj generates the cone K={x Rlx>-O,

2\ 1/2/ 1," , n}. For x R we take Ixl
2. The basic invariance condition. In this section we will assume that K is a

solid cone in B and that Yf_ U* generates K. denotes the closure of ,f and
I=[a,b].

THEORE 2.1. Let : I x B x B -B satisfy the following condition"

(2.1) be, b(u)=inf{q(u)lqYC)=<0, b(u’)=0 :ff

ff u C2(I, B) satisfies
(2.2) u"(x) +f(x, u(x), u’(x)) < 0,

4, ((x, u, u’))_-> 0.



594 RUSSELL C. THOMPSON

and for xl <.x2, xl, x2I, u(xl) >-0 and u(x2)_->0, then u(x)_->0 for x [xl, x2].
The proof of this theorem makes use of the following lemmas.
LEMVL 2.2. Let S

_
U*. If u C(L B), then

(2.3) O(x) inf (b (u(x))[4 S)

defines a continuous real valued function on L
Proof. For each e S, we have I(u(x))l--< 111[ [u(x)l--< Iu(x)[. Therefore (x)

is defined for all x e L
Let x e I and let e > 0 be given. We will show that (x) is continuous at x by

considering two cases. Let s be a point in L
Case 1. O(x)-O(s)<-0. In this case, I(x)-(s)[ (s)-O(x). From (2.3)

there exists a 4 e $ such that (u(x)) e/2 <(x). Hence it follows that

(2.4)

[O(x)-,(s)l O(s)-O(x)

-<_ (u(s))

=< ile’ll lu( )-o(x)l

_-<lufx)-ufs)l+ .
Case 2. (x) -O(s) >- 0. In this case, a similar argument shows ]O(x) -O(s)[ =<

In view of the result of these cases, if 6 > 0 is chosen so that [u(x)-u(s)[ < e/2
whenever Ix -s[ < 6, then IO(x)-O(s)l < e for Ix -s[ < . Thus is continuous at
x. But since x was chosen arbitrarily, it follows that is continuous on L [3

LEMMA 2.3. Let S U* and let u B. If d inf {b(u)l+ S} then there is a
$ such that $(u) d.
Proof. Since U* is compact in the weak* topology, $ is compact. For u B, u

fixed, the map $$(u) is weak* continuous. Hence S(u)={$(u)" bS} is
compact and contains d. q

Proofof Theorem 2.1. Let O(x) be defined by the formula (2.3) relative to the
function u(x). By the result of Lemma 2.2, (x) is continuous. The inequalities
II(X 1) 0 and U(X2) 0 imply that (x1) --> 0 and (I)(x2) 0 respectively. The
conclusion of the theorem is equivalent to the inequality (x)_->0 for all x
[xl, x2]. Suppose, contrary to this conclusion, that (x) < 0 for some x Ix1, x2].
By continuity, there exists an x0 (xl, x2) such that (Xo)
min {(x)[x e[x, x2]}< 0.

Applying Lemma 2.3 at U(Xo), we have that there exists a positive linear
functional # e such that 0(U(Xo)) (Xo). Define h(x) 0(u(x)). Since e Y/’, it
follows that h(xO>-_O, h(x)>-O and h(xo)=min{h(x): x e[x,x]}=O(Xo), that
is, h (x) has a negative minimum at Xo. But then

h’(xo) xO(u(x))l,=xo (u’(x0)) 0;
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and then (2.1) and (2.2) imply that

h"(Xo) (u"(Xo)) < (-f(Xo, U(Xo), u’(xo))) <- O.

This last inequality contradicts the assumption that h (x) has a negative minimum
at Xo. From this we conclude that (x)_>-0, i.e., u(x)-> 0.

Remark. In order to carry out the above proof, it is sufficient to have the
inequality

b (u" + f(x, u, u’)) < 0, x int I

hold for all b fig’.

3. Admissibility of the <- sign. In this section, some conditions are given on
the function f(x, u, u’), which allow us to replace the strict inequality in (2.2) with
=<. As in 2, we will assume that K is a solid cone in B and that ’{’___ U* generates
K. We suppose further that there is a Uo int K such that inf {b (Uo)[b Y{’} 6 > O,
for some constant 6. The set of positive linear functionals ff{,.o is defined as follows’

(3.1) YCuo 4, *14,(u) ,(Uo)’(u); , ’c, u .
It is immediate that Yg’uo - U*, ’g’uo generates K, and b (Uo) b for every b ’g’uo.

THEOREM 3.1. Let i(x, u, u’) satisfy the conditions" for (x, u, u’), (x, v, v’)
IxBxB,

and

(3.3)

b(u-v)=inf {ff(u-v)lff’/’uo}_-<0, b(u’-v’)=0

ff 6(f(x, u, u’))_>-(f(x, v, v));

f(x, 0, 0)_-> 0.

Assume further that f(x, u, u’) satisfies a Lipschitz condition in u’ on closed,
bounded subsets ofI B. If u(x)s Ca(l, B) satisfies the inequality

(3.4) u" + f(x, u, u’) -< 0,

andforx, x I, x < xa, u(x) -> 0 and u(x) -> 0, then u(x) -> 0 for all x [x, x].
Proof. Suppose that u(x) 0 for all x s [x, x]. Then

(x inf {b (u(x))[b .7Cuo}
satisfies (Xl)->0, (x2)_-<0, and (x) <0 for some x s (Xl, x2). By the result of
Lemma 2.1, is continuous; hence there is a point Xo (Xl, x2) at which assumes
a negative minimum. Let e>0 be a number such that (Xo)=
min {(x)[x [xi, x2]}=-4e. We define w(x), w" I->B, by w(x)=u(x)+p(x)uo;
where p(x) is a solution of the scalar equation p"=(L + 1)p’ satisfying 0_-<p <
 /luol, and 1 _-< p’ -< -y < 0 for some 0 < y < 1 and L is a Lipschitz constant to be
specified below.

If we take v v’ 0 in (3.2) and use (3.3), then we obtain for each b
4)(u)=inf{$(u)[$:7{o}-<0, b(u’)=0 ==> b(f(x,u,u’))_->b(f(x, 0,0))=>0.

Thus f(x, u, u’) satisfies (2.1).
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Let L be the Lipschitz constant for f(x, u, u’) corresponding to the closed
bounded set {(x,y,z)IxBxBIx I, lyl_-<llulll+e/lUol, Izl-<llu’]ll+l}, where
Ilulll max {lu(x)l Ix e I}. Then, it is easy to show that

(3.5) I((x, u, u’ + ’Uo)-(x, u, u’))l_-< I(x, u, u’ +o’Uo)-(x, u, u’)l_-<z:lo’l lUol
holds for every b g’,,o. Moreover, b(u-w)=-p8 for every b g’,,o; therefore
(3.2) implies that

(3.6) 4,(f(x, w, w’)-f(x, u, w’)) =< 0
for every b

Using (3.5) and (3.6), we obtain for b

4,(w"+f(x, w, w’))= 4,(u"+p"Uo +f(x, w, w’))
_-< ,((x, w, w’)-(x, u, u’)) +"
,((x, w, w’)-(x, u, w’))+ ((x, u, w’)-(x, u, u’)) +o"

<-- I,’1 I,,ol +( +)

luol,’-<--,luol < 0.

Therefore b (w" +f(x, w, w’)) < 0 for every
It follows from the remark following the proof of Theorem 2.1 that w(x) >=0

for all x eL since w(xl)->0 and w(x2)=>0. However, at the point Xo,

inf {b (W(Xo))lb Y{o} <=6 (Xo) + inf {b (p (Xo)Uo)]b
E

=-4e + i-ol8 =<-3e < 0

which contradicts the inequality w(x)>= 0.
Remark. In Theorem 3.1 it is sufficient to require that (3.2) hold on the set

{(x, y, z) I B B[x I, lyl--< Ilul[1 -- IlVlll + E/Ill0 [, Izl--< IIo’lll + I111 +
In many cases of interest, the assumption that int K is quite restrictive.

For example the usual cones in the Lp and p spaces 1 =<p < have empty
interiors. In these cases the proof of the theorem above cannot be carried out
because of its dependence on the point Uo. By modifying the condition (2.1) we are
able to obtain a result for cones whose interior is empty.

TrEORZM 3.2. LetKbe a cone in B (where possibly int K ) generated by a
set of positive linear functionals ’d and let f(x, u, u’) satisfy

If us C2(I,B) satisfies (3.4) and if u(xx) >-0 and u(x2) >-0 forxl<x; xl, x2I,
then u(x) => 0 for all x Ix 1, x2].

Proof. The proof of this theorem is identical to that of Theorem 2.1 up to
inequality (2.5). Instead of (2.5), we have

h"(Xo) (u"(Xo)) _-< 0(-f(Xo, U(Xo), u’(Xo))) < 0

because P(U(Xo)) > 0. This is again a contradiction to the assumption that has a
negative minimum at Xo. 71
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4. Comparison theorems for solutions of differential inequalities. As an
application of the invariance principle developed in the preceding sections, we
give some comparison results for solutions of differential inequalities in a Banach
space B, in which there is an inequality relation generated by a cone K. In the
result presented here we will use Theorem 3.1 to determine the conditions on
f(x, u, u’) which are sufficient to provide a comparison of solutions. Similar results
can also be easily obtained using Theorem 2.1 or Theorem 3.2.

Let us assume thatK is a solid cone, Uo int K, and that ’duo is the collection of
positive linear functionals defined by (3.1).

THEOREM 4.1. Let f(x, u, u’) satisfy (3.2) relative to ’fuo andsatisfy a Lipschitz
condition in u’ on closed boundedsubsets ofI xB x B. If u, v C2(L B) and satisfy

(4.1) u" + t(x, u, u’) _>- v"+ f(x, v, v’), x /,

(4.2) u(x1) v(x1), u(x2) v(x2)

for some Xl, X2I, Xl <X2, then u(x) =<v(x) for all x IX1, X2].
Proof. Define a function f (X, W, W’) by the equality

(4.3) fl(x, w, w’)=u"(x)-v"(x)+f(x, u(x), u’(x))-f(x, v(x)-w, v’(x)-w’).

We will verify that fl(x, w, w’) satisfies the hypotheses of Theorem 3.1.
Suppose b ffo, &(w-z) inf {0(w-z)10 s Yfo} =< 0 and b(w’-z’) 0.

Then for each x I,

b (Iv(x) -z]- Iv(x) w]) inf {O([v(x) -z]- [v(x) w])lO Y{’no} --< 0
and further b ([v’(x)- z’]-[v’(x)-w’]) O. Using hypothesis (3.2) we obtain that

4,(f(x, v(x)-z, v’(x)-z’)-f(x, v(x)-w, v’(x)-w’))->0.
However,

f(x, v(x) z, v’(x) z’) f(x, v(x) w, v’(x) w’) f (x, w, w’) f, (x, z, z’);

therefore b (tl(X, w, w’)) --> b (fl(X, Z, Z’)) SO that fl(x, w, w’) satisfies (3.2). Further,

l(X, O, O)"--att(X)--Vtt(X)3r’f(X, H(X), Ut(X))--f(X, V(X), Vt(X))0

so that fl(X, w, w’) satisfies (3.3).
Finally, let D be a bounded subset of I xB xB and let L be the Lipschitz

constant for f(x,u,u’) with respect to the bounded set D’=
{(x, u(x)-y, u’(x)-z)l(x, y, z) D}. Then, for (x, y, z), (x, y, ) D,

If(x, y, z)- fl(x, y, )l-<-Llz-],

which shows that f(x, w, w’) satisfies a Lipschitz condition in w’ on bounded
subsets of I B x B. We have now shown that i(x, w, w’) satisfies the hypotheses
of Theorem 3.1.

Let x, x2I, with Xl <x2,.and suppose that u(x) and v(x) satisfy (4.2) at x
and x2. Define w(x)=v(x)-u(x). Inequalities (4.2) imply that w(x)_->0 and
w(x2) ->_ 0. Furthermore,

w"(x)-f(x, w(x), w’(x))= v"(x)-u"(x)+[u"(x)-v"(x)+f(x, u(x), u’(x))

-f(x, u(x), u’(x))] o.
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Therefore w satisfies the hypotheses of Theorem 3.1 and it follows that w(x)-> 0,
i.e., v(x) _->u(x), for all x

As an easy consequence of this comparison theorem, it is possible to derive
upper and lower bounds on solutions to boundary value problems in B using
solutions to differential inequalities in terms of the partial ordering induced by K.

COROLLARY 4.2. LetK and f(x, u, u’) satisfy the hypotheses of Theorem 4.1
and suppose vl, v2 C2(I, B) and satisfy v’’ + f(x, vl, v) -> 0, v’ + f(x, v2, v) _-< 0,
vl(a)_-<ao_-<v2(a), Vl(b)=<al_-<v2(b) where Uo, UlB. /f u is a solution to the
boundary value problem

(4.4) u" + f(x, u, u’) 0,

(4.5) u(a) ao, u(b al,

then the upper and lower bounds Vl(X)<-u(x)<-v2(x) hold ]’or all xI; in
particular, solutions to (4.4), (4.5) are unique when they exist.

Proof. We proceed by showing first that u(x) _-< rE(x) and then vl(x) -< u(x).
Both inequalities are immediate consequences of Theorem 4.1.

The uniqueness assertion follows from the part of the definition of a cone in a
Banach space which states that not both x and -x are elements of K unless x 0.
From this it follows that if x and y in B satisfy the string of inequalities y_<-x _<-y,
then x y. Let ux(x) and UE(X) be two solutions of (4.4), (4.5). Setting ux(x) u(x)
and 112(X)=VI(X)=VE(X), we obtain from the first part of this corollary that
u(x)<_-u(x)_<-u(x).

5. Remarks and examples.
Example 5.1. LetB R and letu R be denoted byu (u,. , un) r. Let

f: I R" R" --> R" satisfy for x I,

(5.1) Uk Vk min{ui vi j 1, n}<O, u Vi=>fk(X,U,U >f(x,v,v’),

and further let f(x, u, u’) satisfy a Lipschitz condition in u’ on bounded subsets of
I R R". If we take K to be the cone K {u R [Uk -> 0, k 1, , n}, then f
satisfies the hypotheses of Theorem 4.1 with respect to the cone K.

In order to see this, let 3’g" {4 1, , bn } be the family of linear functionals,
defined for u s R by k (ll) Uk, k 1, , n. 27 generates the cone K. Further-
more, if u R is defined by u 1, k 1, , n, then ’{uo ’{. It now follows
easily from the conditions placed on f that the hypotheses of Theorem 4.1 are
satisfied.

This example appears in the case n 1 in the work of Jackson (cf. [3]) and in
the case n -> 1 in the work of Heimes (cf. [2]). In these papers, the result plays an
important role in studies of existence theory for boundary value problems based
on subfunction techniques. Condition (5.1) is due to Heimes and it was this
monotonicity condition on f which suggested the one in the current paper.

For linear expressions, f(x, u, u’) su’-> u, where s and are n n-
matrix functions, (5.1) implies that sg is a diagonal matrix and that N has
nonnegative nondiagonal elements and nonpositive row sums. Heimes has shown
further, by constructing an example, that if either has nonzero nondiagonal
elements or N has negative nondiagonal entries at some point Xoe (a, b), then
there exist points Xl, x2 [a, b], with x <Xo <x2, and a function u(x) such that
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u"+Au’+Bu_-<0, II(x1)0 II(X2)-0, but u(x)0 for all x E(x1, x2); i.e., the
conclusion of Theorem 4.1 is false for such equations.

Using the same coneK as above, but changing the set of functionals yr used to
generate K, it is possible to extend this result to a larger class of equations. We
illustrate this in the following example"

Example 5.2. Let B and K be the same as in Example 5.1 and let aj,/"
1, , n, be positive numbers. Define the set of positive linear functionals yr by
YLr--{tk k(ll)--OtkUk, k 1,’’’, 2}. If we set u=(a -1,..., al), then Y[ gen-
erates K and ][Uo YL In order to get a condition on f(x, u, u’) which will satisfy the
hypotheses of Theorem 4.1, we modify (5.1) as follows:

(5.2)
ak(Uk --Vk) min {ai(ui-vi): j 1,..., n} <=0,

A(x, u, u’)_->/’, (x, v, v’), x I.

u’= v’

If f(x, u, u’) satisfies (5.2) and also satisfies a Lipschitz condition in u’ on closed and
bounded subsets of IxRnxRn, then i(x,u,u’) satisfies the hypotheses of
Theorem 4.1 with respect to K.

This example can be compared with Example 5.1 by considering the linear
case f(x, u, u’) u’+u where and are n n matrices. Condition
(5.2) implies that A is again a diagonal matrix and that B is a matrix with
nonnegative nondiagonal elements for which the weighted row sums k o-lbjk
are nonpositive.

If the partial ordering is generated by a different cone, then it is possible t
obtained comparison results for equations not covered under the conditions in
Examples 5.1 or 5.2. We will illustrate this by considering two simple examples,
the first in R" and the second in R 3.

Example 5.3. Let B =R" and let a partial ordering be induced by a
nonsingular n n matrix C in the following way: u, vER, u<-vC:(Cu)i<-(Cv)
for each ] 1, ., n, where (Cw) denotes the jth component of the vector Cw
(see Werner [18]). Let e be a vector whose components are the entries in the/’th
row of the matrix C. Then the cone K defined by this partial ordering is generated
by the set of functionals Y{ {(h [b (u)= c u, u R n,/" 1,..., n} where v w
denotes the dot product in R". If f(x, u, u’) satisfies (3.2) with respect to K, then
there is a change of basis y R"--> R" such that in terms of this new basis
f(x, , ’) satisfies (5.1). To see this suppose that f(x, u, u’) satisfies (3.2). For u we
may take the vector u C-le where ei 1, j 1, , n. Let p c-le where
e 6; then y R" can be written in the form y 1 (& y)p and )7 (& y).
That f(x, fi, fi’) satisfies (5.1) now follows immediately.

In the case where f(x, u, u’) 4u’ +u, (3.2) is equivalent to having the two
matrices CC-1 and CC- satisfy the hypothesis on 4 and mentioned in
Example 5.1.

As an illustration of this property consider the linear expression

(5.3)
-2 -1 -I]11"1 __l]U +[2f(x, u, u’)= [0
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If C is the matrix

and K is the cone generated by the rows of C, then satisfies (3.2) with respect
to K.

Example 5.4 (Volkmann [15]). Let B R3, K {IIER 3" x/U]+Uz<2 u3}, and
u =(0, 0, 21/z). Let S ={trER 2" tr+o’ 1} and define 4,,6B* by the equa-
tion b,,(u) 2-1/Z(-o-lul-ob.uz + u3). The set of functionals Y{" {b,: tr $} gen-
erates K, {,o y{, and Y{ 3’{. Consider the linear function

at(u) 0 0
0 -1 mU21Ul

mU3

We will show that t(x, u, u’)= (u) satisfies (4.2) with respect to K. Suppose
b, Y(, b,(w)= inf {b,,(w)" tr S}_-<0 where w=u-v; then

O.,((w)) 2-1/2(7"xw2 7"2w w3) -b.,(w)

where ,r’= (--7"2, 7"1). But "r’ E S; hence

4,.((w)) -4,.,(w) _->-4,.(w) --> o,

that is, (4.2) is satisfied.
The last two examples we consider deal with differential inequalities in

infinite dimensional spaces.
Example 5.5. Let B l(Z, R), where Z is the set of integers, and let K be

the cone K {u Blu >=0, Z}. K is generated by the set of functionals
{(i[i(U)’-’Ui, iZ}. Setting u to be the element of B with u/= 1, i6Z, we
obtain u int K and y[.o

Suppose f(x, u, u’) satisfies the following conditions:

(5.4) Uk Vk inf {u/- v :j Z} <= O, u’ v’
fff(x, u, u’)_->/’(x, v, v’), x sI;

for every closed bounded subsetM_IxB xB there exists a continuous function
d’ R [0, c), with d(s) increasing for s ->0, d(O)= O, and d(-s)= d(s), such that
for every k e Z,

(5.5) fk(X, U, U’)--fk(X, u-sek, u’)_>- -d(s), (x, u, u)M, s ->_0,

where ek B is defined by eki=tik, eZ; and f(x,u,u’) satisfies a Lipschitz
condition in u’ on closed and bounded subsets of I x B x B.

We will show that f(x, u, u’) satisfies the hypotheses of Theorem 4.2. Suppose
b E Y[,,o and b (u- v) inf {bk (u-- v)" k Z} _-< 0, b (u’- v’) 0.
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4(t(x, u, u’)-i(x, v, v’)) can be rewritten

(i(x, u, u’)-t(x, v, v’))= ( )(t(x, u, u’)- (x, v, v’))

(5.6)
+ {fk (X, U, U’)--fk (X, U, U’+ tek)}

+ {fk (X, U, U’+ tek)--fk(X, u-sek, u’+ tek)}

+ {/(X, u--sek, u’+ tek)--fk(X, U, U’)}.

Let e > 0 be given, let L be the Lipschitz constant for f(x, u, u’) relative to the
closed, bounded set {(x, y, z)lx I, lYl -< lul, Izl =< lu’l + 1}, and let d(s) be the
function in (5.5) relative to the set M= {(x, y, z)lx I, lYl-<-lul + 1, Izl -< lu’l + 1}.
Choose s, 0 < s < 1, so small that d(s) < e/3. Using the fact that b t{’,,o, let k Z
be chosen such that: (b-bk)(f(x,u, u’)-f(x, v, v’))=>-e/3, (Uk--S)--Vk <=
b(u-v), and Itl-<min {e/3L, 1} where t= u’-v. It follows that

b([(x, u, u’)-[(x, v, v’))_-> ---Lt-d(s)>--e

where we have used (5.4) on the last term on the right-hand side of (5.6). Since
e >0 was arbitrary, it follows that b(f(x, u, u’))_-> b(f(x, v, v’)).

Equations satisfying conditions (5.4) and (5.5) have arisen in applications of
the method of lines to boundary value problems for elliptic partial differential
equations in unbounded regions (see, for example, [12]).

In a final example, we give a function satisfying the hypotheses of Theorem
3.2 for the case of a cone with empty interior.

Example 5.6. Let B ,e"(Z, R), 1 <-p < oo. B is the collection of all doubly
infinite sequences u={ui}iz such that izlUil"< c. Let K be the cone in B
defined by K {ulug => 0, Z}. K is generated by the collection of positive linear
functionals Y{ {ck B*: b (u) u, Z}. Let {a}z be a bounded sequence of
real functions and let N be an infinite matrix function (bi), i, ] Z, with bi/>- 0
if #] I. Let d be such that ]ai[-< d, Z; and let N satisfy

Z bk/<=b_ <0 and Z Ib  l tT<oo
/Z /Z

for all x L k Z, where _b and/7 are constants. Under these conditions, the
function f(x, u, u’) M(x)u’ + (x)u defined for k Z by

fk(X, u, u’)= ak(X)U, + E bk/(X)U/

satisfies (3.7). To see this, let b(w) inf {wklk Z}< 0 and b (w’) 0, where b e
and w u- v. Define a b (w). Because b e Yd" there exists an integer k Z such
that Iwl<e/3d; [(ck-cb,)(aw’+Bw)l<e/3; and [a--Wkl<e/3 where
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0 < e < ba (note" both b < 0 and a < 0). It follows that

qb(Aw’ +Bw)= (c-qbk)(Aw’ +Bw)+akW’k+ Y’. bkjwj
jeZ

>=ba-e >0.

This last inequality verifies that (3.7) is satisfied.
As a particular example of this last result, consider the expression

(5.7) fk(X, U) h-2{Uk+l + Uk-1 (2 + h2A 2)uk}

where h and A are constants. This equation arises when the method of lines is
applied to the steady state Klein-Gordon equation Au +A EU 0 defined on an
infinite strip in R E (cf. [13]). It is easy so show thaf (5.7) satisfies all the hypotheses
of Example 5.6.

Acknowledgment. The author is grateful to the referees for their helpful
comments on Lemma 2.3 and Example 5.3.
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HEAT FLOW INEQUALITIES WITH APPLICATIONS TO
HEAT FLOW OPTIMIZATION PROBLEMS*

ANDREW ACKERf

Abstract. Inequalities are derived which compare the rates of heat flow across regions with
different boundaries. The inequalities form the basis for an existence and uniqueness theory for several
closely related free-boundary optimization problems involving the Laplace equation.

1. Introduction. Minimizing the flow of heat or electricity across a region of
specified area by a proper choice of a free boundary is a problem of natural
importance in engineering. For example, assume the fluid in an infinite cylindrical
pipe is to be maintained at a high constant temperature; see Fig. 1. (Here and
elsewhere, the word cylindrical pertains to general cylinders, not necessarily

FIG. 1. The cross-section of a cylindrical pipe. Problem: If F. and the area of R are fixed, what
boundary F minimizes the heatflow across R ?

circular.) The question arises: if the cylindrical inner boundary and the cross-
sectional area of the pipe are specified, how should the cylindrical outer boundary
be chosen so that the rate of heat loss (per unit length of pipe) into a cold,
constant-temperature environment is minimized? A mathematically equivalent
question can be formulated in terms of current leakage from an insulated wire or
the capacitance of a generalized coaxial cable.

Despite its engineering interest, very little work has been done on this
problem. The only results known to me are those of T. Carleman [4] and G. Szeg6
[9]. Carleman showed (in terms of Fig. 1) that if the area of R and the area within
F, are fixed, then the heat flow across R is minimized when F, and F are
concentric circles. Szeg6’s result is the natural three-dimensional generalization.
The proofs are based on special properties of the circle and sphere; for example,
Carleman uses a series expansion valid only in the annulus, and Szego uses the
isoperimetric property. These methods are not applicable to the unsymmetric
problem posed above.

* Received by the editors March 27, 1975, and in revised form April 15, 1976.
t Mathematisches Institut I, Universitit Karlsruhe (TH), 75 Karlsruhe 1, Federal Republic of

Germany.
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In this paper, we prove that if the cross-section of the interior of the pipe is
starlike, then there exists a unique heat-flow-minimizing outer boundary. The
optimal outer boundary of the pipe is characterized as a boundary of constant heat
flow density.

The proof of this result is based on a general heat flow inequality (Theorem 1)
which compares the heat flow across any fixed boundary with the heat flow across
any member of an appropriate monotone, continuously varying family of bound-
aries. Theorem 1 essentially reduces the minimum problem to the results of A.
Beurling [2] and D. E. Tepper [10], [11]. What we show is that if the family of
outer boundaries having constant heat flow density is elliptic in the sense of
Beurling, then each of these boundaries is heat-flow minimizing at its respective
area.

When applied in conjunction with the Lindel6f principle, Theorem 1 also
leads to interesting heat-flow inequalities for certain classes of regions. Further
results include existence theorems for a dual heat-flow maximization problem and
for a problem involving area minimization on classes of conformally equivalent
regions.

In the three-dimensional generalization of the pipe problem, the hot fluid
occupies a finite, irregularly shaped cavity and one seeks the form of the insulation
layer (or specified volume) about the cavity which minimizes the heat loss into a
cold fluid bath. Although details are not given here, our inequalities can be easily
generalized to three dimensions. These inequalities again reduce the minimiza-
tion problem to the existence problem for surfaces of constant heat-flow density.
However, the solution to the latter problem is not at present available, since
Beurling’s methods are restricted to two dimensions.

The problem treated in detail here is just one example of the many free
boundary optimization problems that occur naturally in an engineering context.
Such problems include the determination of the shape of a cantilever of specified
length and weight which supports a given static load distribution with minimum
deflection of the free end, or the determination of the wing profile of specified
cross-sectional area which maximizes the ratio of lift to drag under given condi-
tions, or the optimal geometry of a cooling fin. Three papers from the extensive
literature are [3], [5] and [7]. To the author’s knowledge, few if any of these
naturally occurring engineering problems have been solved by an exact analysis
under realistic assumptions. It is hoped that the methods used here may provide a
first step in this direction.

2. Temperature problems. The following two temperature problems are the
setting for the results in 3-5.

Problem 1. (See Fig. 2.) A fixed continuous function a(p)0 is defined on
R 2. Let {S,, S, R (F,, F)} represent any partition of R 2 with the following proper-
ties: S, and S are disjoint closed sets with respective boundaries F, and F. The
complement of S, LI S in R is the bounded region R (F,, F). Finally, F, 3 F is of
measure zero and each point on F, kJ F is the endpoint of some arbitrarily short
line segment which (except for its endpoints) lies entirely in the interior of S, 13 S.
The weighted area A (F,, F) of R (F,, F) is defined as the integral of aa(p) over
R(F,, F). By Perron’s method (Ahlfors [1, pp. 237-243]), there exists a unique
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FIG. 2. Problem 1

continuous function U(F,, F; p) defined on R such that U(F,, F; p)= 1 on $,,
U(F,, F; p)= 0 on S, and U(F,, F; p) is harmonic on R (F,, F). U(F,, F; p)
represents the steady-state temperature in R 2 when R (F,, F) is occupied by a
homogeneous, partially thermally insulating substance and S, and $ are perfectly
conducting and held at temperatures 1 and 0. H(F,, F) represents the rate of
steady-state heat flow across R(F,, F) from $, into $. It is sufficient for our
purposes to define H(F,, F) in the case where $, is a finite union of bounded,
simply connected sets. In this case, let y be a finite union of positively oriented,
smooth closed curves in R (F,, F) such that the collecting winding number is 1
about each point in $, and 0 about each point in $. Then H(F,, F)=
O,,U(F,, F; p). Idpl, where at each p y, D,U(F,, F; p) is the derivative of
U(F,, F; p) in the direction normal to 3’ at p and toward S,.

Problem 2. (See Fig. 3.) In this case, the positive, continuous function a (p) is
defined on [0, 1] xR and {S,, S, R (F,, F)} is any partition of [0, 1] xR in which S,
and S are closed, F, and F are the boundaries of S, and S relative to [0, 1] x R,
R (F,, F) is bounded and relatively open, F, F has measure 0, and each point of
F, t_J F is the endpoint of a line segment lying in the interior of S, U S. A unique
continuous temperature function U(F,, F;p) exists on [0, 1]xR such that
U(F,, F; p) 1 on S,, U(F,, F; p) 0 on S, .U(F,, F; p) is harmonic in the interior
of R(F,, F), and DxU(F,, F; p)= 0 at all points p (x, y)R(F,, F) for which
x 0 or x 1. The definitions of A (F,, F) and H(F,, F) are analogous.

3. A heat tlow inequality prindple. This section is devoted to the lengthy
proof of the following Theorem 1. The remainder of the paper consists mainly of
applications of Theorem 1.

THEOREM 1. In Problem 1, let {S,, S, R (F,, F,)} be a partition ofR2 for each
in an open real interval L Define B(I)= t.J F. Assume the following:
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S. U(F,, F; p) 0

FIG. 3. Problem 2

(a) R (F,, F,,) R (F,, Ft) for all a, I with a <- ft. Further, if a # fl, then
FfqF .

(b) For any a L limo-,,, F F,, in the sense ol set convergence.
(c) For each a L F is a finite disfoint union ofsmooth closed Jordan curves.

Further, there is a Lipschitz continuous unit vector function n(p) defined on B(I)
such that if p F, then n p is perpendicular to F at p.

(d) There exists a continuous function c(p) defined on B(I) such thatfor any
p B(I), limo,_,o [VU(F,, F; p’)[ b(p), where F is the unique boundary con-
mining p, and p’

Let {S,, S--, R (F,, [’)} be any otherpartition ofR 2 with the same set S, and with
f’cB(I). Then for any cI:H(F,,f’)>=H(F,,Fc)+R, 4)2(p)dxdy
IR2 2(p) dx dy, where Ra R(F,, Fc) f’l g and Ra R(F,, [’) f’I Sc.

Proof. The theorem will first be proven under the following additional
assumptions. 1. R (F,, F) R (F,, F). 2. F, and F are each a finite disjoint union
of Lipschitz continuously ditterentiable (L.c.d.) closed Jordan curves. 3. For any
a e I, F f’l F contains at most a finite number of points.

Let _c sup {a IIR (F,, [’) R (F_.,, F,,)}. For each a [_c, c] c I, define
R (F,, F,) R (F,, F,,) f’) R (F,, F) and S,, S, U S, and let F,, be the boundary of
S. Also define 3’,, F f’IR(F,, F) and let Oy F f’I F be the boundary of 3’,,
relative to F. (These definitions are illustrated in Fig. 4.) For any constant p > 0,
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FIG. 4. In the right hand diagram, the solid boundary curve (other than F,) is

let the function ho (a) be defined on [_c, c by Ao (a)
H(F,,f’)-(l+p)R4)Z(p)dxdy, where R=R(F,,f’)VIS. The desired
inequality (in the case where R (F,, F) R (F,, F)) will follow if it is shown that
ho (_c) => ho (c) for all p > 0. We will show (for any p > 0) that ho (_c) < ho (c) leads to a
contradiction.

We first note that ho (a) is continuous on [_c, c ]. In fact if _c _-< a _-</3 =< c, then it
can be shown by applying the maximum principle in the manner to be used in the
next paragraph that 0-< H(F,, Fo)-H(F,, F) _-< H(F,, Fo)-H(F,, F), whereas
the continuity of H(F,, F) as a function of a follows from assumptions (b), (c) and
(d). Therefore, if ho (_c) < ho (c) then essentially by the intermediate value theorem
there exists an a (_c, c) such that ho (a + 6) _-> ho (a) for all 8 (0, c a). We will
show for every a (_c, c) that ho (a + 6) < ho (a) provided that 6 > 0 is sufficiently
small.

For _c -<_a _-<a +6 _-<c fixed, define A(a, 6)=H(F,, F.+)-H(F,, F)_->0.
Let V(p) be the harmonic function onR (F,, F+) whose continuous extension to
the boundary satisfies V(p)= U(F,, F; p) on F+ and V(p)= 0 on F,. Then
A(a, 6)= Iv, IVV(p)I" IdPl, where VV(p) has a continuous extension to F, due to
assumption 2. Let W(p) be the harmonic function onR (F,, F+) whose continu-
ous extension to the boundary (minus Oy+) satisfies W(p)= U(F,, F; p) on
y+ and W(p)=0 on F, UF+\y+. The maximum principle shows that
0-< U(F,, F; p)-< U(F,, F; p) on y+. Therefore 0 <- V(p) <- W(p) on
F, U F+\0y+, and it follows essentially by the maximum principle that 0_-<

V(p) <- W(p)onR (F,, f’,+). Therefore, IV V(p)I--< IVW(p)I on F,, and it follows
that O<-_A(a, 6)<-fr, IVW(p) Idpl. Green’s second theorem, applied to the
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functions W(p) and U(F,, F,,+; p) on R (F,, F,,+s), implies that:

0--<A(,)-<Ir IVW(p)I’IdpI=I g(r,,E+,;p).lvw(p)l. I@1

=[ wtp). Ivv(r,,r+;p)l. I@1
aF

fl-+ W(p). (p). Idpl

f U(F,, F; p). (p). [dp[.

Let ce 6 (_c, c) be fixed and let 6 vary in (0, c- a). For each 0 < 6 < c a, let
dY= max {d(p, G)Ip e G+} and _6 min {dip, G)Ip G+}. (Here,
d(p,G)=min{Ip-qllqG}.) By assumptions (b) and (c), g-0 as 60 and
there is a uniform constant C> 0 such that

_
> C6. For each point 6 F,,+, letp be

the closest point to ff on F and let L (p) be the line segment connecting p to ft. By
the theorem of the mean, U(F,, r; i0)= Ivv(r,, p*). n(p)l" I/-Pl, where
p* eL(p). Let e(g) represent any function for which e(g) 0 as 0. It follows
from assumption (c) that U(F,, P; if)=(p). I-pl+ge(,f). By using assump-
tions (c), (d), 2, and 3, we obtain

a(, a)<- y, U(F,, G; P) 6(P) IdP[= I, 62(p> [p-pl ldpt+ge(g>.

Also, ifR R\R,,+ R (F,, F,,) 71S+, then the same assumptions lead to the
estimate" IR Ca(P) dx dy =I 2(p). I-pl Idpl /&(), Therefore,

Ao(a +8)-Ao(ce A(ce, 6)-(1 +O) IR &2(p) dx dy

=<-P Iv (P)" I-PI" Idpl+

However,

Iv qbZ(P) [P-PI" Idp[ e(min{Z(P)lP G}) (length (y))_6,

from which it follows that Ao (a + 8) Ao (a) < 0 for any p > 0 provided that 6 > 0 is
sufficiently small.

This completes the proof under the additional assumptions 1-3. However,
under the general assumptions of the theorem one can choose two sequences of
partitions {S,, S, R[F,, F)}, {S,, Sc, R (F,, F)} such that assumptions 2 and
3 are fullfilled for each k and such that as k --> co, R (F,, F)-->R (F,, F) (in the
sense of set convergence), H(F,, F) -, H(F,, F), and H(F,, F) --> H(F,, F).
This eliminates assumptions 2 and 3. Thus, the inequality in Theorem 1 has been
shown to hold whenever R (F,, F) R (F,, F). However, for any a e L a _-< c, the
same methods which were used above show that H(F,,F)=
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H(F,, F) +R.c k2(p) dx dy, where R,,,c R (F,, F,) fq So. The general inequality
follows by combining these results.

Remark 2. Theorem 1 also applies, after minor changes of statement, to
Problem 2. Namely, in assumption (c) each boundary F, is the finite disjoint union
of smooth closed Jordan curves in (0, 1)xR and smooth Jordan arcs whose
endpoints lie in {0, 1} x R. F is assumed to be horizontal at its endpoints in
{0, 1}xR.

Remark 3. The inequality in Theorem i bears a resemblance to formulas of
the Hadamard-Schitter type for the variation of domain functionals. See, for
example, Schiffer [8].

4. Heat flow inequalities related to the Linflelif principle. For convenience,
we state the suitable versions of the Lindel6f principle for Problems 1 and 2.

LEMMA 4 (Lindel6f principle). Assume in Problem 1 or 2 that R (F,, F)
R(F,, F). Then"

(a) Ifp F,, then Ivu(r,, p)l -> Ivu(r,, r., if the derivatives exist.
(b) Ifp F fq , then Ivt:(r,, ; t,l--< Ivu(r,, r; pl if the derivatives exist.
(c) If (in Problem 2) F, and F are respectively the graphs of continuous

functions y,(x)<y(x) on [0, 1] and if p*=(x*, y*) is a point on such
that y(x*)-y*_->y(x)-y ]:or all (x, y)’, then Ivu(r,, ; p*)[_->
IV’U(F,, F; x*, y(x*))l/f both derivatives exist.

(c’) /,f (in Problem 1) F, and F are respectively the graphs in polar coordinates
ofthe continuousfunctions 0 < r,(O) < r(O) on [0, 2zr] and ifp* (r*, 0*) is a point
on such that h := (r(O*)/r*) >= (r(O)/r) for all (r, 0) , then IVU(F,, ’; i0*)l ->
A IV’U(F,, F; r(O*), 0")1/f both derivatives exist.

Remark 5. The Lindel6f principle is discussed in [6, pp. 16-21]. Parts (c) and
(c’) in Lemma 4 generalize the final statement of the Lindel6f principle by
eliminating the assumption that F is the graph of a continuous function )7(x)>
y,(x) or (0) > r,(O).

The method of proving the heat flow inequalities in this section is based on
Theorem 1. To determine the inequality relating H(F,, F) to H(F,, F), one
chooses a monotone class of boundaries {r’l z} such that F F for some c L
F c LI, F, and such that the individual boundaries F admit to the most
favorable application of the Lindel6f principle.

THEOREM 6. In Problem 2, let {S,, S, R (F,, F)} and {S,, S, R (F,, F)} repre-
sent two partitions of [0, 1] xR in which S, is the same set and in which F, and F
are respectively the graphs ofcontinuousfunctions y,(x) < y(x) on [0, 1]. Assume a
continuous[unction 4(P) is defined on F such thatforp F (and p’ R(F,, F)) we
have" limp,._,p [WU(F,, F; p’)[ q(p). Then"

’) _->H(F,, r)+f b2(x, y(x))dx dy f_ b2(x, y(x))dr dy,H(F,,
-R dR

where R R (F,, F) S and R R(F,, F) S. If F is the graph of a continuous
function 37(x)> y,(x) on [0, 1], then the inequality can be written"
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Proof. Assume in addition that the function y(x) is L.c.d. on [0, 1]. Let
R. Closure(R tA R2). It is sufficient in Theorem 1 for the continuous function
b(p) to be defined on R,2B(I) and for assumption (c) and the condition
"F, f3 Ft whenever a /" to hold relative to R ,2. A class of boundaries
{F ]a I} which satisfies the conditions of Theorem 1 in this generalized sense will
now be defined. Choose e > 0 such that R (F,, F, + 3e) R (F,, F). (Here
F,+3e={(x,y)[0, 1]xRl(x,y-3e)F,}.) Let I=(ao,O), where ao
e-max {y(x)-y,(x)lO<-x<-_l}<-O. For each a L define F, to be the graph of
the function y(x)=max{y(x)+a,y,(x)+e}. Then Fo=F, the boundaries
{rla r) are monotone and continuous in a (where the order of indexing has
been reversed), and a positive continuous extension b(p) of the function b(p)
defined on F exists on R(F,+2e, oo)={(x, y)[0, 1]xRly >y,(x)+2e}R.2
such that if p F,, then b(p)= [VU(F,, F, ;p)l. Therefore, Theorem 1 implies
that:

Application of the Lindel6f principle to the pair of regionsR (F,, F) andR (F,, F,,)
for each aI shows that if y,(x)+2e<y<=y(x), then ck(x,y)>-qb(x,y(x)),
whereas if y -> y(x), then 0< b(x, y) -< b(x, y (x)). The asserted inequality follows
from this.

The assumption that y(x) is L.c.d. can be eliminated as follows. For each
0<5<1, define R(F,,F)={pR(F,,F)IU(F,,F;p)>,5}. For 0<5<1, F is
the graph of a L.c.d. function y(x) on [0, 1]. Further, if b(x, y(x))=
Ivu(r,,r,;x, y,(x))l, then y(x)oy(x) and qb(x, y(x))-ck(x, y(x)) both
uniformly on [0, 1] as 5 0. For each 5 we have the inequality:

1,8 2,8

where R 1.a R (F,, Fa) S and R2.a R (F,, F) Sa. The general inequality is
obtained by taking the limit as - 0.

THEOREM 7. In Problem 2, let {S,, S, R (F,, F)} and {S",, S", R (,, ’)} be two
partitions of [0, 1] xR in which F, and F are respectively the graphs ofcontinuous
functions y,(x) < y(x) on [0, 1]. Assume there exists a continuous]unction (p) on
F, LJF such that for p F, LI F (and for p’ R (F,, F)) we have"
limv,_,v [’U(F,, F; p)L (p). Then the following two cases occur"

(a) Assume R (F,, F) c R (F,, F), and let R R (F,, F) S and R
R(F,, F) f] S,. Then"

H(P,, P)_->H(F,, F)+I @’(x, y(x)) dx dy 4- Ig eke(x’ y,(x)) dx dy.

(b) Assume R (F,, F) R (F,, F), and let R1 R (F,, F) S and R2
R (F,, F) f3 S,. Then"

H(r,, r)=>H(r,, r)- y(x)) ax ay



612 ANDREW ACKER

ff F, and F are also respectively the graphs ofcontinuousfunctions ;,(x) < ;(x) on
[0 1], then both the above inequalities reduce to

H(r,, r)_->H(r,, r)+ 6(x, y(x)). (y(x)-)(x)) dx

+ b2(x, y,(x))" ()7,(x)- y,(x)) dx.

Proof (for case (a)). If _R (F_,, F)_R (F,, F), then_it can be shown from the
maximum principle that H(F,, F)-H(F,, F)=>H(F,, F)-H(F,, F). Therefore,

H(r,, r)->H(r,, r)+H(r,, r)-H(r,, r)

--> (H(F,, r)+I qbE(x,y(x))dxd,)

=/-/(F,,F)+fR b2(x, y(x))dxdy+IR b2(x, y,(x))dxdy,
2

by double application of Theorem 6.
THEOREM 8. In Problem 1, let {S,, S, R (F,, F)} and {S,, S, R (F,, F)} be two

partitions ofRa in which S, is the same set. Assume there exists a pointpo S, such
that F, and F are respectively the grapb in polar coordinates about po of the
continuous functions 0 < r,(O) < r(O) on [0, 2,r]. Assume a continuous function
ok(p) is defined on F such that ]’or each p F (and ]’or p’ R(F,, F)) we have"
lim,._., IVU(F,, F; P’)l k(P). Then"

H(r,, r)_->H(r,, r)+I ((r(O). qb(r(O), O))/r)2r dr dO

IR ((r(O). k(r(O), O))/r)2r dr dO,

where R R (F,, F) f] S and R2 R (F,, F) f-] S./f F is the graph in polar coordi-
nates aboutPo of a continuous ]:unction (0) > r,(O) on [0, 27r], then the inequality
reduces to

fOH(r,, r)_->H(r,, r)+ 2(r(0), 0). rE(0) log (r(O)/(O)) dO.

Proof. The proof is analogous to the proof of Theorem 6. Assume r(O) is
L.c.d. and choose p > 1 such thatR (F,, p3F,) R (F,, ’). (Here, p3F, is the graph
in polar coordinates about po of the function p3r,(0).) Let I= (tZo, o0), where
ao =min {pr,(O)/r(O)[O [0, 27r]}< 1. For each a /, let F be the graph in polar
coordinates about Po of the function r (0) max {ar(O), pr,(O)}. Then F1 F, the
boundaries {Fla I} are monotone and continuous in a, and the function b(p)
such that 4(p)=[VU(F,, F;p)[ on F,, is a positive continuous extension to
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R(p2F,,)=((r, Olr>p2r,(O)} of the function b(p) defined on F. There-
fore, Theorem 1 implies that: H(F,, ’) =>H(F,, F) +R1 42(p)r dr dO --R. (k 2(p)
r dr dO. Application of the Lindelh6f principle to the pair of regions R (F,, F) and

R(F,,F,) for each aI shows that if p2r,(O)<r<=r(O), then 4,(r,O)>=
(r(O) 6(r(O), O)/r), whereas if r >=r(O), then 0<6(r, O)<=(r(O) ck(r(O), O)/r).

In order to eliminate the assumption that r(O) is L.c.d., we again
define R(F,, F) {p R(F,, F)I U(F,, F; p) >} (where 0<6 < 1). Again, F is
the graph in polar coordinates about Po of a L.c.d. function r(O), so that the
procedure used in the proof of Theorem 6 carries over to this case.

Remark 9. Assume in Theorems 6 and 8 that b(p)>0 on F. Then the
inequality cannot reduce to equality except in the case where R UR2 has zero
area. The proof in the case of Theorem 6 will now be sketched. In the notation of
Theorem 6, choose al such that R (F,, F) R (F,, FI) and al >
max{y(x)-y,(x)]x[0,1]}. Define the continuous function 0</z(a)<l on
(0, al) by:/z(a) max {U(F,, F; p)]p F, +ce}. One can show, if y(x) is L.e.d.
and b (x, y) is the extension to R R2 of b (x, y (x)), that b (x, y (x) + a) -<
/z(a). b(x, y(x)) for all (x, y(x)+a)R2 and b(x, y(x)-a) >
(1/tz(a)) b(x, y(x)) for all (x, y(x)-a)R. This leads to the inequality:

H(F,,r)_->H(F,,F)+[ (1/tx(y(x)- y)) b2(x, y(x)) dx dy

-f_ /x2(y-y(x)) b2(x, y(x)) dx dy.

This stronger inequality continues to hold under the general assumptions of
Theorem 6, since the function/x(a) can be held fixed as (5 --)0 in the final stage of
the proof. (Note that the function/x(a) is dependent on F,, F and F.)

5. Heat flow minimizing boundaries. The basic heat flow minimization
problem which we consider is the following. For S, (and F,) and A > 0 fixed,
determine the set S (or its boundary F) such that the heat[tow H(F,, F) ]rom S, into
S is minimized subfect to the constraint that A (F,, F) A.

This problem is essentially reduced to a corresponding free boundary prob-
lem for the Laplace equation by means of the following theorem.

TIEOEM 10. In Problem 1 or 2, let S, and the 1unction a(p)>0 be fixed.
Assume ]:or each c in a positive open interval I that there exists a region R (F,, F)
such that wheneverpF (and p’ R(F,, F))" limp,_,p IVU(F,, F; P)I =c a(p).
Assume the class of boundaries {Flc I} satisfies assumptions (a), (b) and (e) of
Theorem 1. (In Problem 2, assumption (e) is altered according to Remark 2.) Then
for each c I, F has the following properties"

(a) Let {S,, S, R (F,, F)} be any partition with F B(I) t_J Fc and F F.
Then" H(F,, ) >H(F,, F) + c2. (A (F,, F) A (F,, ’)).

(b) LetA A (F,, F). Then for any boundary F Ffor which F B(I) and
A (F,, F) =< A, the inequality" H(F,, F) > H(F,, F) holds. Therefore F is uniquely
heatflow minimizing in the class ofall boundaries F B(I) for whichA (F,, F) _-< A.

Proof. Let c(p) be a function on B(I) such that c(p) c on F for each c I. If
c, c’ I and c c’, then the distance between F and F, is positive. It follows from
this that c(p)> 0 is a continuous function on B(I). The boundaries (Flc I} and



614 ANDREW ACKER

the function (p)= c(p). a(p) satisfy the conditions of Theorem 1. Therefore,
for any c I and any region R (F,, F) we have"

c(p aE(p) dxdy- fg c2(p) aa(p) dxdy,

where RI=R(F,,Fc)f’]S and RE=R(F,,F)0S. However, c(p)>c in the
interior of R(F,, Fc) and O<c(p)<c in the interior of S. Therefore, if RI t_JR2
has positive" area, then"

H(F,, ’)-H(F,, F)>c2 (I
R

a2(p) dxdy-IR a2(p) dxdy)
c2. (A (r,, F)-A (F,, )).

The existence of free bounary solutions F such that whenever p e Fc (and
p’ eR(F,, F))" limp,_, IVU(F,, F; P’)I =c a(p) has been investigated by A.
Beurling [2]. Beurling calls a class of free boundary solutions {Flc e I} elliptic if
R (F,, F) R (F,, Fc,) whenever c _-> c’ and hyperbolic if the reverse inclusion
always holds. For example, if S, is the exterior of the unit circle and a(p)= 1
within the circle, then a hyperbolic class of solutions {Fle < c <} exists as
concentric circles of radius less than e -1. Beurling’s existence results, as well as the
present Theorem 10, apply only to the elliptic case. Reasonably general and easily
applied conditions on S, and a(p) under which a suitable elliptic class of free
boundary solutions exists are provided by the following generalization of a result
of D. E. Tepper [10], [ 11].

LEMMA 11. In Problem 1, let S, be starlike with respect to an interior point po.
Assume for each p e R2 that A. a(po+Ap) is monotone nondecreasing with
increasing A on [0, ). Then"

(a) For any constant c >0 there exists a unique doubly connected region
R(F,, Fc) such that ifp F (and p’ R(F,, Fc)) then" lim,,_,p ]VU(F,, F; p’)[
c" a(p).

(b) Ifc’>=c >0, then R(F,, F,)=R(F,, Fc). Ifc’ c, then F F,=
(c) >o F the complement of S, in R2.
(d) For each c > O, S, R (F,, Fc) is star6ke with respect to Po. Moreover"
(d’) Each boundary Fc is the graph in polar coordinates about po of a

continuous function rc (0).
Proof. In the case where a(p)= 1, the above results (with the exception of

(d’)) were obtained by D. E. Tepper [10], [11], who based his method on the
results of A. Beurling [2]. In fact the arguments used in [10] and [11] exactly
suffice to prove the present lemma (except (d’)), so that they are not repeated here.

Let Po 0. One obtains (d’) from (d) by showing that no boundaryF contains
a radial line segment. In fact if pF and ,tpF, ,t =(1/u)>l, then
U(vF:, vF q)< U(vF,, Fc; q)< U(F,, F q) on R(F,, vF), from which it fol-
lows (using a(p) >0) that" cA a(Ap)= A limp,_,ap IVU(F,, F ;P’)I
limp,_,p IV U(vF,, vF; P’)I < c a(p) in contradiction to the monotone property
of the function a(p).

An existence theorem for our heat flow minimization problem could now be
obtained essentially by combining Theorem 10 and Lemma 11. However, one
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would first have to find conditions on a (p) under which the family of boundaries
{r’,lc > 0} is smoothly varying (Theorem 1 (c)). The following existence theorem
follows directly from Theorem 8, Remark 9, and Lemma 11.

THEOREM i2. In Problem 1, let F, be the graph in polar coordinates (about a
point Po interior to $,) ofa continuous function r,(O). Assume for each p R2 that
A a(po+Ap) is monotone nondecreasing with increasing A on [0, oo). Let {Fclc >
0} be the class offree bounda solutions whose existence is asserted in Lemma 11.
Then for any constantA > 0 there exists a unique c > 0 such thatA (F,, Fc) A. 1]’
{S,, S-, R(F,, ’)} is any partition of R ]’or which A(F,, )<-A and F, then
H(F,, F) > H(F,, F,). Thus F, is the unique heatflow minimizing boundary at the
area A.

Remark 13. If a(p)= 1 in Theorem 12, then the heat flow minimizing
boundaries are boundaries of constant heat flow density. If S, is a circular disc and
a (p) 1, then the solutions F, c > 0, are circles concentric to F,. In this situation,
Theorem 12 reduces to a special case of the result of Carleman [4] and Szeg6 [9].

Remark 14. Lemma 11 and Theorem 12 have fully analogous statements in
the context of Problem 2. For example, if F, is the graph of a continuous function
y,(x) on [0, 1] and if a(x, y)>0 is monotone nondecreasing in y for each
x [0, 1], then the elliptic class of boundaries {l"lc >0} exists and fills the
complement of S, in [0, 1] R. Each boundary Fc is the graph of a continuous
function yc(X) on [0, 1] andis uniquely heat flow minimizing at its area.

Remark 15. Theorems 1, 6, 7, 8, and 10 can all be extended to analogous
temperature problems in 3 dimensions without any significant changes in state-
ment or in the proofs. This is because Green’s theorem and the maximum
principle, on which the proofs are fundamentally based, have analogous forms in 3
dimensions. On the other hand, conformal mapping plays an important role in the
results in [2], on which Lemma 11 is based. Thus, an extension of Lemma 11 (and
therefore of Theorem 12) to 3 dimensions would apparently require a fundamen-
tally new proof technique.

Remark 16. Results analogous to those in Theorems 1 and 10 can be
obtained under other boundary conditions. As an example, assume F, is L.c.d.
and let A >0 be fixed. Let U(F,, F; p) be the unique continuous function on
$ R (F,, F) such that U(F,, F; p) 1 on $, U(F,, F; p) is harmonic on R (F,, F),
and the radiation condition: DnU(F,, F; p) A U(F,, F; p) holds on F,. Let
H(F,, F) be the heat flow from S into S, due to U(F,, F; p). Then Theorems 1 and
10 both hold without alteration of statement in this new situation.

As a second example, let f(p) be a positive continuous function on S, and let
U(F,, f, F; p) be the unique continuous function on R2 such that U(F,, f, F; p)
f(p) for all p S,, U(F,, f, F; p) 0 on S, and U(F,, f, F; p) is harmonic on
R (F,, F). Let H(F,, f, F) be the heat flow from S, into S due to U(F,, f, F; p). In
this case, assumption (d) in Theorem 1 generalizes to the assumption that positive
continuous functions b(p) and $(p) are defined on B(I) such that for any
p B(I)"

lim [VU(F,, 1 F ;P’)I b(p) and lim Ivg(r,,f, r ;p’)l $(p),
p ,_>p p ,_>p

where F is the unique boundary containing p, and p’ R (F,, F). (The remaining
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assumptions remain unchanged.) Then the heat flow inequality asserted in
Theorem 1 has the generalized form’

H(F,,L F)->H(F,,Z, F)+ b(p) (p) dx dy- c(p) (p) dx dy.

In the generalization of Theorem 10, one assumes that there exists a class of
boundaries {Fclc I} such that assumptions (a), (b), and (c) of Theorem 1 hold,
and such that positive continuous functions b(p) and O(P) (with the above stated
definitions) exist on B(I). It is further assumed that for each c I, c(p). O(P)
c 2. a2(p) for all p 6Fc. (This is the generalized condition for the free boundary
Ft.) Then the conclusions of Theorem 10 (with H(F,, f, F) replacing H(F,, F))
remain the same.

6. An area minimization problem on classes of conformally equivalent
regions. The doubly connected regions R (F,, F) and R (F,, F) (imbedded in the
complex plane) are conformally equivalent if there exists an analytic function F(z)
which mapsR (F,, F) conformally onto R (F,, F) and whose continuous extension
to the boundary maps F onto F and F, onto F,.

The following free boundary optimization problem can be defined in the
context of Problem 1. Leta doubly connected region R (F,, F0) befixed, and let K be
the class of all doubly connected regions R(F,, F) (with all properties stated in
Problem 1) which have the boundary component F, and which are conformally
equivalent to R (F,, Fo). We seek that region in the class K for which the weighted
area A (F,, F) is minimum.

THEOREM 17. In the problem described above, assume F, is the graph in polar
coordinates aboutpo S, ofa continuousfunction r,(O) > O.Assume A a(po + Ap)
is monotone nondecreasing in A on [0, )for eachp R 2. Let (rlc > 0} be the class
offree boundary solutions whose existence was proven in Lemma 11. Then there is a
unique c > 0 such thatR (F,, F) is in the class K. IfR (F,, F) is any region in K for
which F F, then A (F,, F) >A (F,, F). Thus, R (F,, Fc) is uniquely area
minimizing in the class K.

Proof. H(F,, F) is a continuous, strictly monotone increasing function of c
on (9, ) such that H(F,, F)0 as c 0+ and H(F,, Fc) as c. There-
fore, there is a unique c >0 such that H(F,, F)= H(F,, F0). For all regions
R(F,, F) in the class K, the conformal equivalence implies that H(F,, F)=
H(F,, Fc). However, if A (F,, F) =<A_(F,, F) and F _Fc, then H(F,, F) >
H(F,, Fc) due to Theorem 12. Thus if F Fc, then A (F,, F) >A (F,, F).

7. A dual heat flow maximization problem. The results in this section involve
the following dual temperature problem for Problem 2.

Problem 3. Let {S,, S, R (F,, F)} be any partition of [0, 1] R having the
properties stated in Problem 2. Assume in addition that R(F,, F) is simply
connected. Let W(F,, F; p) be the harmonic conjugate function of U(F,, F; p) on
R(F,,F) for which W(F,,F;p)=0 on ({0}R)f’)R(F,,F). Let V(F,,F;p)=
C. W(F,,F;p), where C is a constant such that V(F,,F;p)=I on
({1}R)f’)R(F,,F). V(F,,F;p) can be interpreted as the temperature in
R (F,, F) under the conditions that S, and $ are perfectly insulating and R (F,, F)
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is homogeneous and partially conducting and is held at respective temperatures 0
and 1 along the left and right vertical sides. Thus, R (F,, F) can be viewed as a heat
conduit joining two perfect conductors. J(F,, F) is the rate of heat flow through
R (F,, F), i.e.,

(r,, r)= I oV(r,, r; 0, y)

where 3’ ({0} x R) f] R (F,, F) and Dx represents the right-hand derivative.
The heat flow maximization problem is the following: For S, (or its boundary

F) andA > 0 fixed, determine the setS (or its boundary F) such that the rate #heat
flow J(F,,F) across R(F,,F) is maximized subject to the constraint that
A (F,, F) _-< A.

The above heat flow maximization problem is essentially the dual of the heat
flow minimization problem (in the context of Problem 2) in 5. In fact
H(F,, F). J(F,, F)= 1 and Iv v(r,, r; p)l J(F,, F). IVU(F,, F; P)I for eachp in
the interior of R(F,, F). Thus, when S,, the function a(p), and a constant A >0
are fixed, the free boundary F which minimizes H(F,, F) under the constraint
A (F,, F) _-< A, also maximizes J(F,, F) under the same constraint. Therefore, if F,
is the graph of a continuous function y,(x) on [0, 1] and a(x, y) is monotone
nondecreasing in y on (-oe, oo) for each x s[0, 1], then the existence and
uniqueness and a characterization of the heat flow maximizing boundaries of the
above problem all follows directly from Lemma 11, Theorem 12, and Remark 14.
If F is heat flow maximizing at the area A > 0, then there is a constant c > 0 such
that for all p F (and p’ R(F,, F)): limp,_.,p Ivv(r’,, r; p’)l-c a(p).

All results related to Problem 2 in 3, 4, and 5 have equivalent statements in
the context of Problem 3. As an example, we state the result, equivalent to
Theorem 6.

THEOREM l 8. In Problem 3, let {S,, S, R (F,, F)} and {S,, S, R (F,, F)} be two
partitions of [0, 1] R in which S, is the same set and F, and F are the respective
graphs of the continuous functions y,(x)<y(x) on [0, 1]. Assume a positive
continuousfunction tb(p) is defined on F, such thatfor allp F (andp’ R (F,, F))"
limt/__,p Ivy(r,, r; p)]- 4,(p). Then"

y(x)) xdy

--1

where R R(F,, F) S and R2 R(F,, F) f’! S.
Note added in proof. The generalization of Theorem 1 used in the proof of

Theorem 6 is itself relatively hard to prove. Therefore, Theorem 6 is more easily
proved by defining a class of boundaries which allows the same application of the
Lindel6f principle while fulfilling the requirements of Theorem 1 (Remark 2) in
the original sense. Assuming (without loss of generality) that F, and F are L.c.d.
and horizontal at their endpoints, we can define such a class as follows. Choose
e > 0 such that R (F,, F, + 3e) c R (F,, F) f-I R (F,, F), and define ao < 0 as before.
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For a => 0, define F F+ a. For a0 < a < 0, let F,, be the boundary in [0, 1] x R of
the union of all discs B(p)c(S+a)fqR(F,+(2-(a/ao))e, c). Here B(p)
{qe[O, 1]xR[[q-p[<8} and the constant 8>0 is chosen so small that
F f"l R (F, + 2e, F) (F + a) 1"1R (F, + 2e, F) for all ao < a < 0. An analogous class
of boundaries can be constructed for the proof of Theorem 8.
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HIGH SPEED CONVOLUTION OF PERIODIC FUNCTIONS*

R. S. BUCY," A. J. MALLINCKRODT:I: AND H. YOUSSEF

Abstract. A method is given to approximate the convolution of two-dimensional functions
periodic in each variate, by the convolution of two appropriate periodic functions of one variable. An
explicit bound for the error is given, and numerical result presented.

1. Introduction. In various problems, it becomes important to evaluate
numerically convolutions of periodic functions of more than one variable. The
problem of convolving functions of one variable has been studied extensively and
various mega-Hertz bandwidth devices have been proposed to achieve high speed,
correlation--see [1] and [2]. Our interest in the problem arose because we were
faced with the following problem, given real valued functions of real arguments;
F(x, y) and G(x, y) periodic of period 2zr in each argument evaluate F G(x, y)
where

1
2 I02"n" I02"rr(1.1) F * G(x, y) =- F(x- u, y-v)G(u, v) du dv.

This problem arose in the course of investigations of the problem of optimal phase
demodulationwsee [3]. In order to achieve the realization of the optimal demod-
ulator, F G must be computed each time new observations arrive to find the next
phase estimate. In obtaining the performance of the optimal demodulator,
reported in [3], by Monte Carlo simulation, the convolution operation had to be
performed 26,000 times. The digital realization of the optimal demodulation was
in effect speed limited by a convolution of the type (1.1).

In this paper we will be concerned with a periodic mapping b of [0, T] into
S2{(X, y)10X <2zr, 0=< y < 2r}. We will replace a function F(x, y) defined on S2

by the function (t)
(1.2) ff(t) b(F) F(x(t), y(t)).

As ranges from 0 to T, the pairs (x(t), y(t)) range over the diagonal lines shown in
Fig. 1.

We demonstrate that

(1.3) (F. G)(x(t), y(t)) (/ * )(t)-E(t)
where E(t), the error term, is shown to be small under certain hypotheses.

( )(t) a (qb(F) (G))(t) a 1 fT-- ao
F(t-" s)t(s) ds.
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(0, 2r)
2 4

(0, O) (zr, O) (2r, O)

FIG. 1.

The computation of t5 ( is much quicker using a high speed (?orrelator than that
of (F G)(x, y), and (F G)(x, y) can thus be obtained quickly for (x, y) any grid
of points contained in the diagonal lines.

This paper will concern itself with such a mapping. Although the b which we
consider applies to functions periodic in two variates, the multivariate case is an
easy generalization and is left to the reader.

2. Properties of the sweep mapping. Consider the map b to be

(at mod 27r, fit mod 2

It is well known that b is periodic iff a/[3 is rational, say rl/S where r and S1 are
relatively prime--see [5]. Let T* be the period; then if x(t)= at mod 27r and
y(t) fit mod 27r,

x(T* + t)= x(t), y(T* + t)= y(t),

or

(2.1) aT* 27rk,

Now if h as fir1, then

fiT* 27ri for some integers k and I.

T* =27rks T* 2"n’/rl
A A

or k =/)rl and =/)s for v an integer. But T 27rrls1/A is a period, and hence a
minimum period, as it corresponds to v 1. Hence, the following is true.

LEMMA 1. Leta/ rl/s with rl and Sl relatively prime; then the period of ch
is T 27rrasa/A where A asa [3ra. Further,

(2.2) aT= 2"n’rl, fiT= 27rs1,

or x(t) 0 and y(t) 0 have rl and S roots for 0 < <-_ T. The roots are

(2.3)

is1
ti=Aqr--, 1,’’’,rl,

t/= 27rj-, j=l,’’’,Sl,
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respecn’vely, and

(2.4) y(/i) iS1 ((iF1))
\\Sl/

Proof. The previous argument established the period T as corresponding to
v 1, and hence (1.3) implies (1.4). If x(t) 0, then at= 27ri for some 0<i --<rl
and (2.3) and (2.4) follow.

As moves through [0, T] the image point under b moves through the square
0_-<x <27r on straight lines of slope sl/rl with velocity

h /(1/rl)2 + (1/Sl)2

reflecting from x 27r to x 0 and from y 27r to y 0. The total number of lines
is (rl + Sl- 1) and distance traversed is

27rx/r + s.
The perpendicular distance between neighboring lines is constant and is equal to

2r
’2 2"/r ---S

The particular b we have considered was chosen because it satisfies (1.3), as
will become evident when we analyze the induced function map in the next
section.

Consider the sweep; it is made up of line segments which we number in their
order of occurrence; for example, note the numbers on the right most endpoints of
Fig. 1 (which features the Sl 2 and rl 3 sweep). Let k(i) be the line number of
the hit on y 27r, it occurs at xi (ir/s)27r, while l(j) is line number of hit on
x 27r, it occurs at yj (js/r) 27r. Suppose for convenience that r > s, and let
r ?s + r0 with 0 =< r0 < s; then

where

k (i + 1) k (i) +p(i) + ?,

1, Xi+l--X >0,
p(i)=

2 otherwise,

l(i+l)=l(i)+g(i),

1, Yi+l--Yig(i)=
2 otherwise.

The above relations can be easily verifiedmsee for example the line numbers
of Fig. 1.

((z)) denotes the fractional part of the real number z.
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3. The convolution property. LetF and G have the following Fourier series"

(3.1)

then

F(x, y)= E fn,m e inX e imy,
lm

G(x, y) gn,,, e i"x e i,,y

rm

(3.2)

Now

(3.3)

so that

ff’(t) E fn,m ei("+mt3)t,

(t)= E gn,m ei(na+ml3)t"

F, G(x, y): Y g,,mf,,,, e inx e irny,

F* G(t)= E gn,mL,m ei(na+mO)t,

4: .,i(not+flrn)t2 fT e i((l-n)o+fl(k-rn))s ds.(3.4) * ((t) j.,,;/,k
n,ml,k T

But

e i((l-n)a+fl(k-m))s ds
T 1

if (l- n)a + Cl(k m) O,
if(l-n)a+(k-m)=O,

so that (l n)/s (m k)/rl and since rl and s are relatively prime, n ps
and m- k =-prl for some integer p. It follows that

(3.5) /3, ((t)= E E L,mgn--psl,m+prl e i(""+’t)t.

Consequently, the deviation of 4 from a true homorphism is given by E(t) in

(3.6) if: * ((t)= F *"(t)+ E(t) where E(t) Y L,mgn--psl,m+prl e i(nt+rnl)’.
p#O n,rn

We remark that the form of the error reminds one of the relation between the
Fourier coefficients of a sampled function and the Fourier coefficients of the
original functionmsee [6, p. 29].

4. Evaluation of the error E(t). Despite the explicit form of the error given
in (3.6), it seems difficult even when one of the functions, say F, is known, by
making assumptions on the function G to obtain a sharp bound on E(t). However,
it is clear that as rl and sl tend to infinity, E(t) tends to zero if F and G are, Say,
integrable and square integrable along with their derivatives. Motivated by the
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physical problem--see [3]--we introduce the theta function

(4.1) O(x, q) Y. exp (x 2rv)
V

and let

(4.2) F(x, y) O(x m .01)0(y qr, .1),

and let r 103, s 21. A program was written which, when G is given, evaluates
N(t), by finding (F)

Two cases were considered: G= 1 and G(x, y)= O(x-m .5)0(y-, .5).
Note that in each of these cases F G is known analytically.e results we found
were that

IIEII < 10-4 when G 1 and IIEII < 10-5

in the second case. Now

IIE(t)llo-- sup IE(t)l.
O<_t<__T

In order to derive a bound on the error, we introduce the sequence an, the
Fourier coefficients of the function 1/2(x- r) on the interval (0, 2r); it is easily
calculated that

7r2/6, n=0,
an= 1/n 2, otherwise.

LEMMA 2. Let

Then

and further,

bn Z a,an_,.

qr4/20,
bn [(,n.2n2_6)/n4),

4

(4.3) - --.n=l

Proof. Since the an are the Fourier coefficients of 1/2(x- 7/’) 2, by the faulting
theorem, the bn are the Fourier coefficients of 1/4(x 7r)4, and the assertion follows
by a simple computation. The evaluation of (4.3) is a consequence of the value of
b0 and the relation between bo and the an’s; of course the last conclusion is well
known--see [6, p. 57].

THEOREM 3. Suppose [fn,m [<-- (K1/Tr2)ana,n and [gn,,n <- (K2/qr2)a,am. Then

<
KIK2q-/"4 KiK2qr6

IE(t)l-4- :2r--<-- 11T22
with T the period of the map.
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Proof. Since

E(t)= ’ --ft’/,t?lgtlq-,$1,Ol--.rl e
AOm

i(n+flm)t

it follows, using the triangle inequality, that

KIK2IE(t)l--< 2 Y Z a,,,ama,,,+xsaa,-xr 4
AOm

or

IE(t)l -< Z ana-xsl-n amaxr-m
A #0 71"

Now, using the definition of b. and Lemma 2, it follows that

bx K1K2 1
IE(t)l b_ KK2 . -, 2

o rlS1 x=lA

and the assertion follows.

5. Remarks. is theorem resulted from conversations with Dr. Richard
Edwards of Aerospace Engineering Department, University of Southern Califor-
nia. It is clear that this theorem is one of a class where growth conditions on the
Fourier coefficients of F and G induce a bound on the error, although in general
the error would take a more complex form. For a periodic function of one
variable, there are well-known mild conditions in order that its Fourier coeffi-
cients are O(1/n2), for example, if the function possesses a derivative of bounded
variationsee [7]. e assumption of the bound as a product of functions of m
and n is more stringent. It is easy to see, if ]fn,mlK1/2 area and ]g.,[ goes to
zero faster, the error bound does not improve, because the asymptotic behavior of
the convolution of sequences f g(n, m) is equivalent to that of its constituent
as go,o is positive.

If one assumes that Ig,.I lg-,-.[, then

]E(t)l {k_x,1+ kl,_r} with kl,
X

or &, are the Fourier coecients of F G with F{GI} the function with Fourier
coemcients [,], {[g, [} respectively. It is easy to see that

so that &, cannot approach zero faster than the slowerf, and g, as long as f0,0
and go,o do not vanish.

6. Condusions and acknowledgments. We have investigated the approxi-
mate evaluation of multi-dimensional convolutions by a one-dimensional con-
volution. e numerical results were derived by the use of a program written by
Luis Basafiez and Pedro Brunet of the Polytechnic University of Barcelona,
U.P.B.eresults of this paper were presented at a seminar on parallel processing
the nonlinear filtering, and we thank the participants for their comments and
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criticism; they were R. Huber, J. Pages, L. Basafiez, P. Brunet of U.P.B., C. Hecht
of Aerospace Corporation, and D. S. Miller of T.R.W. Systems.

In a future paper the application of the sweep mapping, described here, to
nonlinear filtering will be investigated in detail.
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UNIFORM L1 BEHAVIOR FOR AN
INTEGRODIFFERENTIAL EQUATION WITH PARAMETER*

KENNETH B. HANNSGEN"

Abstract. For a family of real integroditierential equations with nonnegative, nonincreasing,
convex, strongly positive convolution kernel A [c + a (t)], depending on the parameter A, 0 < A-<_A <
oo, we show that the solutions u(t,X), normalized by the initial condition u(0, A)=l, satisfy
supx lu(t, A)I u(t) where u 1(0, oo) and u(oo) 0. A result of the same type holds for u,. The
proof uses a Fourier integral representation for the solution. Applications to equations in Hilbert space
and to scalar equations with a complex parameter are given.

1. Introduction. We consider the problem

(1.1) u’(t,A)+A [c+a(t-s)]u(s,)ds=O, u(0, I) 1,

(primes denote differentiation with respect to the first variable, t in this case),
where c is a fixed nonnegative constant, A is a real or complex parameter, and

a C[0, oo); a(t) is negative, nonincreasing, and convex;
(H

a(oo) O, but a(t) 0.

Results of S. I. Grossrnan and.R.K. Miller [2] and of D. F. Shea and S.
Wainger [10] show that

(1.2) luJ)(t,A)ldt<c, j 0,. 1, A>0,

if in addition to (H) we assume

(1.3) i+A[A(-)+c/i-]#O (- > 0),

where A (’) is the Fourier transform of a(t):

(1.4) A (r) e-"a(t) dr.

This will certainly be the case if there is a constant such that

(1.5) Re A (-) > n >0 (r>0)

(a is then strongly positive). Fix A > 0 and define

u(t) sup ]u(t,A)l,
A_--<A

u (t) sup A-1/211 +log (X/A)]-lu’(t, x)l.
A<A

* Received by the editors September 4, 1975.

" Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061. This work was supported in part by the National Science Foundation under Grant
MPS 74-06403 A01.
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THEOREM 1. Let (H) hold, and suppose a(t) dt <o and da’ is not a purely
singular measure. Then

(1.6) uJ(t) dt <o (j 0, 1),

(1.7) uJ(t)-->O (t-->o, j:0, 1).

THEOREM 2. Let (H) hold, and suppose -a’(t) is convex. Then (1.6) and (1.7)
hold.

Clearly da’ is not purely singular in Theorem 2. Thus [9, Cor. 2.1 and 2.2] in
both theorems (1.5) holds.

THEOREM 3. Let (H) hold, and suppose c 0 and a’(0+) >-c. Assume that
Re A (z) > 0 (- > 0) but that no positive ’1 exists ]:or which (1.5) holds. Then

lim sup [u(t,

Before discussing the hypotheses of these theorems, we indicate two applica-
tions of (1.6) and (1.7).

First, assume (H) holds and let L be a self-adjoint linear operator densely
defined on a Hilbert space H with spectral decomposition

Lx h dExx (x(L)).

In previous work [5], [8], we have shown that the formula

R(t)= u(t,A)dEa

defines a bounded operator on H. R (t) is the resolvent kernel for the equation

y’(t) + a(t-s)Ly(s) ds t(t);

that is, under reasonably mild assumptions,

y(t) R (t)y(0) + R (t- s)I(s) ds.

If (1.6) and (1.7) hold,

IIR (t)ll dt < oo and IIR (t)ll-> o

Second, for complex A consider the series

(.8) u(t, ) Y u. (t)( )",
n=0
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where Uo(t) u (t, tx ),

(1.9) Un+l(t)
1 f’ u’(s, tx)U,(t-s) ds
J0

(n _->0).

Because of (1.2), Un(t)-+O as t-oo. Assuming (1.6) and using the convolution
inequality for L norms, we see that for a suitable constant B B(A),

o.(t)l dt<-{Btz-1/2[1 +log (/x/A)]}".

It is known (see (1.10) below) that [u(t,/z)[-< 1; therefore we also have

sup u. (t)l =< {B/z-’/2[1 +log (/z/A)]}".
t>0

Thus if A eD, ={A BIA -/zl </xl/2/[1 +log (/z/A)]}, (1.8)is a convergent series
in the space of bounded continuous integrable functions of with the norm
II/ll- sup0__<t<oo If(t)l +I If(t)l dt, and limt_oo U(t, A) O.

COROt.AR 1.1. IrA D, for some tz >- A, then U(t, A) is the solution u(t, A)
of (1.1).

This corollary, which will be proved in 7 by comparison of Laplace
transforms, shows that u(t,A)-O (t-oo) and lu(t,A)ldtoo for A [.JD,
t_->A.

In [8], we proved (1.6) and (1.7) for j 0 when a(t) is continuous on [0,
and completely monotonic on (0, oo); Theorem 2 contains this result.

Nohel and Shea [9, 4] show that functions a(t) exist satisfying the hypo-
theses of Theorem 3.

If c =0, a(t)= e -, (1.1) reduces to the initial value problem

u"+u’+Au=O, u(O, A) 1, u’(O, ) 0

with solution

u(t, A)= e -t/2 cos txt + -Tsin/x (A >1/4),

where t* (4A 1)1/2/2. Using Fourier transforms we see that

Similarly,

Io [u(t, A)[ dt >= sup

I0 lu’(t, a)l at>-a}A(,/a-a)a(,/a-l,a)l=ll-i,/a-ll.
In this sense, (1.6) is sharp for/" 0; for ] 1, we have not determined whether the
term log (A/A) must be included in u 2. It will be evident from the proof that this
log term is not needed for (1.7).

In [4] we showed that (H) implies

(1.10) ]u (t, A)] =< 1 (0 =< t <, 0 < A <)
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([u[ _-< x/ is given in [4], due to an arithmetic error in the proof; c 0 is assumed in
[4], but a()= 0 is not used in the proof of (1.10).) In [6] we showed that (H)
implies

sup
A_<A <oo, tO

u(s,) ds <oo

but if we replace A by 0 this sup is infinite.

2. Integral representations. We assume without further mention that c + a (t)
has been rescaled if necessary so that A= 1. We define D(r)--D(r,
A (r) + c/ir and D(r, A) D(r) + ir/A (h => 1, r > 0). We define a’(t) where neces-
sary so that a’(t+)= a’(t) (0 <= < ).

LEMMA 2.1. If (H) and (1.3) hold
(i) A(r) is analytic in l={Im r<0} and continuous in \{0}; if a

L I(o, cx3), A is continuous in .
(ii) A (r) O(z-1) ([Re zL- ), uniformly in {0 _--< -Im r < }.

(iii) zA (r) - 0 (r - 0, r 6 f).
(iv) If j a(t) dt c, then [A (z)]-1 0 (z 0, r 6 ).
(v) The representations

(2.1)

(2.2)

ru(t, a)=- Re dr,

ru’(t, I) Re
e’D(r)

dr
D(r, h)

hold for > 0. (The integral in (2.1) is improper at - c.)
Proof. The proofs of (i) through (iv) are fairly straightforward and will be

found in [3, 2]. Equations (2.1) and (2.2) have similar proofs; we outline the
latter, since (2.1) is proved in [3, 3].

Using standard a priori estimates for linear Volterra equations [1, 7.6],
together with (1.1) and the complex inversion formula for Laplace transforms,
one sees that for t > 0

(2.3) 2zriu’(t, A) Ic eZt[D(-iz)/D(-iz, A )] dz,

where C is the straight line {r + i’, -oo < - < o} for sufficiently large positive r. A
contour shift, justified by (i) through (iv) allows us to change (2.3) to

2zru’(t, A)= e’t[D(r)/D(z, A )] dr,

and (2.2) follows by a change of variables.
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Fix tl >0 such that a(tl) >0, and set p =6/q. For t>0 define

Io eit { e’Ot IUl(t) Re t)j dt- Re ,
--aloei’tiT"} { peipt }LD(, A) AtD(p)D(p,A)ug.(t,A)=- Re dr+Re

llo{eit } 1{ eiOt }u3(t, A) - Re D(r, A)
dr+- Re

itD(H, A)

IO { ei’tD(7")} dr+Re { eiptD(p) !Vl(t, A) Re D(,r, A)

Io leito(7") l eiOto(p)
v2(t, A) Re

t D(r, A) J dr- Ret,i}"
COROLLARY 2.1. If (H) and (1.3) hold, then

7ru(t i ,-lu l(t) -k- u2(t, A )-!- u3(t, A ),

7ru’(t, A) Vl(t A q- v2(t, A ).

The proof is immediate.
We separate A (z) into real and imaginary parts A (r) 0(r)- izO(r) (z > 0).
LEMMA 2.2. Suppose (H) holds and a’(O) >-oo. Then A (r) is differentiable

(r > O) and

1 I01/’r I01/’r(2.4)

/r

(2.5) [A’(-r)[ <= 40 ta(t) dt<-4Oa(O)/-: (>0),

(2.6) O(z) _-> a(q)/2 ( >- p),

-a(tl)
(2.7) 0’(-) < 0 (- > 0) and 0’() <. ( >p).2r3
For each A > 0 there is at most one number to to (A) on the interval {p <-_ to < c}
such that

c 1
(2.8) O(to) +--
We define to(A) p if no such to exists. Then to(A) is a continuous, nondecreasing
funcn’on on {A > O} and

(2.9) a(tl)A/2 <= to2(A) _--< max {p 2, [4a (0) + c]A }.

Proof. Inequalities (2.4) and (2.5) are the conclusions of [10, Lemma 1] (the
assumption be LI(O, oo) of that lemma is not used here). For the other conclusions,
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we integrate twice by parts in (1.4) (following 10]) to obtain

(2.10) A(z) 7-
-2 (1-i7-t-e -i’t) da’(t).

Here we have used several consequences of (H); in particular, ta’(t)-> 0 (t--> oo)
and

(2.11) tda’(t)= a(T)- Ta’(T) (T_>0)

so that the integral in (2.10) converges absolutely. Thus

7-20(7-) t da’(t) > O,
7"

so if 7->=p=6/t1, (2,11) shows that 27-20(7-) -> It tda’(t)>-a(tl) and (2.6) holds.
Similarly 7-30’(7-) tO(7-t) da’(t), where b(x) -2-cos x + 3 sin x/x. Now
(x) < 0 (x > 0) (this is obvious for x >= r; note that x(x) vanishes, together with
its first two derivatives, at x 0, while [xq(x)]’" < 0, 0 < x < r). Thus 0’(7-) < 0
(7- >0) and if 7- >- p, 27-30’(7-) <=-It1 da’(t) _-<-a (tl), so (2.7) holds. The uniqueness
and monotonicity of o(A) follow easily from (2.7) and (2.8). The implicit function
theorem shows that (2.8) defines a differentiable function a3(A) locally, so p(A)=
max {p, a3(A)} is continuous. Finally, (2.9) is an immediate consequence of (2.4),
(2.6), and (2.8).

COROLLARY 2.2. If (H) and (1.3) hold and a’(0)>-oo, then
) [D’(7-, A)/D2(7-, A)[ dT- < oo (1 A -< oo) and

1
e i, D’(7-, ) dz,(2.14) u3(t, ) Re D2(7-, A

1 ei,t[7-D’(7-, A) 1
dT-,(2.15) v,(t, X)= Re- [-r, A) D(7-, t

1I, t[ _D_’!(2.16) Vz(t, A)= Re e
kD(7-, A)

D(z--D(, - )j

_D(7-)D’(7-, X )]

Proof. Integrate by parts. Vanishing of the boundary terms at 7- 0, oo and
absolute convergence of the integrals are assured by Lemmas 2.1 and 2.2. (Note"
if the factors A and of (2.15) and (2.16) are brought under the integral signs, the
two integrands are the same.)

3. Proo| o| Theorem 3. Let t (7-, A) jo e_itu(t A) dt. Then
sup_oo<<oola(,x)l<-_jlu(t,x)ldt<oo. From (1.1), t(7-,A)=[AD(7-,A)]-1 in
{Im 7- < 0} and by continuity for real z as well. Let n be a positive integer and
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choose % >p + n such that 2
m-q9 (r,) =< 1. Since o)(Z) is continuous with o (0+) p

and o (co) co, there exists A A, such that o)(A) ’n; that is 00"n) A 1. By (2.9),
An >---- r/(4a(O))-+co (n -+co). Moreover o ]u(t, An) dt >-la(rn, a,)l 1/.nqg(7"n)

2nrn/a, nw2(a,)/a, _-> na(h)/2-+ co (n -+ co). This proves Theorem 3.

4. Uniform estimates and approximating sequences. The following consider-
ations are needed to deal with cases where a’(0) or a"(0) is infinite. The letter M
will denote a finite positive a priori constant which can be chosen uniformly in
1 -<-A < co, and uniformly over any class s of kernels a (t) for which (4.1) through
(4.3) hold.

The hypotheses of Theorem 1 (Theorem 2) hold, and
(4.1) a’(0) >-co[a’(0) >-co and a"(0+) < co] for all a in d.

There are fixed positive numbers tl, a, such that a (tl) a, a (0) (all a in
(4.2) s), and the number of (1.5) may be chosen the same ]’or all a in

(4.3) In the case of Theorem 1, the set of numbers a(t) dt, a s, is bounded.

Such a class s is constructed as follows. For each positive integer n, let bn (t)
be any function with the properties (i) bn C3[0, 1/n], (ii) (--1)kbk)(t)=>.0
(0 <-- t <= 1/n, k 0, 1, 2, 3), (iii) bn (0) a(0), (iv) bn (I/n) a(1/n), (v) b’(1/n)
a’(1/n), (vi) b(1/n) a"(1/n+) if the latter exists. Let an(t) bn(t) (0 <- t < 1/n),
an(t)= a(t) (t >- 1/n), and set sN {an[n >=N}. The Fourier transform of an will
be denoted An qgn

LEMMA 4.1. Let a(t) satisfy the hypotheses of Theorem 1 [Theorem 2], and
define sgN as above. For suciently large N, the set s SN has properties (4.1),
(4.2) and (4.3).

Proof. The only nontrivial assertion is that r/may be chosen uniformly over
AN. Using the Riemann-Lebesgue lemma, choose positive numbers o, T, y so
that

I7. (1 cos rt) du(t) >-_ 3’ (" >-- o),

where d, is the absolutely continuous part of da’. Choose N> T-1 with
N-l[a (0) a (l/N)] < mino__<_<_o qg(-) 26. Then for n -> N, on (z) -> 6 (0 _-< " _-< 0),
and from (2.10) we see that qgn(-) -> ,.-2 (-->’0). Thus (1.5) holds with r/=
min {, ,} for all a in

5. Proot ot Theorems 1 and 2. The following two lemmas, which will be
proved in 6, give the main estimates of the proof. The constantMhas the special
meaning discussed in 4.

LEMMA 5.1. Under the hypotheses ofTheorem 1, ira’(O) >-co, the estimates

(5.1)

(5.3)

(5.4)

lu2(t, A )[-<M(1 + log t)/t2,

[u3(t, A )[ <-M/t2,

[v,(t, )] _-<M(1 + log t)/t2,

Iv(t, A )l <=M,/-/t
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are valid ]’or t >- 1. The same estimates are valid for >- 1 (even with the term log t
omitted in (5.1) and (5.3)) if the hypotheses of Theorem 2 hold and la’(0)l/
a"(0+) < oo.

LEMMA 5.2. If (H) and (1.5) hold and a’(O) >-oo, then

(5.5) lu’(t,A)l<=MA1/2(l+logA) (0=<t=< 1).

Then (5.3), (5.4) and (5.5), together with Corollary 2.1, show that (1.6) and
(1.7) hold for/" 1 provided a’(0) >-oo and, in Theorem 2, a"(0+) < oo. With the
same proviso, (5.1), (5.2), (1.2), and Corollary 2.1 imply that Ul(t) 0 (t oo) and

lu (/)l dt < oo. Hence (1.7) is valid for/" 0 and u(t) dt < oo. Since (1.10)
holds, (1.6) is established for ] 0, and the proof is complete.

In the general case, where a’ or a" may be infinite at 0, consider the set
Sg=SfN={an} Of 4. To each an there corresponds a solution un(t, A) and
functions u(t, h), v(t, h) as in Corollary 2.1. A final lemma, also proved in 6,
will allow us to finish the proof.

LEMMA 5.3. Fix , >-- 1, >0. Let a(t) satisfy the hypotheses of Theorem 1 or
Theorem 2, with {an} as in 4. Then u’(t, A) - u’(t, A ), u(t, A -. uj(t, A (] 2, 3),
vT(t, A vj(t, A) (j= 1, 2) as n

By Lemma 4.1, the estimates of Lemmas 5.1 and 5.2 hold for us, u3, vl, v.,
and u,, with a constant M independent of n. Letting n oo, we see from Lemma
5.3 that (5.1) through (5.5) hold even in the general case of Theorems 1 and 2, and
we can complete the proof as above.

6. Proois of Lemmas 5.1, 5.2 and 5.3.
LEMMA 6.1. (i) Ifthe hypotheses of Theorem i hold and a’(O) > -oo, thenA (7.)

is twice continuously differentiable and

(6.1)
IA"(-)I_-<600 t2a(t) dt+r-e

/,
a(t) d

-< 600A (0)/r: (r > 0).

(ii) If the hypotheses of Theorem 2 hold and [a’(0)] + a"(0+) < oo, then A (7.) is
twice continuously differentiable and

(6.2) IA"(r)l =<6000 tea(t) dt (7. >0).

Proof. (i) Integration by parts shows that 2 da’(t)dt <2A (0). Then we
may differentiate twice in (2.10) to obtain

(6.3) A"(r) 7.-4 J(-7.t) da’(t),

J(x) 611 + ix -exp (ix)]-4ix[1 -exp (ix)]-x e exp (ix).
19(1 +x2) (x->0) and {J(x)l<=x4 (0=<x_-< 1). Thus

We have IJ(x)l_-<

(6.4) IA"(r)[<= fo
/

t4 da’(t) + 207.-4 (1 + 7.2t2) da’(t).
/-
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Note that

I01/"(6.5) 4 da’(t)-r-4a’(1/r)+4--3a(1/z) 12 t2a(t) dt,

(6.6)
da’(t) -a’(1/-).

For R > 1/-r, integration by parts and (H) show that

-2 2

" da’(t)<--r-4a’(1/r)+2r-3a(1/r)+2-2 a(t) dr,

so, using (6.5), we see that

-2 t2 da’(t) < 18 t2a(t) dt + 27-2 a(t) dt.(6.7) z

Combining (6.3) through (6.7), we get (6.1). For (ii), integration by parts shows
that o t2 da"(t)>-2a(0). Note that t2a"(t)-O as t az. We integrate by parts in
(2.10) to find that

A (’) i-- [e-’ 1 + i-rt + "r2t2/2] da"(t),

so that

A"(z) i"-5 K(--t) da"(t),

where K(x)= 12[exp(ix)-l-ix-(ix)2/2]-6[ix exp(ix)-ix-(ix)2]+[(ix)2

exp(ix)-(ix)2]. Then Ig(x)l<-36(+x) (x>-_o)and Ig(x)l<-u (0_<-u<_-l).
Since /tda"(t)-a"(1/z)/-5 + 5a’(1/’)/"-2Oa(1/’)/z3= -60 10/* t2a(t) dt,
l/da"(t)=-a"(1/z), and .21/t2da,,(t)=_a,,(1/.)+2za,(1/z)_2z2a(1/.),
we see as above that (6.2) holds. In this proof we have followed the method of [10,
Lemma 1].

ProofofLemma 5.1. Integration of (2.7) from o(h) to z, together with (2.9),
shows that

Jim O(-, A){ > a(tl)[o (A)-zl[o(A) + z]
(6.8) 42o2(A)

->-I,-,, ,,- [,.o + ",’]/’,"

Integrating by parts in (2.14) (using Lemma 2.2) we see that

At2u3(t, h)= Re {eOtD’(p, h )/D2(p, h)

(6.9) + e’"[ D"(,’r) 2[D’(,’r,,,_]:.’l a-LD--( ])- o3(, A) J

Let =min{p/2, 4a(tl)/4}. We use (2.5) and (6.1) or (6.2) to estimate the
numerators in (6.9); inequality (6.8) gives an estimate for the denominators,
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except on {Ir-o(A)[ < e} and at r p where we use (1.5); inequality (2.9)permits
us to compare o(A) to A. There results the estimate

(a)/2

<-_M+Mx/ f dr

0/2 rW3(A) M,,(x)I2 [w(a)- r]3

o(a)+e Jr-- o) (/)]2-
1 ][r- (.o (a)]3 dr<--M"

Thus (5.2) holds.
Integration by parts in (2.16) yields

t2v2(t,A)=Re {eiO,[ D’(p) D(p)D’(p,h)]I_Dp,)- D(p,*)

I2(x) ,[2D’(r,A)rD"(r) 2r[D’(r,,)]]+- e i.--r,)-+DZ(r,a) -5r,-i j dr

e irt [+ D"(r)
) D(r, a)

2D’(r)D’(r, *)- D(r)D"(r)

2D(r)[D’(r, / )]2] dr}D2(% a)

(6.10) if(r) < a(t) d

An argument of Shea and Wainger [10] (see [7, p. 696] for the version needed
here) shows that for 0 < 8 <_-p,

fO [folio t]-I 12
f(r) dr < 2 a(t) d --tla(tl)"

Note that

Then similar estimates to those above show that

f2[t2v(t, )[ =<Mx/+ M + dr <=Mx/.
,(x)

For the other estimates, first let

f(r)
ta(t) dt

[10/ a (t) dt]>
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Thus

(6.11) f(,r) d,r<=M.

Now if c 0, (2.4), (2.5) and a(oo)= 0 imply that

(6.12)
rD’(r,
D2(r, A)

If c 0 and A (0) oo, (6.12) is still true, because of (2.4), (2.5) and (6.10). If c 0
and A (0) < oo,

rA’(r) =-(o[e-i’t-l+i’t] ta’(t)

as r->0+ by Lebesgue’s dominated convergence theorem, so (6.12) holds in all
cases. Moreover, D(0+, A) is real or infinite (1 _< A _-< oo). We may then integrate
by parts in (2.13) to obtain

(6.13)

e ipt

it2A 2u2(t A) Im
D(p)D(p, A)

1
pD’(p pD’(p, *)]
D(p) D(p, A)

_Iop e izt

[-2D’(r)D(r)D(r, A) D(r)
2D’(r, A) rD"(r)
D(r, *) D(r)

rD"(r) 2r[D’(’)]2

-D(r,l’------ + D(z)

2r[D’(r, * )]2
4 D2(r + 2rD’(r)D’(r, a)] dr}D(r)D(r, A)

If c>0, then [ImD(r,a)l>=c/2r if r2<c/2, while ReD(r,a)>-rl/(l+p2)
(47c/2<=r<-_p). Thus by (2.5) and Lemma 6.1,

t2a 2lu2(t, X)] =<M+M( min{p, cV}

u0
[r + r5] dr,

so

(6.14) t2a 21u2(t, A)[-<M.

If c=0 let r=min{p, Iao/a(t) dt/8}; then o--1--<M, ID(r,,)[_>/(+o)
(r < r =<p). In Theorem 2 we use (2.5) and (6.2) to get

Ia2t2u2(t,a)l<=M+M [i +f(r)] dr.

Using (6.11), we again get (6.14). Thus (5.1) holds (without the log term) under
the hypotheses of Theorem 2 and in Theorem 1 when c > 0.
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For Theorem 1 with c 0, we return to (2.13) for the estimate

[tA eu2(t, A I<=M 1 + z sa(s) ds dr

in{g, 1/,} D(r)D(r, A)
1

D(r) -z, ;i J dr

=Ii+lhl.
Here 11 is bounded by M/t, since A (0) -< M, while integration by parts shows that

I(t, A)= [ i’t (zD’(z)itV(z)D(z, A)
1

D(z)
"rD’(’r, A ) o

i"i ]
min{o’, l/t}

+ O dr,
it in{o-, l/t}

where Q Q(r, A) is the same as the integrand in (6.13). Estimating as before, but
with (6.1) instead of (6.2), we find that

[tI(t, X )I <=M+MImin{r, l/t}

dT
<-M(1 +log t).

Then (5.1) holds in all cases.
The proof of (5.3) is similar to that for (5.1), and we omit it.
Proo[ Lemma 5.2. Start with (2.2). Obviously ID(z)/D(r,A)I

I1-ir/AO(r, h)] _--< I +p(1 +p2)/nA <--M (O<=r<--p), so

(6.15) Io iT

AD(r,A)
dr<-M.

Next, using (6.8) (a consequence of (2.7) and (2.9), which hold here, by Lemma
2.2) we see that

iT 1 M[
o(,)/2

2r dr<-M/,<7"(*)+7

(6.17)

i’l"

--<_M4 (1 + log * ),

(6.18)

(6.19)

iT

aD(r, ,)

ID(r)/D(r’a)[ dr<--M* I 7"--2 dr<-M/"
2to(A)
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Comparing (6.15) through (6.19) with (2.2), we see that (5.5) holds.
Proof ofLemma 5.3. Integration by parts shows that

In
(6.20) ]A (-)-A (’)1 -<- -’- [a’,,(t) 4- a’(t)] dt

2[a (0)- a(1/n)]/-.
With D,(z, A)= iT"A - +A,,(’r)+c/(i.c), we have

1 1 2[a(O)-a(1/n)]
(6.21)

D,(z, A) D(, A) -lD(z, A)D,(z, A)"
To each n there corresponds a number w, w, (A). By (2.9) and (6.8) there are
positive numbers 6, A < ., independent of n, such that w, <A (n >N) and
[D, (r, A)[ (n N, z 2A). Since A, A, also [D(z, A )1 6 (z 2A). usby
(6.21), $IDa(,A)-D-*(,A)IdO (n). But O,O uniformly and
D-I(r, A) is continuous on {0 z 2A}, so

1 1
(6.22) D,(r,A)-D(r,A) dzO (n).

Clearly (6.22) also holds with A replaced by . The convergence of u, u, v7 is
now obvious. Moreover,

D(p) D.(p)
17(t, )-=(, )1 DO, A)

fo[1 l ]+ D(r) D(,*)-D.(r,*) dr

A (r)- A. (r)
dr+

D(r, *)

+ In()-n.(r)l D.(r, A)-D(r, A)
dr.

p

Using Lemma 2.1 (ii), (6.20) and (6.22), we see that v(t, A) v2(t, A) as n.
Finally, the convergence of u(t, A) to u’(t, A) is a simple consequence of (1.1) and
standard continuous dependence theorems for Volterra integral equations. is
completes our proof.

7. Proof of Corollary 1.1. Taking Laplace transforms in (1.8) and using (1.1)
with A , one sees that

U,(z, i) e_U(t,)dt
1 a*(z)(-),

z + a*(z) z +a*(z)
1

(Re z > 0).
z+ha*(z)

Using the standard existence-uniqueness proof [1, Chap. 7] for.,the integrated
form u(t, h)+A ’o[(t s)c+ a(x) dx]u (s, A) ds of (1.1), one sees that a
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unique solution u(t, A) exists on {0 --< t < oo} and [u(t, A)[ <= a eat (t --> 0) for suitable
finite a,/3. Then by (1.1), [u’(t, e (t->_ 0). Taking Laplace transforms we
get u*(z, A) U*(z, A) (Re z >fl), so u U.
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ASYMPTOTIC ESTIMATES FOR THE ADIABATIC
INVARIANCE OF A SIMPLE OSCILLATOR*

GILBERT STENGLEt

Abstract. Let u be a solution of the differential equation //+tp2u 0 with slowly varying
coefficient tpz(et). Let r2 q(et)u + p-l(et) fi 2. Then is an approximate or "adiabatic" invariant of u
in the sense that : O(e). J. E. Littlewood [1] has shown that rZ(+oo)-r2(-oo)=O(e n) for all n >0
under the hypotheses that o > 0, 0 has positive limits as --> +o% and q(") L1(-oo, oo) for all n >0. The
purpose of this paper is to obtain an upper estimate for r(+oo)-rZ(-oo) under Littlewood’s
hypotheses. The main result is that the rate of decrease of rZ(o)-rZ(-oo) as e-->0 is determined by the
rate of growth of II0(m)lla as rn-->oo. It is shown that if IIo(’)ll-O{exp h(m)}, where m log m
o(h(m)), then for any 6>0,

r(_oo---1 0 {exp- h* (log E-1+8)},

where h* is the convex conjugate function of h

h*(x)- max {xy- h(y)}.

1. Introduction. We consider the differential equation u"+ q92(e’)u 0 with
slowly varying coefficient 02(ez). Here e is a small positive parameter and z
ranges over the entire real line. On bounded time intervals or even intervals of
length o(1/e), this problem can be regarded as a small perturbation of a simple
harmonic oscillator u"+ k2u =0; for longer durations this resemblance fails.
Nevertheless the theory of the limiting behavior of this problem as e tends to zero
is essentially simpler than the theory of the full problem u"+ q2(z)u 0 and
various techniques of asymptotic analysis yield abundant information about
equations with slowly varying coefficients. Divergent asymptotic series in powers
of e are usually an important tool here. In this paper we study a subtle facet of this
problem which seems to lie beyond these methods and which requires tools not
commonly used in asymptotics.

.If we associate with a solution u of the differential equation the function
r2 ( (eT)U 2 q- -l(ez)(U’)2, then a simple computation shows that r’ O(e). Thus
the change in r2 is small on bounded time intervals. This property of r is often
indicated by calling r2 an approximate or "adiabatic" invariant of u. However rz

has even more remarkable properties. In 1963, J. E. Littlewood [1] showed that
rZ(oo)-r2(-o) is asymptotic to 0 as a function of e, that is, rz(oo)-rZ(-oo)=O(e n)
for each n-> 0, under the following hypotheses. He assumed that 0 is positive
valued and has positive limiting values as z approaches +o and that o’ is gentle in
the sense that q") LI(-, o) for all n >0. The purpose of this paper is to give an
estimate for rZ(cx3)-r2(-oo), the limiting value of the adiabatic invariant rZ(r)
r2(-oo), precisely under Littlewood’s hypotheses. For brevity we shall refer to
rZ(+cx3)-rZ(-cx3) as the "adiabatic invariant". The following theorem (proved in
7) shows that the nature of the zero at e=0+ of the adiabatic invariant is

* Received by the editors January 20, 1973, and in revised form March 2, 1976.
]" Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015.
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determined by the rate of growth of the sequence IIg0m]ll j_ IIqm(s)ll ds as
mo. In the statement of the theorem and for the balance of the paper we change
the time scale by the transformation t= ez obtaining

(1.1) e2ii + o2(t)u O

as the basic differential equation and r2 qu 2 .at. e 2( 1/ 2 as the associated approx-
imate invariant.

TI-IEOREM 1.1. Let u be a solution of e2//+qZu =0, where q is a positive
function, q tends to positive limits as approaches +/- and (0 is gentle. Let
r2 qu 2 + e2q -lti 2. Suppose

IIq)ll O{exp h(m)},

where h(m)/m log m as m-. Then for any 3>0,

r() -,+)},rz(_-------- 1 O{exp- h*(log e

where h* is the convex conjugate function of h,

h*(x) max {xy h (y)}.
y

We make the following remarks about the hypotheses of this theorem. We
have assumed much more than is required to establish the oscillatory nature of all
solutions and the existence of r(+). The function r is just the radius in the phase
plane associated with the Prfifer transformation (ol/2u r sin 0, e0 /ti r cos 0.
The functions r and 0 satisfy - -1.-q 0 cos 20 and e q + (e/2)q-lb sin 20.
These equations can easily be used to show that r(+/-c) exists if q-Eb has bounded
variation (Hille [2]). We also note that the function h (m) describing the growth of
the sequence of derivatives of q is far from arbitrary. This is so because of
interpolation properties possessed by derivative norms. However since we emp-
loy the operation of convex conjugation which obliterates all distinctions between
h and its largest convex minorant, we shall assume without further mention that h
is convex and monotonic increasing. We also assume as an inessential convenience
that h is defined for real x _->0 and that h(x) o for x<0.

Our hypotheses ensure that q admits the action of the Riemann-Liouville
fractional derivative D for x _-> 0. This can be defined for n <.x < n + 1 by

1
DXqg(t)

r(n + 1 x)
s"-"+(t-s) ds.

This is easily seen to be an element of L1 for x >-0, or we can choose ho(x)=
log I lxl (s)l where 0 is the Fourier transform of y. The convexity of this
function is a simple consequence of the Holder inequality. The function h(x)=
sup0__<s____x ho(s) is then a monotonic convex measure of derivative growth of the
kind we desire.

Finally we assume that h(m) grows more rapidly than m log m, the disting-
uishing growth rate for holomorphic data.
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Recently Wasow [3], [4] and Meyer [5] have investigated the adiabatic
invariant obtaining very detailed results in the case that p is holomorphic in a strip
containing the real axis and satisfies various other hypotheses. They find in such
cases that the adiabatic invariant is O(exp -(C/e)). We illustrate the sense of our
result by showing it leads to estimates other than exponential. Suppose IIqm)lll----
O(exp ,r’m’), "r >0, p > 1. A simple calculation shows that for h(x) ’rx’, we have
h*(y) ’r’y’’, where p’> 1, (1/p)+(1/p’)= 1 and "r’= (p-1)’r(pr)-’/’-1). In this
case the theorem implies that

a(e)= O(exp-c[log]’)
for any c < z’.

In 2 we continue our introduction. Section 3 catalogues some changes of
variable. In 4 we obtain a formula for the adiabatic invariant in terms of
distinguished solutions of a related nonlinear equation. Section 5 contains analytic
results in the special case that 0 is holomorphic. Section 6 contains results on the
approximation of gentle data by holomorphic data. In 7 we prove the main
theorem.

2. A method of estimation. We estimate the adiabatic invariant by combin-
ing some tools of general significance with several very special devices useful only
for the second order linear equation. Therefore it seems valuable to us to
distinguish the authentic methods from the special tricks with the following
remarks.

It frequently happens in analyzing differential equations which depend
singularly on a parameter that mere knowledge of the existence of a special
solution with derivatives bounded independently of the parameter is a powerful
asymptotic tool, more powerful, in fact, than conventional asymptotic results
which assert existence of a solution with a given asymptotic expansion. We
illustrate this point with a very simple example. Suppose we know that the
problem -ey’ + y f has a solution Y0 which has derivatives of all orders bounded
independently of e. Then (supposing thatf is smooth) it is a rigorous consequence
of the differential equation itself that

n+l (n+l)Yo=f+ef’+e2f"+’" "+ ef")+ e yo

But since yon+l) is bounded independently of e, this formula asserts that the
obvious formal series k--O e kf is an asymptotic expansion of the solution Yo. To
put it strongly, here the obvious formal calculation, which usually has only
heuristic status, becomes a strict deduction. Moreover if actual numerical or order

m2 (0m)estimates for yom) are known, e.g., ly 0 >l-< 1000 e or y --O(em2), then we
have similar bounds for the error, e.g., lyo-y,,,__oe"[<")l<-_lOOOe em+1)2

Finally if, as is usual, the error does not tend to zero as we include more terms in
the series, then we can assessthe theoretical limits of accuracy attainable with the
asymptotic formula. Under our concrete illustrative hypotheses we find this to be

min 1000 e
/1 e

m--0

--(m+1)2 exp
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We will apply a subtle variant of the above argument (roughly a case where
each term of the expansion is 0) to

2

(2.1) 02+--{0, t} q92

where {Q, t} is the Schwarzian derivative

0 3 .
Thus our program requires obtaining solutions of this equation together with
e-independent bounds for all derivatives. Plainly such bounds cannot be simply
deduced recursively from the differential equation since the highest derivative is
multiplied by the small parameter e. To obtain derivative estimates in a systematic
way we exploit a powerful idea that Jacobowitz [6] has used to give remarkably
simple proofs for implicit function theorems of the Nash-Kolmogorov-Arnold-
Moser type. In problem (2.1) we replace q by a sequence of function
holomorphic on a sequence of strips converging to the real axis. We do this in such
a way that the convergence of q, to q accurately reflects the differentiability
properties of 0. We then solve 02,+ (ee/2){Qn, t} 0,

2 for holomorphic approxi-
mate solutions Q,,. However for the Q,, we have an essential simplification in the
problem of obtaining derivative estimates. All derivatives of Q, can be estimated
on a slightly smaller strip by the Cauchy integral formula in terms of an upper
bound for the function Q, itself. We then carry these derivative estimates over to
an exact solution Q by a limiting process. As we will see, this problem of obtaining
derivative estimates for solutions of the Schwarzian equation (2.1) is the central
technical difficulty in this paper.

3. Some special transformations. We introduce the following variant of the
Priifer transformation in which the slowly varying function r2 appears as a
modulus:

Z ql/2u "q" i8q9-1/21, 91/2U ieq-/2t,
(3.1)

ri=z, p=z/..

We note that if u is a real solution, then r= Izl and p =exp 2i0, where
0 arg z. However since we are interested in complex solutions we forgo intro-
ducing 0. Then a simple computation shows that

(3.2) --i-()r P+

(3.3) e/0 -2iqp + (eq,/2)(1 p2),
where q, 0-lb.

We next catalog relations among the original linear equation, the Schwarzian
equation (2.1) and the Riccati equation (3.3). It is well known that given a single
solution of any one of those equations the complete solution of each can be
determined by integrations, differentiations, algebraic operations and exponenti-
ations. We use the Riccati equation, following Wasow [3], [4], because it is easiest
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to solve. However for our purposes the Schwarzian equation is simplest because
any two of its solutions are related in a direct way. In contrast, simple relations
persist only among larger sets of solutions of the other two equations.

In the following we presuppose without further mention the hypotheses of
the main theorem. We require the following elementary attributes of the Schwar-
zian derivative (Hille [2]).

LEMMA 3.1. The Schwarzian derivative, {f, t} (?f)-(]bi)2 has thefollow-
ing propern’es"

(i) If Yl, Y, satisfy " + a(t)y 0, then {Yl/Y, t} 2a(t).
(ii) {/, t}={g, t} i[and only iff=(ag+)/(yg+) where aS-/3y 1.

(iii) {u, w}={u, v}(dv/dw)+{v, w}.
(iv) {u, v} -{v, u}(du/dv)2.
LEMMA 3.2. Letp be asolution ore{) + 2iqp (e/2)ff(1 _p2)satisfying [pl <

Then o=to q(1-2 Re (p/(1 +p))ds is a solution ol (e/2){O, t}+ 0z= 0 and
the functions 0-1/2 exp +(i/e)O are independent solutions of eii +ou o.

eroo1’. Suppose [p[<1/2. Then our hypotheses on q imply O
0(1 2 Re (p/(1 +p)) > 0. A tedious but straightforward computation then shows
without further hypotheses that O satisfies the Schwarzian equation. Instead we
give the following argument which uses the preceding properties of the Schwar-
zian to reveal quickly a direct relationship between p and O, but which requires
that p #0. If r and p satisfy (3.2) and (3.3), then y =O-1/21"l/2(p1/2+p-1/2) and
;--(9-1/21/2(pl/2-[--p-’1/2) are solutions of the linear second order equation.
Hence by Lemma 3.1(i), y/y is a solution of {y/y, t}= 2p/e. Applying Lemma
3.1(iii), the chain rule for the Schwarzian to the (real-valued) function Q
(e/(2i)) log y/y we find (2/e2)0 +{Q, t}= 2q 2. Since

-1/2]e i _+d pl/Z+p_7j
equations (3.2) and (3.3) immediately show that 0 is given directly in terms of p.
Carrying out the differentiation and eliminating derivatives with (3.2) and (3.3)
yields the desired relation. Finally the change of variable z= O(t), v(z)=
01/2(t)u(t) transforms e2(d2v)/(dz2) + v 0 into e2//+ (02 + (e2/2){0, t})u 0
which is e2ti+02u=0. Choosing v(z)=exp+(iz)/e we obtain the indicated
solutions of e2//+ 02u 0.

LEMMA 3.3. Let 01 and 02 be monotonic increasing solutions of02 + (e 2/2)
Q, t} o. Then

_d /-inverse { 2t 2_} -1,dtO , A(e)+B(e)cos--+C(e)Sine
where A 2 B2 + C2 _1_ 1.

Proof. Since {tan u/e,u}=2/e 2 the chain rule Lemma 3.1(iii) shows
{tan Qi/e, t}= (2/ez)q9 2. Hence by Lemma 3.1(ii),

--1 atantan
3’ tan (O2/e + 6’
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where a5-/33, 1. Since the indicated linear fractional transformation maps a
real segment onto a real segment we can suppose its coefficients are real. However
since the functions tan Ok have disconnected domains of definition there remains
the possibility that different linear fractional transformations occur on each
component. Replacing t by (nverse(t) and differentiating we find after a slight
computation that on each component,

d ,-inverse { 2t 2_}
-a

dt oa ,2 A +B cos
e
+ C sin

where
2 2 72 62 2 62 2 2

a +3 + + /3 + -a-3’A=
2

B=
2

c afl + 3,6.

Since the function on the left is smooth, A, B, C are globally constant. Finally a
simple computation gives A 2 B2_ C2 (a6 fly)2 1.

LMMA 3.4. Let Oa, 2 be monotonic increasing solutions of 02 +(e2/2)
{0, t} qa. Then there are constants ca, c2 such that Oi Oi +c satisfy

02
tan

O1 (1 + a) tan--,

where a A -x/BE + C2- 1 and A., B, C are the parameters ofLemma 3.3.
Proof. Lemma 3..3 implies 0l={A +B sin (2.O2/e)+C cos (202/e)}-1(2.

This can be written 01 {A +x/B2 / C2 cos (2/e)(Q2 + C2)}-a(2 for appr?priate
C2. Integrating and using A 2 B2 C2 1 we find Q1 (t)
e (tan-l{(A-x/Be+ C2) tan ((02 +C2)/e)}/ n(t),r-C1), where n(t)is an integer
and C1 is a constant. This implies

01 -- C1 02 "1- C2
tan (A -4B + C) tan.

4. A formula for the adiabatic invariant. We now show that for a natural
choice of solutions Qa and Q2, the constant a of Lemma 3.4 is precisely the
adiabatic invariant. It is not hard to guess that the natural solutions of the
Schwarzian equation are solutions possessing simple behavior at -oo and +oo
respectively.

THEOREM 4.1. Let Q+/- be monotonic increasing solutions of 02+(e2/2)
{Q, t}= q2 related by tan Q_/e (1 + a) tan Q+/e. Suppose
and O()= O. en the adiabatic invariant of the solution 021/2 sin Q_/e of
E2 +U2 0 is precisely a.

Proof. In the following proof (but nowhere else)we use the order symbol o(1)
to indicate functions which tend to zero as t +m.e slowly varying function
associated with u O5a/z sin O_/e has the form

r2= 051 sin2 O-+-i 01/2 COS---- O-- sin
E E

Our hypotheses imply r2(-) 1. We now use the transition relation tan Q_/e
(l+a) tan Q+/e to express rz in terms of Q+, that is, in a form suitable for
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computing rE(+c). We insert

0_ (l+a)0+ +__ )2 O+} -1

cosz (1 + a sinE

and

eQ_ 02+ 211+a][1 (l+a)2]sin
Q+

COS

Q+ ) O+}-2cos2+(l+a sin2 +o(1)

into the previous formula. It then follows by a routine but tedious computation
that rE(t)= 1 + a + o(1). Thus a is the adiabatic invariant.

5. ltolomorphie data. In Theorem 4.1 we have trapped the adiabatic
invariant in the "transition" relation tan O_/e (1 + a) tan O//e. The balance of
our hard work will be to establish the existence and character of the special
solutions Q+ of QE+ (eE/2){O, t} qE. In the following lemma we accomplish this
in the case that 0 is holomorphic on a strip about the real axis and has the special
form q 1 + e 2g.

LEMMA 5.1. Let g be holomorphic on the strip Jim t[ < ro and real on the real
axis. Suppose maxk=0,1,2 -oo [g(k)(p + ir)[ dp <Mfor < Then there exists a
positive eo(M) such that for 0 < e < eo(M) the equation OE + @2/2){0, t}
(1 + e2g)2 has holomorphic solutions Q+ with the following properties:

(i) Q+ are real and monotonic on the real axis,
(ii) Q+/- are univalent,
(iii) 1/2<10+l < 2,
(iv) limp_,+/-oo O+(p + ir)= 1, limp_,+ O+(p + ir)= 0 uniformly in r.

Moreover if g and , satisfy

max Ig((o + ir)-((o + io’)l do < <-_M,
k =0,1,2

then the corresponding solutions O+ and )+/- also satisC’y
(v)
Proof. We use the associated Riccati equation

1 (1-p2).e/ + 2i(1 + eZg)p
2 1 + ezg

We find a solution p_ of this equation by solving the integral equation

p exp t) (1 -p 2iegp ds,
e l+e g

where the path of integration is the left horizontal ray terminating at t. This
equation_ has the formp F(p). Since_ Mimplies ]gl <M’, we find that for
e < 1/x/M the function 1/2(e2)/(1 + e g) is integrable. We then easily find that F
maps the Banach space of bounded holomorphic functions on the strip (endowed
with the supremum norm) into itself and is a contraction on the unit ball if e is
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small. It now follows from a routine application of the principle of contracting
mappings that the integral equation has a solution p_ which is O(e 2) and therefore
satisfies p-I < & for small e. Similarly we find that solutions p_ and/_ for data g
and satisfy Ip--t-I- o(,e=) so that we can suppose ]p -/1 -< bt/6 for small e.

The integral equation itself implies that p_(-oo+itr)=0. The Riccati equation
then implies #_(-az+ir)=0 (since our hypothesis implies
(-oo+io-) 0).

To obtain Q_ we use Lemma 3.2. Let # be the involution on holomorphic
functions given by f#(t)=f(?). Then by Lemma 3.2,

Q_= (l+eZg) 1
l+p l+p# ds

is a solution of the Schwarzian equation on the real axis and hence, by analytic
continuation, on the strip. Univalence for small e follows from the inequality

]O_(t2)-O_(q)]>= 1 1-lp[ 1-]p[ ds

ds-e Igl 1+ +

---It2-tl 1-21- M 1 +2 e >lt=-tll.
Plainly P-I < also implies -<_lO_l-<-- Finally the limiting attributes of p_ imply
that Q_ satisfies condition (iv). The inequality (v) follows from

(0- () e(g-) (1 l+p l+p#

p / p# 5# )+(l+e2g)
l+p 1+/ l+p# 1+/5

which combined with Ig-ffl <=/x, Ip-Pl <=tx/6 and Ipl, I1-< yields

+(1 +e m).
It follows that for e small (independently of ) we have [O-1 <.
e solution Q+ is obtained similarly.

6. olamohie aprofimafions to gentle data. Suppose ff is a gentle
function satisfying

(6.1) Ilom)ll, exp h(m), m 0, 1, .
We construct a sequence of holomorphic approximations Ou to in the following
way. Let O(s) be a smooth even real function satisfying 10(t) 11, 0 a for [tl a,
0 0 for Ill e. Let be the Fourier transform of and let

(. = O(e-s e"(s as.
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The following lemma shows the way in which the convergence of v to is
governed by the function h of (6.1). It also contains the first of three successive
applications of convex conjugation.

LEMMA 6.1. Let satisfy (6.1). Then the given by (6.2) are entirefunctions
satisfying the following conditions on the sequence of strips IIm t <= e- about the
real axis.

Let t(p p + itr(p be a curve in the strip IIm t <-_ e- parameterized by
p Re (t) satisfying Idt/dpl <-_ C, where C is independent ofN. Then there exists a
constant L independent ofNsuch that

max I(t(p))l Idt(p)l L,
0k-----4

(ii) max (t(p))-
0-<-k 4

N*I (t())l Idt(p)l<=L exp h*(N 1)+5N,

where h* is the convex conjugate function of h.
Proof. We first estimate 0. We find

(o)(t(p)) ei+i)S(is)kO(s) e-/s’(") dr ds

2--- ’( +p) e-)(is)kO(s) e- ds dr
oO

1 _/s {e-)(is)kO(s)} ds dr.-2zr P(’+P)
1 + r2 e 1-s2o

Since for N 0 we assume Io’(p)l =< 1, we can estimate

max Iok)(t(p))i<--L1 I(’+p)[
1 + r2

0-----k4

which implies

max
0--<k _--<4 1 +

However this argument is not suitable for large N since the length of the s interval
enters into our estimate. Instead we estimate @N/I-Pv by an argument which
uses up derivatives of .

We have

if(k) (t)-- )(t) 1 Ie (is)k[O(e-N-ls)-- O(e-Ss)] eN+I " <----lsl<=eN/2

e-io(z) dr ds.

/st
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Because s 0 is excluded from the range of the s-integration, we can integrate by
parts with respect to z obtaining

1 fe (is)k-m[o(e-N-1s)- O(e-Vs)] eistr+’ (t) P)(t) -- e-i’o()(z)dzds.

Applying the manipulations of the previous estimation we find

1 1
N+I(P + i)-- )(p + i) <)(P + Z)

1 + Z2

e-’l- e ds d.

is implies for m > k,

IOL(t(p))-O)(t(p))l L3m2 e

Hence

l+r

<=L3m2 e_ e_v(__a)+. O()(p+r) dr
1 +r2"

max II(Nk)_l_l Idt()l Z4 exp {h(m)-(N- 1)m + 5N}
0=<k -<4

--<L4 exp {-h*(N- 1)+ 5N}.

This establishes estimate (ii) of the lemma and also shows

max ’’(k),N+l --I//(Nk)l Idt(p)l<L4-- e -v exp {h (7)- 7(N-1) +5N+N}
0<---k --<4

--<L5 e -v.
Hence for IIm t(p) <-e -iv

max I)[ Idt(o)l--< sup {Iq)- )11-4-... q-IOo)l}ldt(o)

=<L2+L5 e
N=I

--N

7. Proof of the main theorem. We now proceed to attack the equation
0 + (ea/2){Q, t} qe according to the following plan. By hypothesis b is a gentle
function. Let /n be the sequence of approximations to q provided by Lemma 6.1.
Let

(7.1) (pv(t) (p(-oo)+ u(r) dr
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and let

(7.2) N(t) qgN(Z) dz.

Then we wish to obtain solutions of the problem
2

E 2(7.3) 02 +--{Q, t} q.

However our existence result, Lemma 5.1, applies only to the small perturbation
form of the equation in which q has the form 1 + e2g. We therefore normalize
(7.3) by the change of variable

(7.4) SN N(t), Q(t) R (SN).

Formally (using Lemma 3.1) this leads to

2 2
E 8

(7.5) R’ +--{R, SN} 1 +-{t, SN},

which has the required form. However before we can use this transformation we
must establish its legitimacy by showing the univalence" of v on a suitable
domain.

The reader may well question at this point why we do not introduce such a
normalization into the original problem. Our reason is simple and lies at the heart
of our method. Such a procedure would leave us the task of carrying derivative
estimates through our transformations. The problem of obtaining derivative
estimates forf o g in terms of estimates forf and g already illustrates this obstacle.
We overcome these difficulties by introducing Jacobowitz’s method of estimation
at the earliest possible stage.

The following elementary lemma will ensure that the functions v(t) are
univalent if we shrink the strip IIm t[ <_- e-" by a factor independent of N.

LEMMA 7.1. Suppose the function y is holomorphic.for IIm tl --< r0, positive on
the real axis and satisfies 0</_-<ITI_-<L on the strip. Then there exist a(/, L) and
Ix(l, L) such that]or IIm t[-<r0 e -*, Re 3’ --> 1/2, the function 5to (s) ds is univalent
for Im tl--<ro e -*, and the image of this strip contains a strip [Im 5’0 v(s)ds[ <-

tro e

Proof. We prove that on a narrower strip IIm tl<--roe-, I’, ,(s)dsl >-

(l/2)[t2- tll. This inequality implies univalence and shows that the image contains
a strip IIm 0 (s) dsl <-(//2)o e- ,*o e -". To establish the inequality we esti-
mate 3 by the Cauchyintegral formula on a strip of width tr0/2 by 2L/cro. We

fP2+io’2next express a,,+, T(r)dr using integrals parameterized with real variables as
follows:

/(r) ds 3,(s) ds +i ’(P2) ds
p+io’x

+ b,(s + i)- ,(sl] as + [,(o + isl- ,(o] as.
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Since 3’ is real on the real axis and lYl => l, we can estimate

T(r) dr >-_ If(p2 01)2 + (trl 0"2)2] 1/2
"pl+io’

-ZLI,I Ip=-oI-ZL max (Itrll, I=1)1=-1.
O"0 O"0

If we require IIm tl<=(l/(8L))o, this implies I y(r)drl>-(l/2)lt-tl. On this
strip

ReT(p+ir)__>T(p)+ i/(p+is)l ds>=
2L lro>_31.
o’0 8L-4

COROLLARY 7.2. There are constants 1, L, A, IX such that 0 < < Re qN----<
I ,,I <--L and the bN are univalent on a strip IIm tl <= e-’-. The image of this strip
contains a strip IIm ]--< e--’.

Proof. By hypothesis 0 < l’_-< _-< (-oo)/L I1 dt= L’. Moreover
limN_,oo I-,,I _-< limN_,oo _oo ]q5- ’NI dt= O. Hence for large N, 0< 1’/2_-< I,,I--<
2L’. Since the conclusion of the previous lemma depends only on upper and lower
bounds for I 1, the corollary follows.

With this corollary we have justified the change of variables (7.4) transform-
ing (7.3) into (7.5). Our aim is now to apply Lemma 5.1 to (7.5) which has the form
R’ + (e2/2){R, s} (1 + e2glv), where

(7.6) gl(S, e)= e-2[(1 +(e2/2){t, })/2-1].
We therefore must establish that gN possesses the integrability conditions along
horizontal lines required by the hypotheses of Lemma 5.1.

LEMMA 7.3. There exist constants M1, Ix 1, N1, e such that ]’or 0 < e <= e 1,

N >- N1 and IIm sl --< e --’1, the functions g(s, e) defined by (7.6) satisfy

(i) sup Ig(o + ir)l do <-M,
k =0,1,2

(ii) sup Ig(o+ir)-g(o+ir)ldo<-M exp(-h*(N-1)+6N).
k =0,1,2

Pro@ The integrability of gN and its first two derivatives along the level
curves of Im s will follow from corresponding integrability conditions for 0N bN
and its first four derivatives along the level curves of Im N(t) in the t-plane. To
obtain the latter integrability condition from the conclusion of Lemma 6.1, we
must investigate these level curves. By Corollary 7.2 we can suppose that these
curves lie in a strip IIm tl--< e --". Also since ds is real along these curves,

d Re t

dt
Reds

-1

Hence by Corollary 7.2, Idt/d Re <-_L/l. The integrability of SN and its first four
derivatives then follows from Lemma 6.1. Specifically, since the derivatives of q5
are estimated by I1)111 _-<exp h(m + 1), we have the existence of a constant M
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such that

Ii dr[ <=M, O, 1,..., 4,k

(7.7) I [O)+l(t)-)(t)ldltl<-Mexp-(h(m+l))*(N-1)+5N
N=c

<=M exp {-h*(N-1) + 6N}.

We are now in position to estimate the integrals of g)(s) by parametizing
them in the t-plane. By Lemma 3.1(iv),

g(s(t)) e- 1---{r, t}o 1

Since for large Nwe have a lower bound on I0,1 and upper bounds on 0, , for e

suciently small g(s(t)) is holomorphic in t for [Im tl N e--. Now

(7.al g(sl as (t g(s(l(t .
For k =0, 1, 2 this expresses g(s)ds in terms of , 0 and its first three
derivatives. We have also provided that 0 is integrable, so that the lower
derivatives are also bounded. Combining (7.7) and (7.8) we obtain, by elementary
but tedious calculations, the required estimates.

We next appeal to Lemma 5.1 to obtain solutions of R’+(e/2){R, s}
(1 + eg) (and hence solutions O R of 0 + (ea/2){O, t}= ).

LEMMA 7.4. Nquaon (7.5) has solutionsR sasying the ollowing condi-
’ons [or 0 < e < e and N>Na"

(i) R are real and monotonic increasing on the real axis.
(ii) R is univalentor lIm s N e--.
(iii) < Iel < 2o Im sl e--".
(iv) limo R(p + i) 1, limo R}+i) 0 uniformly in .
(v) IR+,-RI<M exp (-h*(N- 1)+6N) or Im sloe---".
Pro@ is follows directly from the previous lemma and Lemma 5.1.
e existence of solutions of the Schwarzian equation together with deriva-

tive estimates follows almost immediately.
LEMMA 7.5. Let (t)=I0 (s)ds. ere exist soluons R o R’+(e/2)

{R, s} 1 + (e/2){-, s} satisfying R(m)= 1, R(m)=0 and

[R)l<-_exp{h(k +7)+k logk +ck +d}.

Proo[. By conclusion (v) of Lemma 7.4 we can estimate [R ’(’) -’(")
N+I,+/- "XN+/- on

the narrower strip Jim s[-<_ e -v-2-"2 by the Cauchy integral formula

m! I f(’)f(m)(s)
(S 0")m+l

ds,
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where we choose the path of integration to be a square with horizontal sides on

IIm s e-N-1-"2 with s at its center. Then on the narrower strip we estimate

Is -o- > e-N-2-"2 and

N+I--R <-Maexp-h*(N 1)+6N+m(N+2+i2)+m logm

which can be expressed

g’(m)N+1,+ g’)[ <Ms= e- exp {-h*(N- 1)+(m + 7)(N- 1)+m log m
+ (3 +/z2)m/x.}.

We now appeal to a basic property of convex conjugation [7]: if h is convex,
then h**=h. Since h*(N-1)- (m + 7)(N-1) >= -h**(m + 7), we find

t(m t(m < N[R/,-R+/- l= (M6/e) exp h (m + 7) + m log m + cm. It follows that the sequ-
ence R’,+/- converges uniformly to a function R’ satisfying

exp {h(m +7)+m log m +cm}.

Moreover the convergence of q to p and R’+/- to R +/- together with convergence
of all derivatives ensures that R+/- satisfy the differential equation and limiting
conditions.

From this point on we require derivative estimates for the combination
[-inverse(t) {(d/dt)O_ Overse}- Since O+/- R+/- we have O-,+

R_ x,+Jlinverse. Therefore we have the pleasant simplification that we can estimate
this function directly in terms of R+/-. This we accomplish by again following our

invcrsel.--basic method of assessing the approximations {(d/dt)R_ RN/ j .
LEMMA 7.6. For 0 < e < e3 and N> N3, the functions satisfy an estimate

Isc+(t) sc(t)[ < exp (-h*[N- 1] + 6N+ c3)

for [Im t[ <--_ e -N-1-3 and IRe t[ _-< 1.
Proof. This is a consequence of estimate (v) of Lemma 7.4 and the fact that we

can estimate RN+I R by the estimates for R+I Ron the bounded t-domain
under consideration.

LEMMA 7.7. Thefunction (t) {(d/dt)R_ R i+nverse(t)}-1 satisfies the estimate

max Isc(’l_-<exp {h(m +7)+ m log m +cm +d}.
]t[_--__l

Proof. The proof is analogous to that of Lemma 7.5.
We now have the resources to prove the main theorem. By Lemma 3.4 we can

suppose tan (R_/e) (1 + a) tan (R+/e). This implies

(t) {tt _.t} -1e tan- (1 + a) tan

1( 1 )1( 1 ) 2t
+ -1-a cos--.

2 l+a+l+a i/a e

Hence, computing sc(’(0) if rn is even or sc("(e (7r/4)) if rn is odd, we find using
Lemma 7.7 that

1 1
_-< exp {h (m + 7) + m log m + cm + d}.

2
l+a

l+a
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Since (m log m)/(h(m + 7)) < 6/(1 6) for large m, this implies

1
l+a

l+a
1 1

<_-M exp i 6
h (m + 7)- m log-

E

_--<M exp h*(log e + 7 log.

=<Mexp {-h*(log e-)} exp {1 h* ((1-6)log.el--)
+ 7 log -But sup {(-6/(1-6))h*[(1-}x]+ 7x}< oo since otherwise h**(7/6) h(7/)

oo. Hence

1
l+a-l+ a O{exp -h*(log e-)},

which implies

a(e) O{exp -h*(log e-l)}.
We have thus estimated a(e) for the special solution u 0-1/2 sin Q_/e.

Since translates o(t + to) of o(t) obey the same estimates, this suffices to estimate
a(e) for the general solution u CO-1/2 sin ((Q_/e)+ to).
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ASYMPTOTIC EXPANSIONS OF INTEGRAL TRANSFORMS
FUNCTIONS WITH LOGARITHMIC SINGULARITIES*

NORMAN BLEISTEINf

OF

Abstract. Asymptotic expansions of integral transforms of functions with logarithmic sin-
gularities are defined. The method is based on the Mellin transform technique developed by
Handelsman and Lew. Examples included are Laplace, Airy, Weber and Stieltjes transforms.

1. Introduction. We shall develop a technique for the asymptotic expan-
sions of integrals of the form

(1.1) I(A) h(At)f(t) dt, A - 00.

We are concerned here with functions f(t) which have logarithmic singularities at
t=0/.

A quite general class of such functions I(A) has been treated in the literature
in a series of papers by Handelsman and Lew (1969), (1971). This work is also
discussed in detail in Bleistein and Handelsman (1975). In that work, f(t) is
assumed to have an asymptotic expansion of the form

N(m)
(1.2) f(t)--. E , C,,ntm(Iog t)n, t--0+.

m=0 n=0

Here, Re c,, ’ +o and N(m) is finite for each m.
We note that the powers of log t are nonnegative integers here, and there are

finitely many of them associated with each power of t.
We shall extend these results in two ways. First, we shall consider rational

functions of log t, for which a prototype is the function

(1.3) f(t)=a_log-------., 0 < larg al< r.

Bouwkamp (1971) has treated a special case of this type in which h is the
exponential function (I(A) is then the Laplace transform) and

(1.4) f(t)
a 2 + (log/)2,

which is a sum of functions of the type (1.3).
We remark that the latter case is not subsumed under (1.2) because the series

expansion for (1.4) has an infinite set of powers of log t, including some negative
powers, associated with one single power of t.

Secondly, we shall consider functions f(t) which have asymptotic expansions
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Denver Research Institute, University of Denver, Denver, Colorado 80210. This research was

supported in part by the Office of Naval Research under Contracts N00014-67-A-0394-0005 and

N00014-76-C-0039.

655



656 NORMAN BLEISTEIN

near the origin of the form

N(m)
(1.5) f(t)--- Y Y C,,nt"(1og t)t", t-->0+.

m=O n=O

Here am and N(m) are as in (1.2), but the/3,,,’s may be any complex numbers.
Recently, Olmstead and Handelsman (1976) have obtained a leading term of

the form O((log t)-1) as the solution of a nonlinear Volterra integral equation.
From the formal nature of their result, it is not clear whether or not their
expansion is one of the two types cited here. Nonetheless, it was a discussion with
Olmstead which, in part, motivated this paper.

To derive the asymptotic expansion of (1.1), the asymptotic technique
employed by Handelsman and Lew (1969), (1971) will be used. In this method,
the Mellin transforms of the functions f and h play a crucial role. For proofs of the
results about Mellin transforms stated here, we refer the reader to Titchmarsh
(1948) and the aforementioned papers by Handelsman and Lew.

The Mellin transform of a function f(t) evaluated at a point z is defined by the
integral

(1.6) M[f; z] f(t)t-1 dr, z x + iy.

When the transform exists, it does so and is analytic in an open vertical strip
(perhaps semi-infinite or infinite horizontally) in the complex z-plane.

The deleted argument of f on the left side in (1.6) is understood to be itself.
Other arguments will be shown explicitly. When employing Mellin transforms to
analyze (1.1) the result

(1.7) M[h(At); z]= A-M[h z]

is needed, as well as the Mellin-Parseval theorem. In terms of the integral (1.1),
we may state this theorem as

1 I c+icx3

G(z) dz,(1.8) I(1)-i,,c_ioo
(1.9) G(z) M[h; z]M[f; 1 z].

Here, the Bromwich contour, c-ioo to c + c, is in the common strip of
analyticity (whose existence we assume) of the two Mellin transforms appearing in
the integrand. Indeed, the existence of the two Mellin transforms and of I(1)
assure the existence of such a number c.

When we combine (1.7), (1.8) and (1.9), we find

(1.10)
1 I c+icx3

A-ZG(z) dz.I(h

The integral is observed to be O(h -) and even o(h -c) if G(z) is absolutely
integrable. The latter estimate follows from writing h as h exp {-iy log h }
and invoking the Riemann-Lebesgue lemma for log h -> c.

To obtain the asymptotic expansion of I(), we attempt to replace the
Bromwich contour by another, further to the right, say with c replaced by c + k.
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This new integral would be O(, -c-k). Thus the asymptotic expansion to this order
must arise from the deformations of the Bromwich contour imposed by avoidance
of the singularities of the analytic continuation of the function G(z).

In specific examples, this method has been used by others prior to Handels-
man and Lew. The major contribution of these two authors was to show that for an
extremely broad class of functions, f and h, the analytic continuation of G(z) was,
at worst, a meromorphic function. Consequently, the asymptotic expansion of
I(A) to any order arises as a series of residues at the poles of G(z). For the
functions to be considered here, the analytic continuation is no longer meromor-
phic. Consequently, the asymptotic expansion of I(A) will be considerably more
complicated.

Erd61yi (1956) extended the method of stationary phase to the case in which
the amplitude contained the first power of log t. (A minor error in the result was
corrected by McKenna (1965).) In another paper, Erd61yi (1961) derived asymp-
totic expansions of Laplace transforms of functions of the type (1.5). Both papers
rely on direct analysis of the Laplace transform of the function (log t)tt-l. Wong
(1970) presents an alternative proof of a major theorem in the Erd61yi paper.

D. S. Jones (1969) gives two examples (Fourier and Hankel transforms) with
first power of log in the amplitude function. His book on generalized functions
(1966) contains some examples of Fourier transforms of functions of this type.

Wong and Wyman (1972) consider Laplace transforms of functions of the
type (1.5). They concern themselves with a technical problem to which we only
allude, below Theorem 5.

Riekstins (1974) considers Laplace transforms of functions of log t alone (a
special case of (1.5)). He also considers more general transforms of these functions
for small argument, but with the domain of integration being (1, ). Finally, he
considers kernels which are functions of log t alone. Thus there is some overlap
between his results and ours, although our methods are quite different.

Wong (1975) considers Laplace transforms near the origin of functions
whose asymptotic expansions near involve an infinite set of negative integer
powers of log t, but only one algebraic power of t. For small values of the transform
variable, the Laplace transform may be viewed as an algebraic kernel. Thus
Wong’s results are closely related to the results on algebraically dominated
kernels in 4, below.

2. Rational functions and exponentially decaying kernels. We consider first
the integral (1.1) with fgiven by (1.3). We shall assume that h is an "exponentially
decaying kernel", i.e.,

(2.1) h(t)-- O(t-r(log t)N exp (-st)), t-c.

Here, s and u are positive constants. The algebraic and logarithmic factors play no
crucial role in the discussion below, but are inserted here only to emphasize the
general nature of the kernels being considered. Furthermore,

(2.2) h(t)=O(tr), t0+, Re(a+y)>-l,

and h(t) is locally integrable on (0, ).
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Let us set

(2.3) I(A ]1(/ )-+- ]2( ),

(2.4)
/.(A) h(At)f.(t) dt, j= 1,2,

with the functions f defined by

ff(t), 0<t<l,
fl(/)

tO, l_-<t<m,
(2.5)

f2(t) {i 0<t<l,

t), l_-<t<m.

As a consequence of (2.1),

(2.6) I2(a) O(exp (-a’(1- e))),

any e > 0. Thus we proceed by focusing our attention on the integral Ii(a). By
applying the Mellin-Parseval theorem (1.8), (1.9) to Ii(a), (2.4), we find

1
A-ZM[h; z]Mill; 1 z ] dz, -Re 3’ < c < Re ct + 1.(2.7) Ii(a) "i.,c_ioo

Here c is chosen in the strip determined by the overlapping haft-plane o
analyticity of the Mellin transforms and

(2.8) Mill; 1-z]=e’{+l-)El(a(a+l-z)), x<Rea+l,

with El(Z) the exponential integral (Erd61yi et al. (1953, p. 143 it.)),

e-
do’, larg zl < 7r.(2.9) eZEl(z)

z +--
The analytic continuation of M[/1; l-z] to the right is explicit in (2.9). Its

properties follow from well-known properties of the exponential integral. We list
them below.

(i) M[/1; 1- z] has a logarithmic branch point at z 1 + a.. (We take the
branch cut from a + 1 to extend horizontally to + oo.) Indeed,

(2.10) Mill; 1-z]=-ea(’’+l-z) log (c + 1-z)+F(z),

with F(z) analytic in the right half-plane.
(ii) In the right half-plane, x > Re a + 1,

(2.11) Mill; l-z]= O(Izl-1), Izl  .
The function M[h; z] is known to be analytic in the right half-plane x >

-Re 3’ and also

(2.12) IM[h;z]]-O aslY]+oo.
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These estimates suffice to justify the replacement of II(A) by a contour
integral over the path P1 + P2 +P3 in Fig. 1 and

(2.13) x Re a + 1 + k on P2, P3, any k > 0.

Consequently,

1 f +a(a+l--z)(2.14) Ii(h)
2"rri .p

e-"Z log (a + 1 z)M[h; z] dz + O(h -l-k).

Here, the error estimate arises from the integrals over P2 and P3, and we have set

(2.15) /z log X.

The integral over P1 can be replaced by an integral from a / 1 to a + 1 / k.
With a + 1 as the origin of coordinates, the result is

(2.16) II(A) =,-- e-("/M[h;o+l+(]d(+O(---).

The asymptotic expansion of this integral for large x may be obtained by Watson’s
lemma. This yields the following result for I(A):

(2.17) I(A) "-A-’-I Z c,,,(logA)-’-a+O(A-’--k)+O(exp(-A"(1-e)))
m=O

Here the coefficients are defined by

(2.18) Cme-acM[h ot + l +;]= y’, -..m=0

el

P3

FIG. 1
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and the series in (2.17) is an asymptotic series. Alternatively, we may view/x + a as
the large parameter in (2.16) and write

(2.19)
I(Z)- Z --1 Y’, ,, (a + log h)-m-1 -’i- 0(i -a-l-k)

m=O

+ O(exp (- A" (1 e))),
with ?,,’s defined by

(2.20) M[h; a + 1 +sr] Z
,--o m!

The latter set of coefficients may be easier to calculate than the former.
We have now proved the following.
THEOREM 1. Let

h(At)t
dt,(2.21) I(A

a log

with h(t) being locally integrable and satisfying (2.1) and (2.2). Then the asymp-
totic expansion of I(A) with respect to the sequence {A--l(log A)-"-I} is given by
(2.17), (2.18); the asymptotic expansion with respect to the sequence {A--l(a +
log A)-m-l} is given by (2.19), (2.20).

As examples of this result, we present the following. The relevant Mellin
transforms appear in Erd61yi et al. (1953) or can be derived from results
appearing there.

Example 1. The Laplace transform. Here

(2.22) h(t)=exp(-t), M[h;z]=F(z), x>0=-y.

Thus the asymptotic expansion of I(A) is given by (2.17) with

(2.23) e-aCF(a + 1 + ()= Y .(m=0

or by (2.19) with

(2.24)
m=o m!

Returning to Bouwkamp’s example now, we set

t’-1 t-l[ 1 1 ](2.25) a2+(log t)2- -/l.ia-log--------/a-log t

Thus the asymptotic expansion is a sum of integrals of the type considered here,
with a replaced by + ia and a replaced by o-- 1. The result is

(2.26)
t-1 e -,t

a2+(log t)2
dt’A-

m=0
c"(lgA)-"-i
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Here, by combining the two generating functions, we find that the c,,,’s are defined
by

(2.27)
sin asrF(r + .)= ."

and this agrees with Bouwkamp’s result. Alternatively,

t e-t
(2.28) a2+(logt)2dt-A-a- =o Im (ai +lg )--1

with

(2.29) F(r + ’)= Z ?’st"

We remark that Bouwkamp’s result is valid for r =>0 (a->- 1) while ours
requires strict inequality. This follows from the fact that x-l(log x)-2 has an
integrable singularity at x 0 while x-l(1og X)-1 does not. Thus the flaw arises
because we choose to derive the result by combining two fractions (2.25) to obtain
one. We may remedy this in the following way. We observe in (2.27) that the
expansion on the right remains valid even when r 0 because

sin a(v(()_ rr sin a" 1
(2.30)

a a sin rrsr F(1- ()

has a removable singularity at (= 0. Thus we extend our results to r 0 by
analytic continuation.

Alternatively, we could repeat the entire derivation for such functions.
However, the extension here also depends on the nature of the Mellin transform
of the kernel (2.22) and the fact that this function has a simple pole at the left
boundary of its domain of analyticity in sr. Thus the extension to r 0 follows from
the happy coincidence of a zero of one Mellin transform and the pole of the other.
This would not seem to be sufficiently likely, in general, to justify an extension of
our theory.

Example 2. K-transform. Here, we set

(2.31) h(t)= K,(t),

with t real. For this function,

Thus

(2.33) tK()tt) dtA-- Y. dm(lgA)-m-a
a log t =o

Re a + 1 > I/z 1,

(2.34)
2 2 ,,=o



662 NORMAN BLEISTEIN

For the next two integrals, we only list the results.
Example 3. "Airy transform".

Ai(At)
dt 1 -z-1 , e,, (a + log A)-’-a Re A > 1,(2.35)

a log t =o

(2.36) (2)-132z/3-(7/6’F( Z) F](Z + 1 m=0(Zem 1)m.

Examp& 4. "Weber ansform".

(2.37) tD(At)
dt A --1 f (a + log A Re a > 1,

a log t =o

)F
z+l 1- z+l-._l f(z-a-!).
2 2 2 =om

Here F(a, b; c;x) is the hypergeometric function.
We can formally calculate the asymptotic expansion of the integral

th (At)
(2.39) I"(A)

(a-log t)"+1
dt, n 1, 2,...,

by observing that, for I given by (1.1) and f given by (1.3),

For this calculation, the form (2.19) is more useful, since the dependence of the
result on a is explicit. To ustify this result, we define

(2.41) f,+a(t)
(a-log t)"+1"

Again, using Erd61yi et al. (1953), we find

(2.42) M[f,+a; l-z]= -(z-a 1)" ea{+l- log (a + 1-z)+F(z),

with F(z) analytic in the right half-plane x > Re a + 1. Thus the analysis through
(2.15) proceeds as above, except that now

(2.43) I(I) (- 1)I-- e-("+M[h; + 1 +] d+ O(I---),

for which the asymptotic expansion via Watson’s lemma leads to the result
formally conjectured above. Thus we have proved

LEMMA 1. LetI(1) be given by (2.39). en, as , under the conditions o
eorem 1,

(2.44) I(I)I-- m(-1)(a+logl)---.
Here the ’s are defined in (2.20) and

(2.45) m (m + n)/m
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Let us suppose now that f(t) is a rational function of log t. Then a partial
fraction expansion leads to a sum of integrals with integrands of the type (2.41).
To leading order, then, we obtain a sum of expansions of the type (2.44). We
retain in this sum only those series for which the real parts of the a’s agree.

3. Complex A. We shall consider here the extension of the results of 2 to
complex A. First, we note from (2.6) that I2(,) is asymptotically zero with respect
to either of the asymptotic sequences of Theorem 1, only so long as larg ,1 < r/2u.
However, that result may be further restricted by the sector of validity of the
asymptotic expansion of Ia(A). Thus we consider now the integral (2.7).

If

(3.1) A IA exp (i4),

then

(3.2) I-Zl IA] e*y.

It therefore follows that the integral (2.7) will continue to make sense for the
complex A, (3.3), only if the integrand is o(e-6r), y c. Since M[fl; 1 z] decays
only algebraically, the burden for this behavior must be placed on M[h;z]. We
state the following result proved in Bleistein and Handelsman (1975, 4.7).

THEOREM 2. Suppose that in the open sector of the complex t-plane defined by
Itl > 0, larg tl < 0o, h(t) is analytic and satisfies (2.1) and (2.2). Then

(3.3) M[h;z]=O(exp[-(O-e)lyl]), lyl-

for x > -Re 3’ and any e > O. Here

(3.4) 0 min (0o, zr/2u).

As a consequence of this theorem, we obtain the following.
TI-mORM 3. If h(t) satisfies the conditions of Theorem 2, then the results

(2.17), (2.18) or (2.19), (2.20) are valid for largl< 0, with 0 defined by (3.4).
Proof. In the prescribed sector the integral I2(A), which is defined by (2.4) and

estimated in (2.6), is asymptotically zero with respect to the asymptotic sequences
appearing in (2.17) or (2.19). Thus we must consider II(A). For any b, choose
e 10-41/2. Then on any vertical contour, the integrand is O(e -Iyl) as lY[ -.Thus this is true for the integrals over the contours P2 and P3 in Fig. 1, and (2.16) is
true for this complex A. The asymptotic expansion of the integral in (3.6) is
obtained by Watson’s lemma and is valid for ]arg tz] < 7r/2. But this introduces no
new restriction, since arg/x 0 as [A c in the given sector, as does arg (tz + a).
Watson’s lemma applied to (2.16) yields (2.17) or (2.19), depending on the choice
of asymptotic sequence, but now for larg A I< 0. This completes the proof.

COROLLARY. For the kernels considered in the previous section, we obtain the
following sectors of validity:

e-; 0 r/2,

(3.5)
K,(t); 0 7r/2,

Ai(t); 0 7r/3,

D(t); 0 7r/4.
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4. Algebraically dominated kernels. We consider (1.1) now with f given by
(1.3), and we suppose now that, in addition to (2.2),

(m)
(4.1) h(t) Y dm,t- (log t), t- oo.

rn-0 m=0

Here Re r,, ]’ oo, and (m) is finite for each m. For convergence, it is necessary
that

(4.2) Re a + 1 < Re to.

This condition and (2.2) assure the convergence of I(A) and further that M[h; z]
exists and is analytic in the nonvacuous strip

-Re ),x Re to.

We use the decomposition (2.3), (2.4), (2.5). Then with the aid of the estimate
(4.1), we immediately conclude that

(4.3) I2(A) O(A -o/ (log A)), any e > 0.

Furthermore, the integral II(A) has the same asymptotic expansion (2.17),
except that now the error is O(I-). It is shown in Handelsman and Lew (1971)
that for h(t) having the expansi.on (4.1), M[h; z] has a pole of order/qr(0) + 1 at to,
and further, poles of order N(m)+ 1 at r,,. Thus one might proceed to find
correction terms as a residue series. However, the actual value of these residues
depend upon the nonunique analytic continuation of M[fl; 1 z]; in particular, it
depends on whether we extend the logarithmic branch cuts above or below each of
these poles.

At first glance, this nonuniqueness might seem to make our results suspect.
However, there is really no contradiction, since the consequences of this non-
uniqueness are asymptotically zero with respect to the asymptotic sequences of
Theorem 1.

The extension of this result to complex I depends again on the nature of h (t).
We state the following corollary to Theorem 2, also proved in Bleistein and
Handelsman (1975).

COROLLARY 1. If, in Theorem 2, we replace (2.1) by (4.1), then 0 0o.
As an example of this result, we take

(4.4) h(t) (1 + t)-a

for which I(A) is the Stieltjes transform of f(t) evaluated at A-1 and multiplied by
A-1. Thus we are effectively calculating the Stieltjes transform for small argument.
We use the result

(4.5) M[(1 + t)-l; z] rcsc 7rz

to find that for 1 < Re a < 0,

oo t dt
(4.6)

a-logt l+At
A --1 ’,(a +logA)-m-l,

m=O

]arg A I< "rr.
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Here, we determine the coefficients C,, from

(4.7)

and, in particular,

rrcosec rrz Y’. z-a- 1)%

(4.8) Co =-Tr cosec 7ra.

5. Functions with fractional powers of logarithms. We consider now inte-
grals of the form (1.1) under the assumption that [(t) has an asymptotic expansion
of the form (1.5). We define I, I2, fa and f2 as in (2.3)-(2.5). We take h to satisfy
(2.2) and (2.1) or (4.1). Then, as above, 12 is respectively exponentially small or
O(A-ro) with Re ro > Re ao + 1.

We begin first by assuming that (2.1) is true and thus proceed to study Ia(A)
only. The asymptotic analysis of Ia depends on the proof of the following.

THEORZM 4. Suppose that f(t) 0 for >= 1, locally integrable on (0, 1) and
has the asymptotic expansion (1.5) with N(m) finite for each m and Re am ’ m.Then

(i) M[f; 1 z] is analytic for x < Re a0 + 1;
(ii) the analytic continuation ofM[f 1-z to the right takes the form,

(5.1)
M[_f; l-z] Y’.

Re(am-ao)<k

Cmn (Olm + l z)l-1

(1-1)[
log (z a,, -1)} +Mk (z).

Here, in Y*, we exclude the terms with fl,,, a negative integer, while, in Y", we
include only terms with fl,,, a negative integer. The function Mk (z) is analytic for
x < Re o+ k, and the result is correct for any k.

The proof of this result is given in the Appendix. We see here that negative
integer powers,/3m,, lead to logarithmic branch points in the Mellin-transform-
plane, nonnegative integer powers, fl,.,,, lead to poles, and all other powers lead to
algebraic branch points in the transform-plane.

Equation (2.7) is again true for Ia(A) and

(5.2) 1 f
c+ioo

A-ZM[h z]Mk(z) dz O(i-(Rea+k-e)),
27ri c-i

any e > 0. Thus we need only consider the asymptotic expansion of each term of
the sums in (5.1). To this end, we first define

e irB f
c+ioo

a ( + 1 z)-t3-1M[h; z] dz.(5.3) J(ol, 1, i
,,c-ioo

We must separate the analysis here into distinct cases.
Case 1. /3 l, a nonnegative integer. In this case, J(a, l, A) is given as a

residue of the integrand at a + 1. This is the case treated by Handelsman and Lew
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in the papers cited above:

l(d(5.4) J(a, 1, A) .\zz] {A-ZM[h; z]}

In particular,

(5.5) J(a, 0, A)= A-’-IM[h; a + 1],

z=a+l

while for larger values of l, the differentiation of X-z with respect to z produces
powers of log A, as well.

Case 2. fl is not an integer. Here, we set

e irt IpJ(t, , e-’z (a + 1 z)--IM[h z] dz + O(-Re-k),(5.6)

wth/x log , as above, P as defined in 2, and k any positive number.
The asymptotic expansion of this integral for large/z can be obtained by a

generalization of Watson’s lemma to "loop" integrals. This expansion is dis-
cussed in Bleistein and Handelsman (1975). The result is

(5.7) J(a,/3, , 5". C/ei(log A)a-J
j=o A+IF(1 +fl_j), fl not an integer.

Here, the coefficients C are defined by

(5.8) M[h; z]= E q(z-a 1), c MO)[h; a + 1]
j!

We must also deal with integrands arising from terms of the second sum in
(5.1). Thus we define

(5.9)
1 / )l-- 1)M[h, z] dz.3,-z(a+l-z log(z-a-K(a, I, A i -c-ioo

Again, we can deform the contour onto P. Furthermore, we explicitly use the
jump in the logarithm across the cut to reduce this integral to

(5.10) K(a, l, A) (- 1)I-- e-"Zz-M[h; z + a + 1] dz + O(I --l-k),

with log A as above.
The asymptotic expansion of this integral is obtained by Watson’s lemma; the

result is

(5.11) K(c,/, A)"A -a-1 o c(lj)(lgA)-l-"
The coefficients, C, are determined by

C] j+1-(5.12) zl-lM[h z
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We use the above defined functions J, (5.3) and K, (5.9), and Theorem 4 to set

(5.13)
I(a) Z Z* c.,,,r(.,,, + 1)J(a,., .,,,, a)

Re(,,,-co)<k n=O

y. c.,,,
.K(c,,,, 1, a)} + O(l,-a-l-k+e),

,..=_ (1- 1)!

and e >0. The results of the discussion above are now summarized in the
following.

THEOREM 5. Let I(, ), (1.1) be an absolutely convergent (perhaps improper)
integral with fand h locally integrable on (0, oo) and h satisfying (2.1), (2.2). Then,
with 11 and 12 defined by (2.3)-(2.5), 12 satisfies (2.6), and Ii(a has the asymptotic
expansion (5.13). The]unctions appearing in the sums in (5.13) have the asymptotic
expansions (5.4) or (5.7) and (5.11). The notation Y.* and Y" is defined below (5.1).

We remark that, unless/o, are all nonnegative integers, it makes no sense to
proceed beyond m 0. This is so, because the alternative leads to a nonterminat-
ing expansion in powers of log , arising from a.

If all/3on are nonnegative integers, we proceed to contributions for m 1. If
all 81n are nonnegative integers, we calculate that finite series and proceed to
consider contributions from m 2. In this manner, we arrive at the following
special case, which is really a result of Handelsman and Lew (1969)"

(5.14) Ii(a) E E Cm, {h-ZM[h; z]}
Re(am--ao)<k n=0 =Ctm+l

mn n, all n.
We turn now to the consideration of algebraic kernels, so that (2.1) is to be

replaced by (4.1). We then would not carry the sum in (5.13) past a -r because the
sum would not take account of poles of M[h; z] at ro, rl, etc. Of course, we can still
use (5.13) up to O(a-r); i.e., if h(t) O(t-r), --> 00, then I(a) has the asymptotic
expansion (5.13) with

(5.15) k Re (ro- a0-1).

Hence the series contains contributions from all singularities of M[f; 1 z] to the
left of ro, and the error is O(a-r/), any e > 0.

To extend this expansion further, we must know the nature of the analytic
continuation of M[h; z] to the right. This result was derived by Handelsman and
Lew (1969) and will not be repeated here.

The extension of the results of this section to complex a are straightforward.
The constraint on complex a depends upon h(t) as in Theorem 2 but also on the
nature of f(t). Indeed, further information about f(t) can only improve the results
of Theorem 2 ( 3) and Corollary 1 ( 4). Here "improve" means extend the sector
of validity. The reader is referred to Bleistein and Handelsman (1975) for results
of this type.

We shall close this section with an example. We consider the integral

(5.16) I(a)-- Iln t1-1/2 e -at dt.
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Here f(t) is a single term of the form (1.5) with

i’n’/2(5.17) ao= 0, fl0o= -, c00= e

the last being chosen so that

(5.18) c00(ln t)-1/2- Iln tl-/2

is real and positive for 0< < 1. For this case, Mill; l-z] in (5.1) has no sum Y"
and only a single term in the sum Y.*. Indeed, Mk (z) in (5.1) is zero in this case and

(5.19)
Mill; 1 z] (l_z)/2"

Thus one must consider J in (5.3) with c,/3 as given in (5.17), h the exponential
function and

(5.20) M[h z] M[e-t z] F(z).

Now, for the asymptotic expansion of J, in this case, we obtain (5.7) with the
appropriate values substituted. Thus we find

(5.21)

C(log A)(1/2)-Jeirr/2J(O, -, A)
=o ar(-j)

We remark that

(5.22) Co r(1) 1,

z=l

C1= F’(1) -3, -0.57721 ....
Here y is the Euler-Mascheroni constant.

We use this result in (5.13) now to obtain the following one and two term
expansions of I(A):

(5.23)
I(a) Io[1 + O((ln A)-I)],
I(a) I111 + O((ln/)-1)],

Io=a-l(lna)-1/2,

Ii Io[1-y/(21n a)].
In Table 1 we compare I0 and I1 with a 10-point Laguerre integration of I()

for three values of A, 10, 50, 100. That is, we make at a new variable of integration
and then use the formula

e-f(x) dx Y 6oif(xi),
i=1

with the oi and xi values taken from Abramowitz and Stegun (1965, p. 26). We
tabulate log A, as well, because this is the "large" parameter in the asymptotic
expansion. Percentage errors are shown in the last two lines of the table. The
percentage error for the one-term expansion when A 10 is viewed by this author
as surprisingly good, in light of the small value of log A. The large error of the
two-term expansion,, here, indicates that one term is the optimum number for this
case. In contrast, when A 50 or 100, the correction term in 11 improves the result
and the optimum number of terms is at least two.
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TABLE

log A

1102
I0103
11 X 10
100(Io-I)/I
100(1-11)/1

2.3025

63.76
65.90
57.64
3.35
9.59

50

3.9120

9.733
10.111
9.365
3.88
3.78

100

4.6051

4.497
4.659
4.368
3.61
2.87

Appendix. We shall prove Theorem 4 ( 5) in this Appendix. Actually, (i) is
proved in Titchmarsh (1948). Thus we turn to (ii). We define

(A.1) S (t)= S(a)(t)+ S(2)(t)+ S(3)(t).
Here, each of these functions satisfies

(A.2)

and for 0 < < 1,

(A.3) S1)(/)

Sk)(t) =-- O, >= l,

N(m)

c’, (log
Re(am--ao)<k =0

Re/3mn >-

(A.4) Sk2)(t) E E’ c’. (log t)/3,’"ta," (1 tk)/,
Re(a,’-ao)<k Re/3m,

L
(A.5) S3)(t) E E" c’,,(log t)/3""ta,’(1--tk)L.

Re(am--ao)<k
/3,,.----1

Here L is chosen so large that L + Re/3.,, > 0 for all fl.,, appearing in the sumsS2)

and S3. In Y/, tim, is never a negative integer while in Y/’, tim, is always a negative
integer.

We remark that S1 contains all terms with powers of log t integrable at 1.
The remaining sums contain powers of log t nonintegrable at 1, but separated
according to integer versus noninteger powers. The choice of L makes S(k2) and S(k3)
integrable near t 1, while the factor 1- tk assures that f(t) and Sk(t) have the
same asymptotic expansion to order

Reao+k-e, anye>0.

We set

(A.6) f (t) f(t) Sk (t) o(ta+k-), any e > 0.

Thus the Mellin transform of fk,

(A.7) Milk; 1 Z Fk Z
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is analytic for

(A.8) x Re z < Re ao+ k + 1,

again, following Titchmarsh (1948).
We now introduce

(A.9) M)(z) M[S; 1- z], ] 1, 2, 3.

For ] 1, we consider a single term of the sum on the right, namely,

(A. 10) M)(z) (log t)o’"t-Zdt, Re ,,, > 1, x < Re a,, + 1.

With the change of variable of integration,

(A.11) logt= -- -e’,
the integral is readily recognized as

e irt3""r(imn -t- 1)
(A. 12) M(z)

(a,. + l-z)t"+"

Here, for a,,, + 1 z > 0, we take its argument 0 and require that the branch cut
go to infinity to the right of a,, + 1. In our specific calculation, we take the cut

-(1)
Zhorizontal. The analyticcontinuation of M,,,( is explicit in (A. 12). Since M(a)(z)

is a finite sum of such terms, its analytic continuation is explicit and contributes to
(5.1) that part of Y.* for which Re/3,, > 1. We turn now to ] 2 in (A.9) and
again consider a single term of the sum of transforms arising from (A.4):

-(2)(A.13) vl,,,,z) (log t)m"Um--z(1 tk)L dt, x <Re a,, + 1

We first use the transformation (A.11) to obtain

(A.14) M(,,2),,(z) e i’t’’’ "rt’’" e-’(+’-z)(1-e-k’)L dr.

We can replace the path of integration (0+) which is the contour -P1 of
Fig. 1 extended to +oo. The integrand is the same as (A.14) except that the
multiplicative factor exp[irfl,,,] is replaced by (2i sin rfl,n)-1. Now that the path
of integration does not touch the origin, we can apply the binomial theorem to the
last factor ot obtain

1 o 1)J .t,.. e-’("+ +jk-z) dr.(A. 15) M(z)
2i sin 7rfl,,,, = +

All integrals with ] 1 are analytic for x < Re a0 + k + 1. e integral with ] 0
can be calculated from a contour integral definition of F(z) (see Erd61yi et al.
(1953, p. 14, (4)). e. result is

(A. 16) .(2), ei"F(mn + 1)
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with F(m2), analytic for x < Re a0+ k + 1. The comment below (A.12) applies here,
as well.

Now, from (A.4), (A.9), (A. 13), (A. 14), (A. 16), we find that M((z) is a triple
sum over m, n and j which yields the remainder of * in (5.1) (from terms with

0) and a further contribution to Mk (z) (from terms with _-> 1 or equivalently,
from the sums over the functions .-(2),l"mnlZ)).

We turn now to j 3 in (A.9). To examine a single term in the sum
representing M<3), we again must consider (A.13), but with/3m,, --1, a negative
integer. Again we use (A.14), but now set

(A.17) Mmn(Z)=(2) (-l)2zri Io+ -m, log "re-(’’+l-z)(1 -e-)L d’r.

Now, application of the binomial theorem yields

Mmn(Z) --/Z (- 1)+j 7"-I log " e
-("+l+j-z) d’r.

Again, for j => 1, the integral is analytic for x < Re a0 + k + 1. Thus

(A. 19) M(2m),,(z)-- (- 1)lfo "1"-I log T e -’(’" +l--z)87"-[-F(3)(z)
27ri

with 3)(z) analytic for x < Re ao + k + 1. "Stretching" by am + 1 z yields

1)/- f z-/[log z log (a,, + 1- z)] e drg(m2)n(Z) (Z Og

"0(A.20)

The integral with factor log r is analytic for all z since is a positive integer. Thus

f0 17(4) (Z(A.21) M(Zm)n(z)--(z-OZm 1)1-1 log(a + l-z) 7"-le-’d,r’+_mn, ),

/7(4) analytic for x < Re a0 + k + 1. The integral here is simply a residue. Also, we
introduce only another analytic function by reversing the sign of the argument of
the log. Thus

--(2)(A.22) Mm,,,Z)
(Z Oi.m --1)l-1

(/- 1)!
log (z am 1) + F),,(z).

We now sum these Mellin transforms to obtain M(3)(z) in (A.9), obtaining the
coefficients in the sums from (A.5). This sum yields Y" in (5.1) and an additional
contribution to M(z).

To recapitulate: M()(z) yielded a part of the sum* in (5.1); M(2)(z) yielded
the remainder of Y* and a contribution to M(z); M(3)(z) yielded all of Y" and a
contribution toM(z); M[f; 1 z] M(1)-M()-M(3) contributes only toM(z).

This completes the proof.
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CONNECTION FORMULAS FOR SECOND-ORDER DIFFERENTIAL
EQUATIONS HAVING AN ARBITRARY NUMBER OF TURNING

POINTS OF ARBITRARY MULTIPLICITIES*

F. W. J. OLVER?

Abstract. Consider the differential equation

dEw/dx {u 2/(x) + g(x)} w, x (a, b),

in which (a, b) is a finite or infinite open interval, u is a positive parameter, f(x) is real and twice
continuously differentiable, and g(x) is continuous. It is well known that in any subinterval of (a, b) not
containing a turning point, that is, a zero of f(x), uniform asymptotic solutions for large u can be
constructed in terms of the so-called Liouville-Green or WKBJ functions:

f-1/4(x) exp +u l fl/2(x) dx}.
If (a, b) contains turning points, then differing combinations of the Liouville-Green functions have to
be used in subintervals that are separated by a turning point in order to represent the same solution.

This paper solves the general problem of connecting the Liouville-Green approximations
throughout the interval (a, b) for any number of turning points of arbitrary multiplicities. Several
illustrative examples are given, including an arbitrary number of turning points of even multiplicity, an
arbitrary number of turning points of odd multiplicity, an eigenvalue problem involving four turning
points of multiplicities 1, 2, 3, and 4, and a problem with two simple turning points and one multiple
turning point that is solvable exactly in terms of Whittaker functions.

1. Introduction and summary. In this paper we study the differential equa-
tion

(1.01) d2w/dx2 {u Zf(x) + g(x)}w,

in which the independent variable x ranges over an open, possibly infinite, interval
(a, b), and u is a large positive parameter. Our primary assumptions are that
within (a, b) the function f(x) is real and twice continuously differentiable, and
g(x) is continuous. For simplicity of exposition we shall also suppose that f(x) and
g(x) are independent of u, but the analysis that we shall give is extendible in a
straightforward manner to a wide variety of cases in which f(x) and g(x) depend
on u.

Let [a, b] be any compact interval lying within (a, b) and not containing any
zeros of f(x). Then the theory of the Liouville-Green (LG) approximation, given
for example in [24, Chap. 6] shows that when u oo the functions

(1.02) f-a/4(x) exp {+u f fl/2(x) dx}
furnish asymptotic representations of a pair of linearly independent solutions of
(1.01) with relative errors that are uniformly O(u-) in [a, b]. Zeros of f(x) are
known as turning points or transition points of equation (1.01), and their exclusion

* Received by the editors December 19, 1975, and in revised form March 15, 1976.

" Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
20742, and National Bureau of Standards, Washington, D.C. 20234. This research was supported by
the U.S. Army Research Office, Durham under Contract DA ARO D 31 124 73 G204, and the
National Science Foundation under Grant GP 32841X2.

Compare [24, Chap. 13], and [27].
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from the intervals of validity of the LG approximation is essential. This is because
for each value of u the solutions of (1.01) are twice continuously differentiable
throughout (a, b) and therefore bounded in any interior compact interval,
whereas the LG functions (1.02) become infinite at a turning point.

Now suppose that [a2, b2] is another compact interval that lies within (a, b)
and is free from turning points. Suppose also that [a 1, bl] and [a2, b2] are disjoint.
For large u any chosen solution of (1.01) may be represented asymptotically in
[al, bl] as a certain linear combination of the LG functions (1.02). It is natural to
enquire whether this solution is represented by the same combination in [a2, b2].
If the interval/, say, that separates [a2, b2] from [a 1, bl] is also free from turning
points, then the answer is in the affirmative, because the theory of the LG
approximation can be applied to the single interval comprising the union of
[a, b], [a2, b2], and/. On the other hand, if I contains one or more turning points,
then different combinations of LG functions have to be employed in the intervals
[al, b] and [a2, b2], in general, in order to represent the same solution of (1.01).
As we shall see in later sections, the changes in these combinations depend on the
number of turning points in I and also on their multiplicities, that is, the orders of
the zeros of [(x). The general problem of finding the manner in which the
combinations of the LG functions change is called the connectionformula problem,
and is of considerable importance in quantum mechanics; see, for example, [1],
[], [7].

In the present paper we apply recent results of the present writer [27]
concerning single turning points of arbitrary multiplicity to solve the most general
connection formula problem for real variables. That is, we show how to calculate
the approximate changes in the combinations of the LG functions in [a 1, bl] and
[a, b2] when the intervening interval I contains any number of turning points,
each having arbitrary multiplicity.

The paper is arranged as follows. In 2 we state theorems that supply rules
for connecting the LG approximations across a single turning point of any
multiplicity. Four distinct cases arise, depending on the sign of f(x) and the parity
of the multiplicity of the turning point. An important feature of the rules is that
they are readily combinable with each other, thereby facilitating passage through
any number of turning points in succession. The rules are given explicitly only for
passage from left to right through each turning point; corresponding rules for
passage in the other direction are easily found by changing the sign of x in the
original differential equation. The theorems of 2 are proved in 3, and then
discussed briefly in 4.

In 5, which is easily the longest section of the paper, the rules are illustrated
by six representative examples. Examples 1 and 2 treat the two cases that involve
an arbitrary number of turning points of even multiplicity. In Example 1 the sign
of/(x) between consecutive pairs of turning points is positive, causing the
solutions of (1.01) to be monotonic; in Example 2 this sign is negative, causing the
solutions to be oscillatory. In a similar way, Examples 3 and 4 treat the cases
involving an arbitrary number of turning points of odd multiplicity, including the
solution of the eigenvalue problem that arises in one of these cases. Example 5
gives the solution of an eigenvalue problem involving four turning points whose
multiplicities are, in order, 2, 1, 4, and 3. This example serves to illustrate the use
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of all four rules in the same problem, and the results were checked by direct
numerical methods. The final illustration, Example 6, is a problem due to Heading
[11] that involves three turning points. Two of the turning points are simple; the
third has any even multiplicity and is located midway between the other two. This
example is solvable exactly in terms of Whittaker functions, thereby furnishing
another useful check on the new asymptotic theory.

In the concluding section, 6, the work of other writers on connection
formulas for second-order differential equations having two or more turning
points is described and related to the results of the present investigation.

2. Basle rules. In this section we consider the differential equation (1.01) in
the case when the independent variable x ranges over a finite or infinite open
interval (ao, bo). The function f(x) is real, and g(x) is real or complex. Further-
more, we assume that:

(i) [(x)/(x -Xo) is nonvanishing and twice continuously differentiable within
(ao, bo), where Xo is an interior point of (ao, bo) and ! is a nonnegative integer.

(ii) g(x) is continuous within (ao, bo).
(iii) The integral

(2.01) I{ 1 d: 114)- g(x)
[f(x)ll/4 dx2 (]f(x1)l lf?x=]2j dx

is absolutely convergent as x -) ao+ or bo-.
The following points should be noted. First, in consequence of condition (i)

f(x) is a twice continuously differentiable function whose only possible zero within
(ao, bo) is a zero of multiplicity 1 at Xo. Secondly, the integral (2.01) diverges as
x - Xo (but this is immaterial). Thirdly, the functionsf(x) and g(x) are permitted to
become infinite as x tends to either endpoint ao or bo, provided that condition (iii)
is satisfied. However, if (ao, bo) is finite and conditions (i) and (ii) are satisfied in
the closure of (ao, bo), then at both endpoints f(x) is finite and nonvanishing, g(x)
is finite, and condition (iii) is automatically fulfilled.

Let us denote by o and bo two arbitrary fixed points such that

(2.02) ao<o<Xo< bo< bo,

Then in the intervals (ao, tio) and (bo, bo) uniform asymptotic solutions of (1.01)
for large u can be constructed in terms of LG functions. In order to formulate
concise rules for connecting these asymptotic solutions we introduce the following
notations.

First, we define

(2.03) #--#(x) If(t)l/ at.

Any convenient value may be assigned to the lower limit of integration, provided
that the same choice is adhered to in a given context. In consequence of condition
(i), sO(x) is continuously differentiable in the interval (ao, bo). Moreover, because
sO(x) is increasing the relation between and x is one to one.
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Secondly, we suppose that the symbols 0(u), 4(u), and X(u) denote three

conveniently chosen real functions of the positive parameter u that are indepen-
dent of x. We require 4(u) and X(u) to have the following properties as u

1
(2.04) b(u) O(1), X(u)+O, O(u).

x(u)

We also stipulate that ’(u) has to be positive, and we shall often write X for X(u).
An admissible choice, for example, is X u-/2.

Thirdly, we define Xl =- X(u) and l =- l(U) by the equations

u-, /=0,1

(2.05) Xl(U) u- In u, l= 2 ;l(U) max {X(u), ’/(u)}.

u -4/(I+2) > 3

Case I. In this case we assume I to be even and the sign of[(x)/(x -Xo) to be
positive.

Tizox 1. Let w(u, x) be a solution o[ (1.01) having the followingproper-
ties when u is large and x (ao, o)"

(2.06) [1/4(X)W(U, x) {4 (u) + O(x)} e"ex,
and

(2.07) x{fl/4(X)W(U, X)} {(U) -- O0()}ufl/2(X) e(),

the O-terms being uniform with respect to x. Then in the interval (bo, bo) this solution
has the properties

(2.08) (,+2)fl/4(X)W(U, X) CSC {(U) "" O(/)} e"e(),

and

(2.09) g{fl/4(x)w(u,x)}=csc {(u)-OCl)}ufl/2(x) e "e(x),

as u -+ oo, the O-terms again being uniform with respect to x.
The proof of this result, and also of Theorems 2, 3, and 4 stated below, forms

the subject of the next section.
It will be observed that because d/dx I (x)l equations (2.07) and (2.09)

may be obtained by formal differentiation of (2.06) and (2.08) respectively,
ignoring the differentiation of the error terms O(x) and O(). This kind of pairing
occurs frequently in the rest of this paper, and in order to avoid excessive
repetition we shall use the symbol () in place of to signify that a given equation
is valid, and also the corresponding equation obtained byformal differentiation with
respect to x ignoring the differentiation ofall O-terms. We also adopt the convention
that whenever an O-term appears in an equation it is uniformly valid with respect to
all values ofx associated with that equation. With these understandings Theorem 1
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is expressed concisely by the following statement:

(2.10) fl/4(X)W(U, X) () {(U)-[" O(,’)} e ue<x>, x e (ao, ao),

implies

(2.11) fl/4(X)W(U, X) ) CSC - {(U) -" O(l)} e "e<x), x (bo, bo).

Case II. Here is even and the sign of f(x)/(x-Xo) is negative.
THEOREM 2.

(2.12)

implies

]f(x)l /4w(u, x) {(u) + o(x)} cos {u(x)-u(xo)+O(u)}

+0) sin {u:(x)- u((xo) + 0 (u)}, x e (ao, ao),

(2.13)

where

If(x)l /4w(u, x) {A(u) + 0(/1)} COS {U(X)- U(Xo) -- I (U)}

" Ol) sin {u((x)- u((xo) +A (u)}, x (bo, bo),

(2.14)

and

A(u> b(u>[ct2 (’21+4) cs2 {0(u>+
r 1+tan2 (21+) sin2 {O(u)+-rr}]

1/2

(2.15) a(u)=-4I-or+tan-1 tan2
21+4

tan O(u)+ zr

In the last equation the branch of the inverse tangent is taken to be zero when
O(u) =-1/4r, and defined by continuity for other values of O(u).

It should be noted that the two terms O(g) in (2.12) denote different error
terms, in general. The undifferentiated form of (2.12) is equivalent to

If(x)] 1/4w(u, x) b(u) cos {u(x)- u(xo)+ 0(u)} + O(x), x (ao, ao),

and the differentiated form is equivalent to

/4 -u[f(x)[X/2[4(u) sin {u(x)- u(xo)+ 0(u)}+ O(x)],W(U X)}

x (ao, ao).

Similarly for (2.13), and also (2.16) and (2.19) below.



678 F.w.J. OLVER

(2.16)

implies

(2.17)

Case III. Here is odd and the sign of ]’(x)/(x--Xo) is positive.
TI-mORM 3.

If(x)l /’w(u, x) o(x)} cos (u(x)- u(xo) + 0(u)}

+ O(x) sin {u:(x) u(xo) + 0(u)}, x (ao, o),

cos { O(u)
X e uty(x)-u/(x) x (bo, bo).

Case IV. Here 1 is odd and the sign of f(x)/(x--Xo) is negative.
TI-mORM 4.

(2.18) fa/4(X)W(U, x) ) {4 (u) + OCt’)} e"e(x), x (ao, do),

implies

lf(x)l a/nw(u, x) csc 1 + 4
e {b(u) " O(l)} COS U(X)- U(Xo)

(2.19)
+ 0() sin u(x)-u(xo)--" x ()o, bo).

3. Proof of the theorems of 2. We begin with the proof of Theorem 1. Since
f(x)/(x-Xo) is positive and is even, the function f(x) is positive throughout
(ao, bo), except at Xo. In consequence of conditions (i), (ii), and (iii) stated at the
beginning of 2, there exists a solution r(u, x), say, of (1.01) such that for large u

(3.01) fl/4(X)I(U, x) {1 + O(u-)} e"ex), x (ao, do);

see [24, p. 203]. If we now define

(3.02) w(u, x) (b (u) + O(,t’)}r (u, x),

where the term O(x) in this equation is independent of x, then w(u, x) is another
solution of (1.01). Hypothesis (2.04) requires I (u)l to be bounded and O(u-x)

_
O(x). Hence from (3.01) and (3.02) it follows that

(3.03) f/4(x)w(u, x) ) {4(u) + O(x)} eue, x (ao, do),

where the term O(,t’) may now depend on x. In other words, with the given
conditions a solution w(u, x) having the properties (2.06) and (2.07) certainly
exists, but because there is freedom of choice of the term O(x) in (3.02) this
solution is not unique.

The problem of finding the correct LG approximation to w(u, x) in the
interval (bo, bo) is very similar to the connection formula problem solved in [27,
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4.2]. An important difference in the present case, however, is that the endpoints
ao and bo need not be singularities of the differential equation. The effect of this
modification is to render the matching of the solutions somewhat more compli-
cated.

Let us define ( -= r(x) by
Xo

ao < x < Xo,(3.04) st(x) /1/2(t) at

and

fx }
2/(/+2)

(3.05) ((x) fa/2(t) dt Xo <= x < bo.
0

Then in terms of the function sO(x) defined by (2.03), we have

(3.06)  (xo)l, x (ao, bo).

From (3.04) and (3.05) it is clear that ’(x) is an increasing function of x, and from
the lemma of [27, 3.2] we also know that st(x) is twice continuously differen-
tiable. Furthermore, by taking m + 2 and =r 0 in 3.2 and 5.2 of the same
reference, we see that (1.01) has twice continuously differentiable solutions
w_(u, x) and w/(u, x), say, such that for large u and x (ao, bo)

(3.07) /4(X)W--(U, x) ) 2x/2(1 + 2)-l/9ul/(2t+4){14 O(l)}Ul+2(--U2/(l+2)),

and

(3.08) P]4(X)W+(U, x) ) 2/(1 + 2)-/2uU(2+{1 + O(g)}Ul+z(u2/(+2>().

In these relations [(x) is defined by

4f(x) (d’)2

(3.09)

the normalizing factors 2/(1+2)-/u/+4 have been introduced for later
convenience, the function g g(u) is defined by (2.05), and the function Ul+(t)
is defined in terms of modified Bessel functions by the equations

(t(l+2)/z),U+z(t) (2t/)/Ka/(l+Z) t >0,

+2(t) (2[t[/)1/2[ CSC {/(1 + 2)}I1/(1+2)([t1(t+2)/2)
+ Kx/(t+2)(]t[(t+2)/2)], < O.

Properties of U+2(t) are discussed in [27, 2.1].
Suppose now that x (ao, tlo). Then from (2.02) and (3.04) it follows that r is

negative and bounded away from zero. Consequently the functions U/2 in (3.07)
and (3.08) may be replaced by their respective asymptotic approximations for
large positive and negative arguments, given in [27, 2.1]; similarly for the
derivatives of these functions. Aided by (3.06) and (3.09) and the fact that
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O(u-1) - O(g), we arrive at

(3.10) [1/4(X)W-(U, x) ) {1 + O(gt)} exp {usX(x) usC(Xo)},

and

(3.11)

x (ao, do),

fl/4(X)W+(U, X) () {1 -" O(,/)} CSC exp {usX(Xo)-- usX(x)},

x (ao, o).

Secondly, suppose that x e (/o, bo). Then by similar analysis we find that

(3.12) [1/4(X)I’f-(U, x) {1 + O(,g)} csc exp {u(x)- u(xo)},

xs (bo, bo),

and

(3.13) [1]4(X)W+(U, X) () {1 + O(g)} exp {u’(Xo)-- u{(x)},

x (bo, bo).

Let the linear relation that holds between the wanted solution w(u, x) and the
known solutions w_(u, x) and w/(u, x) be denoted by

(3.14) w(u, x) Aw_(u, x) +Bw+(u, x),

where the coefficients A and B are independent of x (but may depend on u). To
find A and B, we let x ao+ in the equation

(3.15) [/4(x)w(u, x) A[/4(x)w_(u, x) +B[/4(x)w+(u, x),

and its differentiated form. Assuming for the moment that (ao) is finite, and
referring to (2.06), (2.07), (3.10), and (3.11), we obtain the equations

{b (u) + O(X)} exp {u’(ao)} A {1 + O](l)} exp {u((ao) u’(Xo)}

+B(1 + O(g)} csc exp {u((xo) u:(ao)},

and

{(u) + O(X)} exp {u(ao)} A{1 + O0(1)} exp {u(ao)-U(Xo)}

-B{1 + O(X)} csc - exp {u:(xo)- u’(ao)}.

Solving for A and B, remembering that ]4(u)l is assumed to be bounded, we
derive

(3.16) A =exp{u(xo)}{(u)+O()},

(3.17) B exp {2u(ao)- u(xo)}O(l)
where ,t is defined by (2.05).



CONNECTION FORMULAS 681

Alternatively, if (ao)=- then by similar analysis we find that A is again
given by (3.16) and B vanishes. In other words, it is legitimate to replace the
right-hand side of (3.17) by its limiting value as (ao)-->-oo.

Uniform asymptotic approximations for fl/n(x)w(u, x) in the interval (bo, bo)
may now be found from (3.15) by substituting (3.12), (3.13), (3.16), and (3.17).
When :(ao) is finite it is easily seen that the whole of the contribution from the
second solution on the right-hand side of (3.15) is absorbable in the uniform error
term associated with the contribution from the first solution. Alternatively, when
:(ao) =-o there is no contribution from the second solution. Similarly for the
derivatives. The final results are given by (2.08) and (2.09) or, equivalently, by
(2.11). This completes the proof.

To prove Theorem 2, we begin with the results of 3.3 and 5.2 of [27]. Using
methods similar to those just employed for Theorem 1, we find that there exist
solutions w_(u, x) and w/(u, x), say, of equation (1.01) with the properties

If(x)[ 1/#w_(u, x) ( {1 + O(gt)} sec
21 +4 cos u(x)- u(xo)-’rr

+ O(X) sin u(x)- u(xo)--r x (ao, o),

(3.19)

and

[f(x)l’/’w+(u,x) ){I + O(X,)} csc (2’+4)cos {u(x)-u(xo)+-
+ O(X) sin u(x)- u(xo) +-" x (ao, o),

(3.20)
If(x)[ /4w_(u, x) ) {14- O(Xl)} CSC 2i+ 4 cos u((x)- u(xo)-

"- 0(1) sin u((x)- u(xo)--r x e (bo, bo),

[f(x)l 1/4W+(u, X) ) {1 + O0(l)} sec 2l + 4
cos u(x)-- u(xo) +-r

(3.21)
+ O(X) sin u(x)- u(xo) +-r x (bo, bo).

The wanted solution w(u, x) has the property (2.12), and is easily seen to exist by
the theory of the Liouville-Green approximation. From (3.18), (3.19), and the
fact that 14(u)l is assumed to be bounded, we find that the linear relation holding
between the three solutions is representable in the form

[f(X)[1/4W(U) X) [((U)COS {O(.U)’’qT}’3’O(l)] COS (21’rr+4)lf(x)[’/’)w_(u,x)
+ (u) sin O(u)+r +0() sin 2- ]f(x)l/4w+(u’ x);
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compare (3.15). The required results (2.13), (2.14), and (2.15) follow on substitut-
ing in the right-hand side of this equation, and its differentiated form, by means of
(3.20) and (3.21).

The proofs of Theorems 3 and 4 are similar to those of Theorems 1 and 2 and
it is unnecessary to record details.

4. Remarks on the theorems o 2. Theorems 1, 2, 3, and 4 describe the
approximate changes in the form of the LG approximations to the solutions of the
differential equation (1.01) on passing through the various types of turning point.
For example, in Case I the net effect is to multiply the asymptotic forms (2.06) and
(2.07) by the factor csc {z:](l + 2)}. In particular, when 1 0, that is, when there is
no turning point, there is no change in the asymptotic formsmas is to be expected.

In comparing the four theorems, we note that there are differences in the
number of solutions of the differential equation that are supplied. We discuss here
briefly the underlying reasons, taking each case in turn.

Case I. The effect of changing the lower limit in the definition (2.03) of :(x)
is to multiply the solution w(u,x) by a factor that is independent of x. In
consequence, Theorem 1 supplies direct information for only one independent
solution of the differential equation. However, the theory of the LG approxima-
tion shows that for large u there exists a second solution wz(u, x), say, having the
property

fl/4(X)W2(U X) ) {(U) " O(X)} e -"e(x), x (ao, rio);

compare (2.10). Like w(u, x) this solution is expressible in the form

(4.01) w2(u, x)= Aw_(u, x)+Bw/(u, x),

where w_(u, x) and w/(u, x) are as in 3, butA and B have new values. Carrying
through the analysis in a similar manner to 3, we find that

A exp {u:(x0)- 2u(ao)}O(l),

B sin - exp {-u(xo)}{4(u) + O()},

provided that (ao) is finite. However, on substituting these results in (4.01) we
obtain little information concerning )w(u, x) and its derivative in (bo,bo),
because in this interval w_(u, x) dominates w/(u, x) when u is large (compare
(3.12) and (3.13)), and the coefficient A of w_(u,x) is available only as an
O-estimate.

Noting that we are able to obtain a satisfactory connection formula for the
solution that is growing in magnitude as we pass through the turning point, but not
for the solution that is decaying, we perceive that the way to obtain a second
connection formula is to reverse the roles of the original solutions by passing
through the turning point in the opposite direction, that is, from right to left. Thus
the required formula is found by replacing x by -x in (1.01), applying Theorem 1,
and then changing the sign of x again. The result is expressible in the form:

fl/4(X)W(U, X) ) {(U) dl- 0()} e -"e<), x s (bo, bo),
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implies

fl/4(X)W(U, X) ) CSC - {(U) " Ol)} e -ue(>, x e (ao, o).

Case II. Since there is no restriction on the choice of the function O(u), and
the only restriction on b(u) is that this function is bounded in absolute value,
Theorem 2 informs us directly how any solution of the differential equation
continues through the turning point. In particular, if we select O(u) -1/4or and 41-r,
then we obtain a pair of solutions that are asymptotically out of phase by 1/2zr, both
for x(ao,o) and x(bo, bo); compare (2.15). They therefore comprise a
numerically satisfactory pair of solutions in the sense of Miller [19].

The reason for the difference between Theorems 1 and 2 concerning the
number of connection formulas that each theorem supplies is traceable to the fact
that in Case II no solution grows exponentially in magnitude compared with other
solutions as we pass through the turning point.

Case III. Since O(u) and b(u) again may be freely chosen, subject to I (u)l
being bounded, the situation resembles Case II superficially. However, if O(u)-
41-zr is zero or an integer multiple of r, then the factor contained in the square
brackets in (2.17) reduces to the error term O(l). Moreover, if we exclude these
values of O(u), then it is impossible to construct a pair of solutions that are
numerically satisfactory in the interval (/o, b0). To obtain a satisfactory compan-
ion connection formula we have to pass through the turning point in the opposite
direction, in the manner of Case I. This is effected by reversing the sign of x in the
given differential equation and applying Theorem 4.

Case IV. The situation here is analogous to Case I. Theorem 4 supplies
direct information for only one independent solution of the differential equation.
To obtain a second connection formula we pass through the turning point from
right to left with the aid of Theorem 3.

5. Examples. In this section we consider the differential equation (1.01), that
is,

(5.01) dw/dx {uf(x) + g(x)}w, x (a, b),

in various cases for which there is more than one turning point in the finite or
infinite open interval (a, b).

As before, we suppose that within (a, b) the function f(x) is real, f"(x) is
continuous, g(x) is real or complex and continuous, and the integral (2.01) is
absolutely convergent as x approaches the endpoints a and b. We again define
:(x) by the integral (2.03), with the understanding that we adhere to the same
lower limit of integration in each example.

Example 1. Arbitrary number of even turning points: first case. As our first
example we suppose that there are n turning points x, r 1, 2, , n, arranged as
follows:

(5.02) a <x<x<... <x, <b.

We also suppose that the function

(5.03) (Xl--X)--21X(x2--X)-212" (X --X)--2lnf(X)
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is positive and twice continuously differentiable within (a, b), where 11, 12," , 1,,
are positive integers. Thus the multiplicity of the turning point x is 2L, and/(x) is
positive within (a, b) except at the turning points.

We first introduce a set of arbitrary fixed points ar, br, r 1, 2, , n, that
satisfy

(5.04) a <al <xl <bl <a2 <x2 <bz <" .<a,, <x,, <b,, <b.

With the given conditions, we know from the theory of the LG approximation that
there is a solution of (5.01) with the property

(5.05) fl/4(X)W(U, x) {1 + O(u-)} e "ex>, x (a, a),

as u--> oo. Applying Theorem 1 of 2 with Xo=Xl,/= 2/1, 4)(u)= 1, and X(u)=
l/u, we find that

/4(x)w(u, x) csc
l + 2

{1 + O(x.)} ee(, x e (b, a).

Theorem 1 may now be applied a second time to continue w(u, x) across the
turning point x to the interval (b, a), and so on. The final result is evidently
given by

(5.06) fl/4(X)W(U, X)’)
r=l

CSC
21 2

{1 + O2/)} ee(), x (b,, b),

where

(5.07) l= max (l, 12,’’’, l,).

Remarks. It is interesting to observe that the result (5.06) is independent of
the actual location of the turning points in (a, b) and also of the order in which the
differing multiplicities occur. It needs to be stressed, however, that we have
supposed that the turning points are fixed. In some problems the functionf(x) and
the turning points may depend continuously on a second parameter p, say.
Assuming that the given conditions are satisfied uniformly with respect to p, we
may easily verify that the result (5.06) holds uniformly with respect to p, provided
that none of the turning points coalesce with each other, or with the endpoints, as p
varies. If, however, the turning points x and x+, say, were to coalesce for a
certain value of p, then in (5.06) the factors

(5.08) csc
21 + 2

csc 21+2
would have to be replaced by the single factor

(5.09) csc
21 +2/+ + 2

Unless the expressions (5.08) and (5.09) are equalas they are when
L l+ lsuch an abrupt change cannot possibly be uniform with respect to 0.

Example 2. Arbitrary numberoeven turningpoints second case. We assume
the same conditions and notation as in Example 1, except that we now suppose
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that the sign of the function (5.03) is negative. Thus f(x) is negative, except at the
turning points.

From the theory of the LG approximation, there exist solutions W_l(U, x) and
wl(u, x) such that when u is large and x

(5.10)

and

I/(x)l /4w_(u, x) ) {1 + O(u-)} cos {uC(x)- 1/4or}

+ O(u -1) sin {u(x)- 1/4or},

(5.11)
If(x)[ 1/4W1 (U, X) {1 + O(U-1)} COS {U(X) + 1/47/’}

+ O(u -1) sin {use(x) + 1/4or}.
The asymptotic forms of these solutions in the interval (bl, a.) can be found by
direct application of Theorem 2 of 2 with Xo X l. Subsequent analysis is
considerably simplified, however, by taking O(u)= 1/47r in Theorem 2, for from
(2.14) and (2.15) we then obtain

A(u) g)(u) cot (217r+ 4), when O(u) -4x-;

or

A(u) b(u) tan 21+ 4 A (u) 1/4, when O(u) 1/4r.

Accordingly, we first convert the arguments of the trigonometric functions in
(5.10) and (5.11) into the forms u((x)-u((x)-1/4r and u((x)-u((x)+1/4r,
respectively, by setting

u (x) +
and expanding by means of the addition rules. The result is expressed most
concisely in matrix form. Let Rr denote the rotation matrix

[ cos U(Xr) sin u(x)]R,
-sin u((x,) cos u((x,)J’

r 1, 2,..., n.

Then we have

[ [f(x)lX/4W-l(U, X)]If(x)la/4wx(u, x)

-{1 + O(u-)} cos {u:(x) u(x)- 1/4’}
+ O(u-) sin {u:(x)- u:(Xl)- 1/47r}

{ 1 + O(u-)} cos {u((x) u((x

+ O(u-) sin {uC(x)- u((x 1) + 1/4or}
valid when x e (a, a 1),
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We now apply Theorem 2 with Xo=Xl, 2/1, b(u)= 1, X(u)= 1/u, and
O(u) =-1/4r and 1/4or in turn. The result is expressible in the form

If(X)l /4W_I(U X)
]f(x)l/4w(u,x) ]

1 q" O(X2/,)} cos {uZ(x)- u(x1)- 41-qT’}
(5.12)

+ O(xl,) sin {u:(x) u:(x0- 1/4r}

{1 q" O(2/1)} COS {U(X)- U(X1)q-

+ O(Xzl,) sin {u(x)- u(x)+}
valid when x e (bl, a=), where

D [cot {/(4/ + 4)} 0 ]0 tan {w/(4/, +4)}
r 1, 2,..., n.

To prepare for passage through the next turning point x we convert the
arguments of the cosine and sine functions appearing in (5.12) into the forms
u(x)- u(x=)-w and u(x)- u(x=)+, respectively, by application of the
addition formulas. us we have

F{1 + O2/1)} COS {U(X,)--U(X1)--}+ O211)sin {u((x)-u((x)-}l
1 + O21)} cos {u(x)- u((x) +}+021) sin {u(x)- u(xx) +}J

[ cos {u(x2) u(x)} sin {u(x2) u(x)}]
(2 [ -sin {u(x2) u(x)} cos {u((x2) u(x)}J

{1 + O21)} cos {u((x)- u(x2)-}+021) sin {u(x)- u(x2)-x
{1 + O2)} cos {u((x)- u(x2) +}+021) sin {u(x)- u(x2) +}J

1 +0)} cos {u(x)-u(x)-}
+0) sin {u(x)-u(x)-}

(% RR
{1 + O2/1)} cos {u(x) u(x2) +}

+Ozl,) sin {u(x) u((x) +}
since

R_a= [cos u((x) -sin u:(x)]
sin u((xl) cos u((xl)l

We may now apply Theorem 2 with x0 x2, l 212, b(u) 1, X(U) Xztl(u),
and O(u) : 1/4,r, to continue the solutions to the interval (b2, a3). The process may
then be repeated for successive turning points, and the final result is easily seen to
be

If(x)l x/4w-x(u, x)
Ifl(x)la/4wx(u, x) ]

(5.13) {1 + O(x2/)} cos {u:(x)- 1/4r} + O(X:Zl) sin {uC(x)- 1/4r}]
(% MM2 lI,

{1 + O(xz)} cos {u:(x) + 1/4r} + O(X:Zl) sin {uC(x) + 1/4r}J’
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valid when x (b,, b), where is defined by (5.07), and

M, RrD,R-, r 1, 2, ., n.

Equation (5.13) is the required connection formula.
Remarks. It will be observed that each matrix Mr depends on xr as well as lr;

thus Mr M(xr, lr). In contrast to Example 1, a change in the value of xr alters the
final result (5.13). Furthermore, it is readily verified that

M(xr, lr)M(Xr+l, It+l) M(xr, lr+l)M(xr+l,

in general. Hence the final result is also affected by the order in which differing
multiplicities occur, again in contrast to Example 1.

Example 3. Arbitrary numberofodd turningpoints firstcase. In this example
we suppose that there are n turning points xr, r 1, 2, , n, again enumerated to
satisfy (5.02), and that the multiplicity of the turning point at x is 21 + 1, where 1
now denotes a nonnegative integer. We also assume that the function

(5.14) (X1--X)-2ll-I(x2--X)-212-1’’" (Xn --X)-2ln-lf(x)
is negative and twice continuously differentiable within (a, b).

As in Examples 1 and 2, we begin by introducing arbitrary fixed points at, br,
r 1, 2," , n, that satisfy (5.04).

When x (a, a 1) the function f(x) is negative, and with the assumed condi-
tions the theory of the LG approximation shows that there exists a solution
w(u, x) having the property

[(x)l/4w(u, x) {1 + O(u-X)} cos {u(x)- u(xl)+ 0(u)- 1/4r}

+ O(u -a) sin {uC(x) ue(x) + O(u 1/47r}, x (a, a 1),

where, as before, O(u) is any prescribed real function of the large positive
parameter u.

Applying Theorem 3 of 2 with x0 xl, 211 + 1, (u) 1, X(u) I/u, and
O(u) replaced by O(u)-1/4r, we see that

1 ( ){cosO(u)+O(gz+O}eUe(X)_ue(0fl/’(x)w(u,x) )csc 411+6
xe(bl, az).

Then applying Theorem 4 of 2 th Xo=Xz, 1 2/2+ 1, (u)= cos O(u), and
g(u) gZl+(u), we obtain

1 ()( ) u(x>-(xOI[(x)lX/4w(u’x)8) csc
4/a+6

csc
41z+6

e

x [{cos O(u)+ O.)} cos {u(x)- u(x)-kv}
+ Oh.) sin {u(x)- u(x2)-}],

valid when x e (b2, a3), where ll,z--- 2 max (11,/2) + 1.
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The last formula describes the net effect of passing through the turning points
xl and x., and the process is repeatable in a straightforward manner any number
of times. If the total number of turning points n is even, then the final result is
given by

(5.16)

If(X)I1/4W(U’X)() r=lfi csc 4/r+6
exp u r--l (-)sX(x)

x [{M(u) + O0(2/+1)} cos {u(x)- u(xn)-1/4q’l"}

+ O(xz+) sin {u(x)- u(x,)- 1/47r}],
valid when x (b,, b), where is defined by (5.07), andz

[(n--I)/2]

(5.17) M(u) =cos O(u) l-I
r=l

cos {u(x+)- u(x)}.

On the other hand, if n is odd, then with the same definitions of I and M(u),
we have

} }fl/4(X)W(U, X) ()2(n+’])/2{,=aI CSC (41 +6) exp {u r= (-)’se(x)

x. {M(u) + 0C2/+1)} e x(b,,,b).

Example 4. Arbitrary number of odd turning points: second case. We make
the same assumptions as in Example 3, except that the sign of the function (5.14) is
now assumed to be positive. Using the same notation, we know that there exists a
solution w(u, x) having the property

(5.19) fl/4(X)W(U, x) ) {1 + O(u-1)} e ’e(x>, x (a, aa).

The continuation of this solution to the interval (bn, b) may be achieved by
successive application of Theorems 4 and 3, in a similar manner to Example 3. The
final result is readily verified to be

1 I csc exp U Z (--)r-l(xr)fl/4(X)W(U, X) 2) l + 6r=l r=l
(5.20) ,exx {N(u) + O(X21+0} e x e (b,, b),

when n is even, or

1 fi csc exp u (--)r-l(x,.)If(x)lX/aw(u, x) ) 2(,_i)/2 4ir +6r=l r=l

(5.21) X [{N(u)+O2l+l)} COS {U(X)--U(Xn)--}
+Ot+) sin{u(x)-u(x,)-}], x (b,, b),

2 As usual, [(n- 1)/2] denotes the integer part of (n- 1)/2. When n is even this is, of course
(n/2)- but in the following equation we use the same definition of M(u) when n is odd.
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when n is odd. Here is again defined by (5.07), and

In/2]

(5.22) N(u) H cos {u:(x2)- u:(x2_l)}.

A subsidiary problem of physical interest [1, Chap. 13], is the following
eigenvalue problem. The number of turning points n is even, :(x)-oo as
x a +, s(x) +oo as x b-, and we seek those values of u for which there is a
solution that is recessive at both endpoints. From (5.20) it follows that a necessary
and sufficient condition for the existence of such a solution is given by3

(5.23) N(u) t. O(x2/+l) 0.

Using (2.03) and (5.22) we derive

(5.24) u If(x)l
2r--I

where k is a large positive integer, r has any of the values 1, 2, , 1/2n, I is defined
by (5.07), and Xt(u) is defined by (2.05).

It may be noted in passing that as an immediate consequence of Theorem I,
the result (5.24) continues to hold when any (finite) number of even turning points
are interposed in the intervals (a, x 1), (X2, X3), (X4, Xs),’’’, (Xn--2, Xn--1), (Xn, b),
provided that 21 + 1 now denotes the highest multiplicity of all the turning points
in (a,b).

Example 5. An eigenvalue problem with ]’our mixed turning points. In this
example, we seek the large eigenvalues of the system

(5.25) d2w/dx2= u2h(x)(x --cl)2x(x -c2)4(x -c3)3w,
where Cl, c2, and c3 are positive constants such that c2 < c3, and h(x) is a positive,
twice continuously differentiable function of x with the properties

(5.26) h(x)---(constant)x 1, x--o; h(x)(constant)x v2, x-+c,

where yl and y2 are constants such that yl >-12 and 3’2 >-12. We also assume
that the relations (5.26) are twice differentiable.4 This problem has been selected
because all the theorems of 2 are used in its solution.

This may be proved as follows. With the given conditions we know from 2, 3, and 5 of [24,
Chap. 6], that (5.01) has solutions of the form f-/4(x)eU(X){l+e(u,x)} and f-a/4(x)e-U(X)
{1 +e(u,x)}, such that as x b-, ez(U, x vanishes and ea(u,x) tends to a constant value e(u,b),
say. Furthermore ca(u, b) is O(u-) as u oo. Denote the error term O(Xz/+0 in (5.20) by rt(u, x).
Then

e"e(){N(u) + rt(u, x)}=a (u) e"e(’){1 + e x(u, x)}+B(u) e-"e(’){1 + e2(u, x)},

where A (u) and B(u) are independent of x. Dividing throughout by e"e(’) and letting x b-, we see
that rt(u, x) tends to a constant rt(u, b), say, and also that

a (u) {N(u) + rt (u, b)}/{1 + e x(u, b)} N(u) + O(xzt+).

The condition that the solution (5.20) be recessive at b is A (u)= 0; which yields (5.23).
4 The interpretation of this condition in the cases in which yx or yz is 0 or 1 is the same as in 4.2 of

[24, Chap. 6].
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We begin by fixing the arbitrary constant in the definition (2.03) of sO(x) by the
condition so(0) 0; thus

(5.27) (x)= {h(t)}l/2l(t+cl)tl/2(t-c2)2(t-c3)3/21 dt.

There are two reasons for introducing the conditions (5.26). First they ensure that
sC(x)- as x- and sO(x)-+ as x +. Secondly, with

f(x) h(x)(x "’Cl)2X(X --C2)4(X --C3)3, g(x) 0,

they ensure that the integral (2.01) converges absolutely as x +o.
Let a be any fixed point such that a <-cl. Then the theory of the LG

approximation shows that (5.25) has a solution w(u, x) with the property

fl/4(X)W(U, X) ) {1 + O(u--a)} e ue(), x e (--m, a).

Furthermore, this solution is recessive as x -c.
Applying Theorem 1, with Xo -cl, 2, (u) 1, and X(u) l/u, we find

that in any fixed closed interval within (-Cl, 0), we have

fl/4(X)W(U, X) ) CSC (1/4T){1 -- O(U -1 In u)} e

The next step is to apply Theorem 4 with Xo=0, 1= 1, (u)= 1, and
g(u)= u -1 In u. Since ((0) =0, we find that in any fixed closed interval within
(0, c)

If(x)lX/4w(u, x) > csc (1/4r) csc (r)[{1 + O(u- In u)) cos {u((x)- 1/4r}
+ O(u- In u) sin {usC(x)-1/4cr}].

Thirdly, we apply Theorem 2 with Xo c2 and 1 4 to obtain

If(x)11/4w (u, x) > csc (1/4,r) csc (,r)[{A(u) + O(u-/3)} cos {u(x) u(cz) +A (u)}

+ O(u-/) sin {u((x)- u((c2) +A (u)}],

valid in any fixed closed interval within (C2, C3), where A(u) and A (u) are given by
(2.14) and (2.15) with (u)= 1 and

(5.28) O(u) usC(c2)-1/4r.
The final continuation is to apply Theorem 3 with Xo c3, l 3, &(u) A(u),

and X(u)= u -2/3, to obtain

fl/4(X)W(U, X) () 1/2 CSC (1/4"a’) CSC (-167r) CSC (o’tr) e -ue()

[A(u) cos {u(c3)-u(c2)+A(u)+1/4r}+O(u-2/3)] e(’),
valid when x e (b, co), where b is any fixed point such that b > c3.

Since 1/A(u) is bounded it follows, as in Example 4, that the eigenvalues are
given by

cos {u(c)- u(c) +, (u) +1/4,r} O(u-/),
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that is,

{(c)-(c.)}u +, (u) + 1/4r (k +-)r + O(u-/),
where k is an integer. On using (2.15), with 4, and (5.28), the last equation
becomes

(5.29) {:(c3)- :(c2)}u + tan- [tan2 (r) tan {(c2)u}] (k + 1/2)or + O(u-2/a).
To solve (5.29) we first discuss the properties of the function co(u) defined by

(5.30) tan- {tan2 (r) tan u}= u-w(u).

Consistent with 2, we are using the continuous branch of the left-hand side that
vanishes at u 0. The following properties are easily verified:

o(0) o (1/2r) o (r) 0, o(u) o(u + r) -o(-u).

The graph of w(u) is indicated in Figure 5.1 for the interval (0, or) and continues by
periodicity. By differentiating (5.30) we find that

tanz
to’(u) 1-- COS2 U + tan4 (2zr)sin2 u"

Therefore for all u

-{cot (Tr)-1}-<w’(u)=< 1-tanz (Tr).

Returning to (5.29) and substituting by means of (5.30), we obtain

(5.31) (c3)u-w{(c)u}=(k +1/2)r+O(u-Z/3).

Now consider the equation

(5.32) (c)u -o{((c)u}= (k +1/2)’.

The u-derivative of the left-hand side is

(5.33) :(c3) (c2)w’{(c2)u }.

Since :(c3)>(c2)>0 and the (algebraically) largest value of w’{(c2)u} is
1 -tan2 (r), we conclude that (5.33) is always positive and bounded away from
zero. Accordingly, for each value of k equation (5.32) has exactly one root u Uk,

-d

FIG. 5.1. Graph ofto u ). d 1.047.
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say. Hence from (5.31) and the mean-value theorem we conclude that the
required eigenvalues are given by

(5.34) u Ul + 0(k-2/3), k +oo.

Remarks. (i) The need to solve a transcendental equation, namely (5.32), in
order to obtain adequate approximations to the eigenvalues stems from the
presence of a turning point of Case II type. Suppose that instead of (5.25) we had
chosen the system

d2w/dx2= u2h(x)(x +c02x(x-c3)3w, -oo<x

with the conditions (5.26) modified by requiring 3"a >-8 and 3’2 >-8. Then by
similar analysis we find that the eigenvalues are explicitly given by

U {(c3)}-a(k 4- 1/2) 4" 0(k-4/5),
where k again denotes a large positive integer, and (x) is now defined by

:(x)= {h(t)}*/l(t+cOta/(t-c3)3/ dr.

(ii) As in Example 4, the presence of the turning point of Case I type at
x =-ca essentially has no effect on the final result (5.34). Indeed, this turning
point may be replaced by an arbitrary finite number of even turning points in the
intervals (-, 0) and (c3, eo), provided that none is o multiplicity exceeding 4. ff
the last condition is not fulfilled, then the only change needed is to increase the
estimate for the error term in (5.34) from O(k-2/3) to 0(k-4/(1+2)), where is the
multiplicity of the turning point of highest order.

(iii) It is of interest to compare the results yielded by the asymptotic formula
(5.34) with those calculated by direct numerical methods, especially as an error
bound has not been constructed for the asymptotic estimate. For this purpose we
select the following equation:

(5.35) d2w/dx2= u2(x dr" 1)2x(x- 1)4(x- 2)3W.
Thus in the notation of (5.25) we have h(x)= 1, ca =c2 1, and C3 2. From
(5.27) we find that5

(5.36) ((1) ,rr +, ((2) r.
Substituting these values in (5.30) and (5.32) we see that the equation for the
estimated eigenvalues Uk is given by

(5.37) 5)u + tan-a [tan2 @2r) tan {(r +)u}] (k +1/2)r,

where, as noted previously, the branch of the inverse tangent vanishes at u 0 and
is a continuous function of u.

Corresponding to any prescribed value of k, the desired approximation
u Uk to an eigenvalue of (5.35) is obtained by solving (5.37) by successive

These values were verified by use of the MACSYMA System of the Massachusetts Institute of
Technology.
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approximation. Taking k 5, 6, 7, and 8, we find that

(5.38) u5 =29.257, U6"- 33.262, u7=40.347, u8=47.111,

correct to three places of decimals.
To calculate the eigenvalues by numerical analysis the following method was

used. Equation (5.35) is integrated numerically from a sufficiently large negative
value x X1, say, to x 0, using arbitrary initial values of w and dw/dx at x X1.
The same equation is also integrated numerically from a sufficiently large positive
value x X2, say, to x 0 using arbitrary initial values at x X2. The value of u is
then adjusted until the Wronskian of the two solutions vanishes at x 0. (The
actual values ofX1 andX2 are not crucial, nor are the initial values at these points;
for the present range of values of u and required accuracy it was found that
X1 -1.1 andX2 2.6 are adequately large.) This method was used to search the
interval 28 =< u -< 48 systematically for eigenvalues, and the only ones were found
to be
(5.39) u=28.822, 33.185, 40.265, 46.909,

again, correct to three places of decimals. The agreement with the asymptotic
estimates (5.38) is clearly quite satisfactory.

Example 6. A problem with three turningpoints solvable in terms of Whittaker
functions. Our final example is furnished by the equation

(5.40) d2w/dx 2 u2x2p-2(c 2p -x2p)w,

in which u is a positive parameter, p is a positive integer, and c is a fixed positive
constant. On the real axis there are simple turning points at x +/-c, and a turning
point of multiplicity 2p- 2 at x 0. The theory of the LG approximation shows
that there are unique solutions w(u, x), w2(u, x), and w3(u, x) with the properties

II’(x)l/Wl(U,X)--e i"e(), x

[’(x)[/4w2(u, x) e ie(), x - +oo,

]/(x)] 1/4w3(u, x) e-’ue(), x -
(5.41)

(5.42)

(5.43)

where

(5.44)

and

[(x) x:"-:(c"

(5.45) :(x) [to-(c t2)1/21 dt.

Our intention is to find the coefficients A and B in the connection formula

(5.46) w(u, x) AWz(U, x) +BW3(u, x).

This problem is of interest in the theory of barrier penetration. In this context
the solutions Wl(U, x), w(u, x), and w3(u, x) represent respectively the transmit-
ted, incident, and reflected waves. Heading 11] has solved the problem exactly by
transforming (5.40) into Whittaker’s equation. A valuable check on the analysis of
the present paper is to apply the rules of 2 to solve the problem approximately
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for large u, and then compare the answers with the asymptotic forms of the
Whittaker functions.

The theory of the LG approximation shows that corresponding to any
assigned values of real constants a and 0, with a > c, there is a solution w (0, u, x)
of (5.40) with the properties

(5.47) If(X)ll/4W(O, U, X) COS {U(X)’+’O+O(1), X -’->--00,

when u is fixed, and

It(x)lX/4w(O, u, x) (1 / O(u-)} cos (u(x)/ 0}/ O(u-) sin {u:(x)+ 0},
(5.48) -oo <x < -a,

uniformly when u is large. Applying Theorems 3, 1, and 4 in succession in the
manner of previous examples, we find that

sin (p) e u’(--c)--u’(c)]f(x)ll/4w(O,U,X

2--) [2 cos {u:(-c)+ 0 + 1/4,r} + 0(X2-2)] cos {u:(x)- u(c)-

+ O(x2p-2) sin {u:(x)- u:(c)- 1/4,r},
valid when x (a, o0). From (5.45) it is clear that (x) is an odd function of x;
hence by rearrangement of the last relation we deduce that

(p) eU’’[cos {u(x) 2u(c) + O}If(X)I1/nW O, U, X) CSC

(5.49)
+sin {u(x)-O}+ O(x2p-2)].

From (5.47) it follows that the solution wa(u, x) having the property (5.41) is given
by the linear combination

w(u, x) w(O, u, x)+ iw(-1/2,r, u, x).

Hence from (5.49) we derive

If(x)ll/4wl(u, x) csC (pp)
valid when x (a, oo). The values of the coefficientsA andB in (5.46) may now be
found by letting x -->oo, first through the sequence of values for which 2u:(x) is an
even multiple of 7r, and secondly through the sequence for which 2u:(x) is an odd
multiple of 7r. Comparing the resulting expressions with (5.42) and (5.43) we see
that

(5.50) A csc {1 + O(X2-2)},

(5.51) B csc 1 + O(x2p-2)}.

These are the required results. The necessary value of (c) may be found from
(5.45) with the aid of the substitution t c sin v; thus

(5.52) :(c) ,rc2’/(4p).
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Let us turn now to the exact solution of (5.40) in terms of Whittaker
functions. Following Heading [11] we find that when x < 0 a solution is }(u, x),
given by

(5.53) v(u, x)

where

(5.54) x iuc2t’/(4p),

and W,, (z) is Whittaker’s unction in the usual notation. For large Izl it is known
that6

(5.55) W.,(z)--z e-/z, IOn z
Hence

(5.56) (u,x) Ixl’l/2)-t’(iulxlZ (iulxlt’)exp x ->
p 2p

In order to compare the last result with (5.41), we first evaluate the integral
(5.45) when x _->c. This may be done by means of the substitution tt" =ct" cosh v;
thus

cZt" { xt" x
\c )

/

(x)}e(x) e(c)+ ,-1 -cosh- x c.
zp

Hence

c2t’x2t" 1 ln(2Xt+/-}(5.57) (x)=((c)+-ptc2t" 2 \--1 +o(1), x+.

Using this result and the fact that (-x)=-:(x), we see from (5.41), (5.54), and
(5.56) that the relation between w(u, x) and r(u, x) is given by

(5.58) w(u, x) e e-U(v(u, x).

Next, we need the continuation of r(u, x) to positive values of x. If we pass
from the negative real x-axis to the positive real x-axis via an indentation that lies
in the upper half of the x-plane, then from (5.53) we see that

(U, X) (e-"ix)(I/2)-pW,,,1/(40)(e-2t’iiux2p/p), x >0.

Applying the connection formula for Whittaker functions with arguments e-2"z,
z, and ze-= obtainable, for example, from [11] or [24, p. 262], we derive

(5.59)

where

2t,

I(U,X)=CSC (--lg)X(1/2)-t’{JWl/(4t,)(ilAXp, )+W-xl/(4t,)(-iux2p),, p ]

A= // ( 1 x)F( 1
(5.60) 27re-i,tF\z+-p- 4p

B e +cos(5.61)

6 See, for example, [24, p. 260].
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The asymptotic form of wl(u, x) as x --> +oo may be found from (5.58) and

(5.59) by replacing the Whittaker functions by their asymptotic forms for large
argument, again given by (5.55). Then by using (5.44), (5.54), and (5.57) we are
able to cast the result into the form

Ifl(x)ll/4wx(u, x)= cSC {e -ei"(c) e e2KK-2" e iUt(x) q t e-i’e(") + o (1)}.
Comparing this result with (5.46) and referring to (5.42) and (5.43), we see that

(p) e-2uti() e,,(5.62) A =csc

(5.63) B csc (p)/.
The last two equations give exact expressions for the coefficients in the

wanted connection formula (5.46). To check the approximate formulas (5.50) and
(5.51) found by our present theory, we assume u (and therefore, also, IK I) is large
and calculate the asymptotic form of the right-hand side of (5.60) by means of
Stirling’s formula. On substituting the result in (5.62) and using (5.52) and (5.54),
we find that (5.50) agrees with (5.62) within the tolerance of the uniform error
term O(,,)(2p_2); similarly for (5.51) and (5.63). This confirms the soundness of our
asymptotic theory as applied to this example.

ii. Previous results and conclusions. It will be assumed in this section that the
reader is acquainted with the survey that was made in [27, 6] of work on
connection formulas for second-order differential equations having a single
turning point. We shall continue to use the terms central connection, lateral
connection, and pseudo-lateral connection in the same sense as in this reference,
and remind the reader that central connection and pseudo-lateral connection may
be used for turning points of any multiplicity, whereas at present true lateral
connection may be employed only for simple turning points. The methods
developed in the present paper are all of central connection type.

In the first part of this section we survey applications of the methods of central
connection, lateral connection, and pseudo-lateral connection to equations
having more than one turning .point, proceeding roughly in increasing order of
complexity. Because all three methods proceed step by step through one turning
point at a time, they may be classified as having a local nature, even though the
regions of validity of the corresponding asymptotic solutions of the differential
equation may extend to infinity. Later in this section we discuss a significantly
different type of method in which the approach is of global nature.

Two simple turning points. As in Examples 3 and 4 of 5, two distinct cases
arise depending whether the function f(x) in (1.01) is positive or negative in the
interval between its zeros. In the latter case there is also a subsidiary eigenvalue
problem. Physical models corresponding to the two cases are the potential barrier
and the potential well, respectively.

Solutions date back almost 50 years, and references can be found, for
example, in [7, Chap. 1], [22], and [23]. From the mathematical standpoint, the
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first fully satisfactory applications of the central connection method were those of
Jeffreys [13], [14].

Rigorous solutions by means of lateral connection were published indepen-
dently (and in the same year) by Fedoryuk [3], Fr6man and Fr6man [5], and the
present writer [23]; the last two references also include error bounds.

Three simple turningpoints. Special examples have been solved by Nishimoto
[21, 6] and the present writer [24, p. 516, Exercises 15.4 and 15.5], in both cases
by lateral connection.

Foursimple turningpoints. This situation arises with double potential barriers
or wells. As in the case of two simple turning points there are two cases, depending
on the sign off(x). A formal solution of the barrier problem was given by Bohm [1,
pp. 283-295], using central connection. Rigorous solutions by lateral connection,
both for barriers and wells, have been supplied in a series of papers by N. Fr6man
and her collaborators [4], [6], [32]. Other work on these problems has been
discussed by Heading [9], [10].

Arbitrary number of simple turning points. Problems of this type have been
treated by Murphy and Good [20] (central connection), Fedoryuk [3] (lateral
connection), Evgrafov and Fedoryuk [2] (lateral connection), and Heading [9]
(lateral connection). Some of the analysis in these references is formal or given
incompletely. Sibuya [29] and Weinberg [31] have given completely rigorous
analyses, using lateral connection, for the case in which g(x)= 0 and f(x) is a
polynomial, or has polynomial growth rate as Ix c.

Two turning points, at least one o] which is multiple. Heading [11, 8] has
solved the general problem in which one of the turning points is simple and the
other is of any odd multiplicity by lateral connection, generalizing a device used by
the present writer when both turning points are simple [23]. More recently,
Heading [12] has made a further extension to solve the general problem in which
the two turning points are of arbitrary odd multiplicities.

Leung [15], 16] has treated the example

d2w/dx2= u2x2(x 1)2w
by rigorous application of pseudo-lateral connection although the solution in
these references is incomplete.7

Arbitrary number of multiple turning points. Again using pseudo-lateral
connection, Leung [17] has solved the eigenvalue problem in the general case in
which g(x)=-O, f(x) is positive as x +oo, and there are any number of multiple
turning points, provided that none of the turning points is of type II (defined in

2). This problem was treated in Example 4 of 5; compare the comments in the
closing paragraph in this example. Leung’s formula for the eigenvalues agrees
with (5.24), except that the order of his estimate for the error term is weaker than
our O{Xz+l(k)}.

Global central connection. Methods of this type have been proposed by
several writers, including Heading [8], Pike [28], and Lynn and Keller [18]. The
idea is to try to approximate, in a uniform manner, the solutions of the given

7 The complete solution has been communicated by Dr. Leung to the present writer. It agrees with
the specialization of Example 1 of 5 above.
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differential equation by those of an equation of the form

(6.01) d2w/dx2 u2p(x)w,

in which P(x) is a polynomial whose degree is the sum of the order of the turning
points in the interval (or complex domain) under consideration.

When we are dealing with problems in which the turning points are fixed this
approach has no advantages to offer compared with the methods of the present
paper. Indeed, the reverse is true; little is known about the solutions of equations
of the form (6.01) even for quite moderate values of the degree of P(x); compare
[26, 6.3], and [30]. Clearly unless connection formulas are independently
available for (6.01) there is little to be gained by trying to use the solutions of this
equation to approximate those of the original differential equation.

As noted by Lynn and Kelleron page 393 of [18], however, if the locations of
the turning points are variable owing to the presence of a second parameter in the
differential equation, then there is an important potential advantage in the global
approach" it may yield connection formulas that are uniform with respect to the
second parameter, even when two or more of the turning points coalesce. As we
noted in the Remarks at the close of Example 1 in 5, the approach used in the
present paper fails in these circumstances.

At present, the only rigorous development of the global approach that
permits coalescence of turning points appears to be that of the present writer [25].
This reference treats the case in which P(x) is a quadratic polynomial; the
solutions of (6.01) are then expressible as parabolic cylinder functions. Approxi-
mate connection formulas are derived for large u, and they continue to be
uniformly valid when the two simple turning points in the original differential
equation coalesce into a double turning point. These results could be combined
with those of the present paper to treat problems in which there are movable
turning points, provided that the only kind of coalescence that occurs is of pairs of
simple turning points.

Conclusions. The present paper provides a rigorous solution, and in fact the
first general solution, of the problem of constructing connection formulas for
second-order differential equations having an arbitrary number of turning points
of arbitrary multiplicities.

The method used is a generalization of the central connection procedure
developed by Jeffreys for two simple turning points, and employs only real-
variable theory in the analysis. In consequence, the coefficients in the differential
equation need not be analytic functions of the independent variable, nor is there
any need to investigate the topology in the complex plane of the principal curves
(or anti-Stokes lines).

Acknowledgment. The numerical integrations of the differential equation
(5.35) used to check Example 5 were carried out by Mr. R. E. Kaylor. The author
is pleased to acknowledge this assistance.
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NOTE ON SOME CONVOLVED POWER SUMS*

L. CARLITZ"

Abstract. Neuman and Schonbach have obtained explicit formulas for the sum

N

S(i,];N)= E k’(N-k) (i,j >--0)
k=0

by using known results involving Bernoulli numbers. In the present paper the functions

N

S(i,j;N;a)= , (k+a)’(N-k-a) (i,j>-O),
k=0

S’(i, j; N; a)= iS(i- 1, j; N; a)-]S(i, j- 1; N; a),

where a is arbitrary, are evaluated. The evaluation of S’(i,j; N; a) makes use of an appropriate
generating function. The final formula for S(i, j; N; a) reduces to the Neuman-Schonbach result when
a=0.

In addition it is shown that the sum $(i, j; N) is closely related to the Eulerian numbers.

1. Neuman and Schonbach [3] have obtained explicit formulas for the sum

N

(1.1) S(i,];N)= E k’(N-k)’,
k=0

where i, ] and arbitrary nonnegative integers. They show in particular that

(1.2) S(i, j; N)= P,,i(N),
where P,i(x) is a polynomial of degree +j + 1 in x. The coefficients are simple
multiples of Bernoulli numbers; also

(1.3) Pq(-x (-1)i+j+lpi,j(x) (i +j > 0).

In this note we make some additional comments concerning the problem. It is
well known that the sum [4, Chap. 2]

n--1

(1.4) E i(k+a)-l=B,(n+a)-B,(a) (i>0),
k=0

where a is an arbitrary parameter andB(a) is the Bernoulli polynomial of degree
defined by

X e XY, Bi(a)..(1.5)
eX-1 i=o

Thus

(1.6) Bi(a)
k=0

(i)kBkai-k,
where the Bk are the Bernoulli numbers.

B B(0),

* Received by the editors June 19, 1975, and in revised form February 28, 1976.

" Department of Mathematics, Duke University, Durham, North Carolina 27706. This work was
supported in part by the National Science Foundation under Grant GP-37924X.
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In view of (1.4) it is natural to consider the sum

N

(1.7) S(i,];N;a)= (k+a)’(N-k-a)
k=0

where again i, are nonnegative integers and a is arbitrary. Then clearly

xiy N

E S(i,]; N; a) E e(k+a) e(N-k-a)Y,
i,j=o k =o

so that

(1.8) E
i,j,N=O

Since

xiy N ea(x-Y)
S(i, j; N; a)z (l_eXz)(l_eYz).

1 1.___(, a b )(1-az)(1-bz) a-b 1-az 1-bz

we get

Thus

(1.9)

and

Since

ea(X-y) e e y

e-ey 1-eXz 1-Yz
ea(x-y) 1 e a(x-y) 1
1- ey-x 1- eXz ex-y 1 1 eYz"

ea(X-y)

(1-eXz)(1-erz)

(X y) e -a(x-y) (y x) e-a(y-x) 1 (x y) e(-Y) 1
(1-eXz)(1-eYz) ey-x- 1 1-eXz ex-y- 1 1-eYz"

We now apply (1.5). Thus

(x y) ea(x-Y) (X y)n X_Z B,(a) E (-1)’B,+,(a)iy’eX-y 1 ,,=o n i,=o 7-

(y x) e -a(y-x)

E (- 1)iBi+j(-a) x’y
er-x- 1 i,j=o

1 E elxzl E1-eXz N=o t,u=o

it follows that the right-hand side of (1.9) is equal to

(1.10) . zX’y’-N’ (-- 1’i-r()Bi+j_r(-a)- (-1)i-r()Bi
i,j,N=O r=0 r=O

By (1.8),

(x- y) ea(X-Y) xiy N’. S’(i,j;N;a) z
(1-eXz)(1-eYz) i.,N=o
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where

(1.11) S’(i, ; N; a)= iS(i- 1, ; N; a)-]S(i, ]- 1; N; a).

Comparison with (1.10) now gives

r=0 r=0

For a 0, (1.12) reduces to

(1.13)
iS 1, ]; N)-IS(i, ]- 1;N)

r=0 r=0

Note that by (1.1) and (1.11),

(1.14) S’(i,];N; a)= . {i(N-k-a)-j(k +a)}(k +a)-(N-k-a)-1,
k=O

so that

(1.15) S’(i, ; N; a) =-d-da S(i ; N; a),

thus justifying the notation.

2. It should be remarked that one frequently encounters summation for-
mulas involving an appropriate derivative. Indeed (1.4) can be thought of as an
instance of this. A better example is the following.

Put
m-1

Sn(m; :)= Y, (t+:l)n’’’" (t+:g)"k,
t=0

m--1

S’,(m ) Y, (d/dt){(t + 1)n’... (t + :k)nk}.
t=0

Then [2, p. 752]

(2.1) S’n m Bn ,n,, $j + m, gig + m) Bn,, ,n, ’ $Jg ),

where

"’XkZ Bnl,...,nk (:1, ", :k)
Xna" ilk (X -1-" -[- Xk) elXa-b’"-bkXk

,,=0 n nk eX+’"+x 1

On the other hand

(2.2) S.(m; )
Si+ti =hi tl tk ""

m tl+’"+tk+l

tl +" "-t-tg + 1"
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If we integrate (1.12) with respect to a, we get

S(i,];N; a)=A(i,];N)+ (-1)i-r+l(i)Bi/’-r/l(--a)Nr
,=o r +j-r+ l

(2.3)
-b .. (--1)J-r+l(J) Bi+’i-r+l(a)’r
j=o xr, +j-r / l

where A (i, ];N) is independent of a.
To findA (i, ]; N)we return to (1.11). Changing the notation slightly, we have

rS(r- 1, +i-r+ 1; N; a)-(i +i-r+ 1)S(r, +i-r; N; a)
(:2.4)

=S’(r,i+]-r+l;N;a)

Multiply both sides of (2.4) by

1 (i+rl) 1 (i+j+l)i+j-r+l i+j+l r

so that

(1 =<r--<i).

(2.5)
( +])S(r-1 +j-r+ l" N; a)-(i +r OS(r, +j-r N; a)
r-1

1 (i +j + 1)S,(r, +j r+l N; a)
i+j+l r

For r 0 we have

(l_<-r-<i).

(2.6) -S(O,i+j;N;a)=-------
i+j+l

S’(O,i+]+l;N;a),

since by (1.12)
i+j+l (i +j+l)S’(O, +j + 1; N; a)= Bi+]+l(-a)- Y, (-1)i+j-r+l Bi+j_r+l(a)N
r=0 r

Bi+i+l(-a)-(-1)i+i-r+l(a-N)
Bi+j+l(-a)-Bi+j+l(N- a + 1)

and

B,,(1-x)=(-1)"B,,(x).

On the other hand

N N

S(0, i+j;N; a)= E (N-k-a)i+’i Y (k-a)i+*

k =0 k =0

1
+j + 1 [Bi++I(N- a + 1)-Bi+i+l(-a)}.

It now follows from (2.5) and (2.6) that

( j) 1 (i+j+l)s,(r,i+j_r+l. N;a).(2.7) S(i, j; N; a)=i +] +--- r=0 r
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Substituting from (1.12) in (2.7) we get

We have

1 (i++ 11 (_l)r_tBi+j_t+l(_a)N
i+j+l r=0 r t=o

i+j+l t=o r=t r t

,=o +j-t+ 1

Similarly

+j + 1 r=O r t=o
(__l)i+j-r-t+l(i+]--t

r + 1)Bi+_t+l(a)Nt
1 i+j+l

+j+ 1 t=o Bi+j-t+l(a)Nt
min(i,i+j--t+l) )i+_r_t+(i+j+l)(i+]_r+l)E (-1

r=O r t

We find that

1 min(i,i+j--t+l

i+j+l r=0
(__l)i+j_r_t+l(i +j + 11(i +j--r+ 1)r t

i+j--t+l
0

1
i+j+l

(O<-t<-j),

(j<t<=i+j),

(t=i+j+l).

Thus (2.8) becomes

(2.9)
S(i,j;N;a)=

(i+j+l)! t=o i+j-t+l

+ (-1)J-t+l()Bi+-17’l!a)Nt.
t=o +j-t+ 1

This may be written in the form

i+ji!j! Ni+j+ q-S(i, j; N; a)=
(i +j + 1)!

(2.10t
i+j

+ 2
k =i+1

(_l),-I( )Bk.(.-.a!.Ni+,-k.+li+i-k+l k

(-1)i-( J ) B(a)Ni+J-k+i+j-k+l k
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For a 0, (2.10) reduces to the formula of Neuman and Schonbach.
Comparing (2.10) with (2.3), we get

(2.11) A(i, j; N)=
i!j! Ni+J+l"

(i+]+ 1)!

3. The Eulerian numbers [1], [5, Chap. 8] may be defined in the following
way. Put

(3.1) an(z)=(1-z)n+l knz k.
k=0

Then an (z) is a polynomial of degree n"

(3.2) an(z) A,kzk (n >-- 1);
k=l

the Ank are the Eulerian numbers.
It follows from (3.1) that

x 1-z
(3.3) Y. a,(z)= a-z)x.

,=o nt 1-ze

us by (1.8), with a 0,

N)xiy 1
S(i,]’, "i[j[zN=id,=o (1-e*z)(1-eYz)

ai(z) a(z) xiy=(1-z)-
(1 Z) (1 z)7i"ij=0

Comparing coefficients of x’yJ we get

(3.4) E S(i, ]; N)z (1 z)-i-]-2ai(z)a](z).
N=O

The right-hand side of (3.4) is equal to

E Aizs Airzt.
r=O r =0 t=O

For convenience we take

(3.5)

Thus (3.4) gives

(36) S(i, ]; N)= Y.
r+s+t=N
s<--i,t<--j

(n =0),
Ano=

(n 1, 2, 3,-..).

( +] + r + l )AiAit ( +j +N- s + l) AiA,.r s+t<=v N- s t
<=i,t<=j

Alternatively if we write (3.4) in the form

(l--z)i+i+ S(i,];N)z=ai(z)ai(z),
N=O
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we get

(3.7) A,a4js

It is well known that

(3.8) An,k An,,,-k+l (1 _-<k _-<n).

Thus for i, j >_- 1,

E A,A,= Y. A,.,_/A._,/= E A,A,.
r+s r+s r+s +j--n+2

Let T(i, ]; n) denote the right-hand side of (3.7), so that we have proved that

(3.9) T(i, ; n)= T(i, ]; +-n + 2).

It is not difficult to prove (3.9) directly without (3.8). Indeed

i+,-+2 ( i+j+2 )T(i, j; +j- n + 2) E (-1)i+-n-r S(i, j; r)
r--0 i+j-n-r+2

(/+]+2)(_1)+ E (-1)"+r S(i,j;r)
r=o n+r

i+j+2 (+j+2)(-1)i+ E (-1) S(i,j; r-n).

Since S(i, j; N) is a polynomial in N of degree +j + 1, we have

i+j+2

r=O
(-1)( +J * 2)S(i, j; r- n)= 0,

so that

T(i, j; +j- n + 2) (-1)++1 X (-1) S(i, j; r- n)
r=0 r

Finally by (1.3)

(--1)i+j+l (--1) S(i, j; r- n).

S(i,j; r-n)=(-1)i+j+ls(i,]; n-r).

This completes the proof of (3.9).
We remark that (1.8) is easily generalized. Thus if we put

(3.10) S(i,j,k;N;a,b) , (r+a)i(s+b)i(N-r-s-a-b)k

r+s<=N

then

i,j,k =0

xiyJz k

S(i, j, k; N; a, b)i-i :r+s<=N (r+a)x (s+b)y (N-r-s-a-b)ze e e



708 L. CARLITZ

Hence
k a(x-z)+b(y-z)

XyZ N e
(3.11) S(i,],k;N;a,b) i!] u

N=Oi,j,k=O !k! (1-eXu)(1-eYu)(1-e"u)"

For a b 0, it is clear how (3.6) and (3.7) can be generalized. On the other
hand, generalization of (1.12) and (2.10) seems much more complicated. The
extension of (1.2) makes use of the partial fraction decomposition

1 a 2 1=E (a-b)(a-c) 1-au(1-au)(1-bu)(1-cu)

where indicates cyclic permutation of a, b, c. Then

(1 eXu)(1 e Yu)(1 ezu)

(y-z)(z-x)(x-y) =--(1 exu)(1 eru)(1 eZu)

2x

(eX eY)(eX e z) 1- eXu

(y-x)(z-x) y-z
(er-x 1)(e 1) 1 e u"

We have

(y-x)(z-x)
(ey-X-1)(e"-"-l)

r/s(-1) Br+jBs+k
!s!jVkVr,s,j,k =0 r

Y’, (-1)’b(i, j, k) xiyz--k
i,j,k =0 !j k !’

where, for brevity, we put

(i)(3.12) b(i, j, k)= Br+iBs+k.
r+s =i r

Put

S’(i, j, k; N)= Z/j(j- 1)S(i- 1, j-2, k; N) -2 i(i- 1)iS(i-2, j- 1, k; N)
(3.13)

where

S(i, j, k; N)= S(i, j, k; N; O, O)

and the Y’, refers to cyclic permutation of i, ], k. Then we have

(3.14)

where

S’(i,j;k;N)= Y’, ()b’(i-r,j,k)Nr,
i,],k r=0

b’(i, j, k)=jb(i, j- 1, k)-kb(i, j, k- 1)

and ’i,j,k indicates cyclic per’mutation of i, j, k.
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UNIFORM ASYMPTOTIC SOLUTIONS OF NONHOMOGENEOUS
DIFFERENTIAL EQUATIONS WITH TURNING POINTS*

DONATUS U. ANYANWU

Abstract. Langer’s methods of the comparison equation and its generalization by R. Y. S. Lynn
and J. B. Keller is extended for the treatment of a nonhomogeneous second order ordinary differential
equation with an arbitrary number of turning points. The development is purely formal but the method
is verified with some examples.

1. Introduction. We wish to obtain a formal uniform asymptotic solution, for
[AI large, of the differential equation

d2u
(1.1)

dz
tA2R(z,A)u=A2G(z,A) z, A ,9.

Here N is either a complex domain or a real interval and 6e is either a sector of the
complex A-plane or a semi-infinite interval of the real axis. To do so we shall utilize
a generalization of R. E. Langer’s method [1] by R. Y. S. Lynn andJ. B. Keller [2].
We will assume that R (z, A) and G(z, A) are analytic or infinitely differentiable in

Let zj, j 0, ., N, be zeros of orders rnj of R (z, oo), i.e. the turning points,
and define/x =0 rni. We propose a solution to (1.1) of the form

(1.2)
u(z, A) B(z, A) V[(z, A )]

+A -’/("+2)G(z, A) V’[:(z, A)] +H(z, A)

where V(:) is a solution of the comparison equation

k =0 k =0

The constants Yk, k =0, 1,"’,/x, and the functions B(z, A), C(z, A) were
introduced by Lynn and Keller [2] in the treatment of the linear homogeneous
problem. The constants Fk and the function H(z, A) are now introduced for the
nonhomogeneous problem. If Vl(sc) and V2() are two linearly independent
solutions of the homogeneous form of (1.3), then

(1.4) V() O() Y()+ 0()V()

* Received by the editors May 8, 1975, and in final revised form March 20, 1976.

" Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
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is a solution to (1.3), with

Fn V(n) dr + c,Q1(7) - k_0
(1.5) 1 I ( Fr)V,(r)dr+c2O2()= =0

In (1.5) the constant W is the Wronskian of V() and V2(), and c, c2 are
arbitrary constants. It follows that once the asymptotic properties of V() and
V2() are known, those of V() can be derived.

A uniform representation of u(z, a) in (1.1) for the case 0 has been
obtained by F. W. J. Olver [3, pp. 386-390] for some special R (z, a). e case

1 was treated by R. A. Clark [4], C. R. Steele [5], A. H. Nayfeh [6, pp.
352-356] and again by Olver [3, pp. 429-433]; while the case 2 andN 0was
treated by Nayfeh [6, pp. 356-358] and by D. J. McGuiness [7]. e above
treatments were for special forms of R (z, a). Our purpose here is to obtain the
formal solution for the general problem.

2. e equation lot H(z, a). We substitute (1.2) into (1.1) and we also use
(1.3) to obtain the following equation:

{ -/(+2)[ C’ ko "Cn,,_(,)2n Z e-a 2’ e+ Z
k =0 k =0

+ 2RB} V+ 2

(. + ,,+,,+a--/(-* c,,_(()c +
k=0

+ (’ r+a--/( 2 r+a--/(-+ ’c r
k=0 k =0 k =0

+I(RH-G)+H"} =0.

Here primes denote differentiation with respect to z, and we have assumed that
(z). Next we equate the coeNcients of V and V’ to zero and thus obtain (2.2)

and (2.3) of Lynn and Keller [2], for the determination of B(z, 1)and C(z, ).
ere is in addition the following equation for H(z, ):

(’ 2 r+a-"/("+’c’ 2 r
k=0 k =0

(.
+I-"/("+ ’C F +I(RH-G)+H"=O.

Lynn and Keller in [2] set :(z)= a 2/(tx+2)i/l(Z)o By assuming a representation for
the constants 3’k () of the form

(2.3) Yk ""/ 2(x-k)/(/.+2) l-p.lkp k O, 1,. ., t.l,,
p=0
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and by also assuming

(2.4) R (z, ),) Z A-PRp(z),
p=0

they determined B(z, A) and C(z, A) in the form

(2.5) B(z, A)-.-. Y.. A-PBp(z); C(z, A) Y. A-PCp(z).
p=O p =0

The function b(z) was found to satisfy the differential equation

(2.6)
2 Ro(z) Ro(z)

E:O kok
p,O Hi’N=O (t t.i)m’

where bj b (zj), 0, 1,. ., N, are constants. Furthermore, the functions Bp(z)
and Cp(z) in (2.5) were explicitly determined and have the form:

(2.7) Bp(z) cos (O(z)-qp(Z)),

(2.8) C(z) sin (O(z)- O(z))

where

(2.9) 0 O(Z, ZO, kl); p p(Z, Zo, k,p+l), p 1, 2, ",

with o 0. Regularity conditions on Bp(z) and Cp(z) required that g- 1 of the
+ 1 constants yp, p= 1,..., be specially chosen. O(z) and Op(z) contain

arbitrary integration constants.
We will in the nonhomogeneous case assume

(2.10) G(z, A , A -PGp (z)
p=O

and seek to determine H(z, A) in (2.2) in the form

(2.11) H(z,A),--, Y’. A-PHp(z).
p=O

Regularity of the coefficients, Hp(z), at the turning points will be achieved by
utilizing the coefficients Fkp in the expansion

(2.12) l-,k
p=0

It will then follow that the asymptotic representation of u(z, h) in (1.2) will be
valid everywhere in, at least, a subdomain of 5 containing the turning points, once
the appropriate linear combination V() of (1.3) is chosen.

3. The equation for ltt,(z ). On substituting (2.4), (2.5), (2.10)-(2.12) into
(2.2) and equating coefficients of like powers of A, we obtain the following
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equation for Hp(z)"

(3.1)

Here

Ro(z)Hr,(z)=Gp(z)-(’)2Bo(z) r-J(z),
k=O

(3.2)
J.(z)= E RoH.-o+(’) "

q=l k=O

q"’E C’ E Fkqk’+ ’ Cp-q-1 E r op-q-1
q =0 k =0 k =0

where terms with negative sub-index are zero. We observe that Jo(z)= 0. Since
Ro(z) has a zero or order mj at zj the R.H.S. (right-hand side) of (3.1) together
with its first m 1 derivatives must also vanish at z in order that Hp (z) be regular
at that point. Thus we have the following regularity conditions:

(3.3) dz
y. o
k=O

at z z,

s=O,...,m-l, ]=O,...,N, p=O, 1,....

Equation (3.3) can be viewed as/z linear equations on the/z + 1 constants Fkp,
k 0,...,/z. Thus since the rank of the coefficient matrix cannot exceed /x,

special choices of the constants Fkp can be made to ensure the regularity of Hp (z)
at every point of 9, provided Gp(z) is regular there also. We note from (2.6) and
(2.7) that (,)2 and Bo(z) do not vanish at the turning points.

It is clear that at least one of these constants can be chosen arbitrarily. Such a
choice will be aimed at simplifying (1.3) and making it easier to solve. The most
obvious way is to aim at reducing the degree of the polynomial in the R.H.S. of

4. Examples. We now consider some specific examples. First we look at the
case for which Ro(z) has no zero in D. Thus/z 0. We choose 3/0 Too 1. Since
no regularity conditions on Bp(z), Cp(z) and Hp(z) have to be satisfied we choose
TOp 0, p 1, 2, , and F0 0. Consequently the comparison equation (1.3) for
/z 0 becomes

(4.1) V"(s) + V(s) 0

with the solution

(4.2) V(s) sin (:- sCo).

From [2] we obtain the result

lIZ(4.3) O(z) =- R /2(s)R(s) as.
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Furthermore (2.6) yields ’(z) and (z):

(4.4) (,)2= Ro(z),

(4.5) 6(z) R/2(s) ds,

where z0 is an arbitrary point in D, and where we have chosen the constant

o (z0)= 0. Hence in (4.2) we also set sCo 0. On using (4.4), (2.7) and (2.8)
.give

(4.6) Bo(z) (cos O(z))/R/4(z), Co(z) (sin O(z))/R/4(z).

Finally we obtain Ho(z) from (3.1) with p 0 as follows:

(4.7) Ho(z) Go(z)/Ro(z).

Thus we have the following first approximation for (1.2) in this case:

(4.8) u(z, a)=g1/4 sin [a(z) + 0(z)] + Go(z)/Ro(z)+ O(a-).

To obtain more terms in the expansion we only need to compute Bp(z), Cp(z)
from (2.7) and (2.8) (or the more explicit forms given in [2]), and Hp(z) from (3.1).
This result corresponds to Olver’s [3, pp. 386-390] when Rl(z) R3(z)
0.

Next we look at the case in which Ro(zo) 0, but R’(zo) 0 for some z0 in D.
Then/z 1 and N 0. Equation (2.6) reduces to

(4.9) (,)2= Ro(z)
-(z)

where we have chosen the free constants o (Zo)=0 and /1 /o =-1. The
choice Yo 0 implies Yoo 0. Integrating (4.9) we obtain

(4.10) (z)=
3

[-Ro(s)]/2 ds

Since no regularity conditions on Bp(z), Cp(z) need to be satisfied we set yap 0,
p 1, 2,..., and hence O(z) is also given by (4.3) (see [2]). Using (4.9) in (2.7) and
(2.8) for this case we obtain (for p 0)

(4.11) Bo(z) [-(z)/Ro(z)]/4 cos O(Z), Co(z) [(Z)Ro(Z)]-1/4 sin O(z).

We now seek to determine Ho(Z) and choose FI= 0. The comparison equation
(1.3) for/x 1 becomes

(4.12) V"(sc) :V() F0.
On using (1.4) and (1.5) for/z 1, V(:)= Ai(sc), Vz(sc) Bi(:) the solution to
(4.12) can be seen to have the form

(4.13) V()=ciAi()+c2Bi()+Fo(-)a/2So,a/3[(-)3/2]
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where Ai(:), Bi(:) are the Airy functions and S0,1/3(’) is the Lommel function
(see Watson [8]). Now (3.1) for p 0 yields

B F(4.14) Ho(z)=[Go(z)-( o(Z) oo]/Ro(z).

Regularity of Ho(z) at z Zo is achieved if we choose

(4.15) too Go(zo)/([’(Zo)]2Bo(zo)),
having used (3.3) for s 0, ] 0 and p 0. Thus a first approximation to (1.2) for
this case is given by

U (Z, I no(z W[_l 2/3(z)]----l/3Co(z Vt[i 2/3 (z)]

(4.16) + Go(z)/Ro(z)-[’(z)/’(Zo)]2[Bo(z)/Bo(zo)]
[Go(zo)/Ro(z)]

"+" 0(,. 1),
where V(:) is given by (4.13), b(z) by (4.10) and Bo(z), Co(z) are given by (4.11).
To obtain more terms we again compute Bp(z) and Cp(z) from [2]. We also use
(3.3) with s 0 to obtain FOp and finally use (3.1) to obtain Hp(z). This case was
considered by Clark I-4] and Nayfeh [6, p. 356]. If Rl(z) 0, 0(z) 0 and hence
Co(z) 0. Also if R,(z)= 0, p 1, 3,..., then our result can be shown to be
equivalent to Olver’s [3].

When Ro(zo) =R’(zo)=0, but R"(Zo)#O, then we have a second order
turning point at z Zo. In this case mo =/x 2 andN 0. We choose 3’2 3’20 -z
and 3’1 0. The other constant 3’0 now has to be employed to ensure regularity of
Bp(z), Cp(z) at z Zo. Consequently, on choosing o 0, (2.6) becomes

(4.17) (,)2 -4Ro(z)

and integrating this equation we have

(4.18) (z) 2 [-Ro(s)]1/2 ds

since o 0, 3’oo 0. In [2], O(z) for this case was found to be

(4.19)

where

(4.20)

l zZO(z) -- {R1/Z(s)R1(s)+43"olR/Z[c[(s)]-2} d$,

3"01 [-2R(zo)]-l/2Rl(zo).
We have, from (2.7) and (2.8),

Bo(z) {[(z)]2/[-4go(z)]}1/4 cos O(z),
(4.21) Co(z) {-4/([(z)]2Ro(z))}/4 sin O(z).

Next we set F2 0. Equation (1.3) becomes

(4.22) V"(sc) + (3"o- 1/4sc2) V= Fo+ Flsc
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with the homogeneous solutions

(4.23)
V() Dvo_/(), V2(sc)= +/-F(1/2+ yo)[sin r3,oDvo_/()+ Dvo_/(-sc)],

where Dvo_/() is the parabolic cylinder function. Thus V() is given by (1.4) with

O,(:) ’,/I (ro+r,n)v(n)dn+Cl,
(4.24)

O(:)=4-I (ro+rn)Vl(n) drt+C.

Defining

(4.25) f/(z) 4Ro(z)/b 2(z)]3/,
(3.1) for p 0 yields

(4.26) Ho(z) {Go(z)-12(z) cos 0(z)[Foo + FlO4(z)]}/Ro(z),

where we have used (4.17) and (4.21) for b’(z) and Bo(z). Condition (3.3) for
p 0, s 0, 1, yields the following:

(4.27) Foo Go(zo)/(Zo),

(4.28) 1’10 G’o(Zo)/5/3(Zo)- Go(zo)-’(Zo)/8/3(Zo),
having used the fact that O(zo) O’(zo) 0 for this case. Thus we have

U(Z, t Bo(Z W[l 1/2(z)]--[-i-1/2C0(z) Vt[/ 1/2(z)]
(4.29)

+{Go(z)-a(z) cos 0(z)[roo + rlot(z)]}/Ro(z)+
where Foo and Fol are given by (4.27) and (4.28), Bo(z), Co(z) are defined in
(4,21). Previous treatment of this problem, instead of (1.3)-(1.5), employed V(:)
in (1.2) given by

V(:) Fo(a)To(:)+ FI(A )TI(),

where T0(s) and TI(:) satisfy

T’ + (Y0- see) To 1 and T’ + (Yo- :)T :.
Nayfeh in [6, pp. 356-358] and McGuinness in [7] used this representation. From
[7] we see that such a representation required four coefficient functions in the
expansion. However, that representation is easily seen to be completely equival-
ent to ours by identifying the four coefficient functions as: FoB(z,A),
FI[B(z,A)+A-1/2C(z,A)], A-/2roC(z,h) and A-I/2FIC(z,A). We note that
for /z =2, F0 and FI are both O(A). Setting Ro=-Z, Rl(Z)=-p(z) and
Ri(z) =-qi-E(Z), ] 2, 3,..., McGuinness’s results are recovered.

Finally we look at the case Ro(zo) Ro(za) 0 but R’o(Zo) O, R(Zl) 0.
Here again/z 2, but N 1. With the same choices of T1, "Y2 and F2 as in the
preceding case for N 0, our comparison equation has the same form as (4.22)
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except that now yo, Fo and F1 are different. Choosing -o as in [2], (2.6)
2yields yoo o and

(4.30) [’(z)]2 4Ro(z)/[g- 2(z)]
By integrating (4.3) Lynn and Keller determined (z) as follows:

lz1 ---+ 1- 2 [- Ro($)]1/2 ds,(4.31) - --sin-1 o
and

(4.32)

Also

o 2 [-Ro(s)]1/2 ds

1 Iz [ RI(S) 4TolR/2(s)
(4.33) 0(z)=- [/)- -2(s) ds

where the regularity condition at z z determines To1 as

(4.34)
I($) d$

]/01 :’ e(s))] ds"

Using (4.30), Bo(z), Co(z) are obtained from (2.7), (2.8):

(4.35)

():2(Z) 1/4

Bo(z)=\ 4Ro(z) ]
cos 0(z);

4 ) 1/4

C(z)= Ro(z)[_2(z)] sin O(z).

In this case (3.1) also yields (4.26) for Ho(z) except that we replace f(z) in that
equation by

(4Ro(z) )3/4(4.36) fi(z) \o_---z)
with (3.3) for p 0, s 0, ] 0, 1, giving

(4.37) Foo (Go(zo)l + Go(z1)o)/(2o,1),
and

(4.38) Fo (Go(zo)fil- Go(Zl)O)/(2oofil).
Here rio fi(Zo), 11 h(zl) and also 0(Zo) 0(z)= 0. Thus u(z, A) is given by
(4.29) with Bo(z), Co(z) given by (4.35), (z) by (4.31), Foo and Foa by (4.37) and
(4.38) with 12(z) replaced by 12(z). The author is not aware of any previous
treatment of this case.

It is interesting to see that when Zo converges to z l, the result for two first
order turning points goes over into that for one second order turning point. This
fact was demonstrated in [2] for the linear homogeneous problem. To show this
for the nonhomogeneous case we only need to show that Foo and Foa in the two
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cases become identical when Zo Zl. Since o 0 when z0 z1 we observe that
l(z) f(z). Hence (4.37) goes over into (4.27). To show that (4.38) becomes
(4.28) we only need to see that

lim [ Go(zo)(z1) Go(Zl)(Zo)] G’(zo)gl(Zo) Go(zo)lT(Zo)
zl->zo --(Zl) ’2/3(Z0)

having used the fact that ’(Zo)= 2/3(z0) from (4.17) and (4.25).
Conclusion. The development here is a generalization of the method of Clark

[4] and McGuinness [7] much in the same way that Lynn and Keller [2] represent a
generalization of the method of Langer [1].

Equation (1.1) occurs in the analysis of the stability of toroidal shells (Clark
[9], Tumarkin [10]), in the analysis of thin elastic shells (Clark [11]) and in heat
conduction in hollow cylinder (Holstein [12]).
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helpful criticisms by Professors Joseph B. Keller, F. W. J. Olver and W. Wasow.
The referee’s comments are also acknowledged with thanks.
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CAUCHY’S PROBLEM FOR SYSTEMS OF FIRST ORDER ANALYTIC
ELLIPTIC EQUATIONS IN THE PLANE*

CHUNG-LING YU

Abstract. Let a, b, c, d, f, g be analytic functions of two real variables x, y in the z x + iy plane.
Consider the elliptic system:

Ou Ov Ov Ou
au +by +f, __+m cu +dy +g.

Ox ay Ox Oy

The following topics connected with the Cauchy problem of the abovementioned system will be
investigated: (i) The necessary and sufficient conditions for the existence of the global solutions. (ii)
The estimate of the "stability" of the solutions. (iii) The method for constructing the global solution.
(iv) The construction of the approximate solution with the imprecise data. (v) The generalizations to

the quasi-linear analytic elliptic system:

Ou Ov Ov au
-fl(u, v,x, y) and --+--=f2(u, v,x, y).

Ox Oy ax Oy

1. Introduction. The aim of this paper is to study the Cauchy problem for the
first order linear elliptic equations (in normal form)

(1.1)

au av
Ox Oy

au + by +[,

Ov Ou+ cu + dv + g
Ox Oy

and first order quasi-linear elliptic equations (in normal form)

(1.2)

Ou av
Ox Oy

f(u, v, x, y),

Ov au
--+--=f(u, v, x, y)
Ox Oy

where a, b, c, d, f, g, fl, ]’2 are analytic functions of their arguments.
The following areas will be investigated: (i) The necessary and sufficient

conditions for the existence of global solutions for the Cauchy problem of (1.1).
(ii) The methods for constructing the global solutions of the problem of (1.1) and
the solution of (1.2). (iii) The "stability" for the problem of (1.1) and (1.2). (iv) The
method for constructing the approximate solutions of (1.1) with imprecise data.

The first part of this paper will deal with the problem with analytic data; the
second part will deal with the problem with nonanalytic data. For general
reference, the reader is referred to the two survey articles by Payne [16], [17], and
the books of Gilbert [7], [8], Wendland and Haack [23], and of Vekua [21], [22].

Some results in this paper, especially the necessary and sufficient conditions
for existence and the methods for constructing the solution, may be extended to

* Received by the editors November 2, 1973, and in final revised form April 26, 1976.
Department of Mathematics, Florida State University, Tallahassee, Florida. Now at Faculty of

Engineering, Benghazi University, Benghazi, Libya.
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equation (1.1) with nonanalytic coefficients [26] and to higher order analytic
elliptic equations [27].

2. Definitions and notations. Let f(z, , z) be a holomorphic function of
the complex variables z,..., z in a domain G C. We can associate with
f(z,...,z,) another function, defined in the conjugate domain G=
{(sr, (); ((,..., sr,) C"; ((,..., (,) G} by the formula

(2.1) f*((,’’’, (n)=f((,""", ), ((1,""’, (n) ,
We call f*((, ., (,) the * conjugate function to f(za,. ., z,). It is easily seen
that f*((,..., (,) is a holomorphie function of (,..., & in .

By introducing the complex notation

(2.2) 0= Ox ’we can write (1.1) in the complex form

0
(2.3) ow Aw +B# +F

and (1.2) in the form

a
(2.4) 0- w H(w, ff, x + iy, x iy)

where

w u + iv, A 1/4(a + d + ic ib),

B 1/4(a d + ic + ib ), F 1/2(f+ g),

H 1/2(fl + if2).

If we continue a, b, c, d, f, g, fl, f2 into the space of two complex variables, we
obtain A, B, F, H as holomorphic functions of the two complex variables

z x + iy, ( x iy.

From now on we will assume D to be a simply connected domain in the
z x + iy plane whose boundary OD is supposed to contain a segment o-, o"

{x" a < x < b}. We assume er to contain the origin as an interior point. We also
assume A (z, (), B(z, (), F(z, (), H((I, 2, z, () are holomorphic for z, sr
D U o- U D, I,=l <M.

The Cauchy problem for the equation (1.1) (or (1.2)) can be stated as follows"
Find a solution w(x, y) of the equation (1.1) (or (1.2)) satisfying the following
condition"

(2.5) w(x, O) p(x), x tr,

where p (x) is defined for x e o’. Note there is no loss in generality in assuming the
Cauchy data to be prescribed on the x axis.
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PART .I. CAUCHY PROBLEM WITH ANALYTIC DATA

It is well known that there have been only a few constructive methods for the
numerical integration of the analytic elliptic Cauchy problem.

Garabedian [6] has introduced a method which is suitable for numerical
integration by converting the analytic elliptic problem to a hyperbolic Cauchy
problem. Henrici [10] has used conjugate coordinates and the Riemann function
to obtain an explicit representation for the solution of the second order linear
equation in terms of its Cauchy data. He thus obtained clear information about the
domain of existence and the continuous dependence of the solutions on the
Cauchy data in a certain topology, in [3], [4], [5] Colton (see also Gilbert [8])
reduces the analytic Cauchy problem for certain higher order almost linear
analytic elliptic equations to finding a fixed point of a contraction mapping. The
problem then can be solved by classical iterative procedures.

In this part, we shall make use of * conjugate functions (see 2) and Vekua’s
integral representation [21] to reduce the Cauchy problem for (1.1) to the
problem of finding a solution to a linear complex Volterra integral equation, and
thus obtain the integral representation, continuous dependence and the domain of
existence for the solution. For equations (1.2), we again use the * conjugate
function to reduce the problem to a nonlinear integral equation, which then can be
solved by the method of successive approximations.

Our methods and results may be considered as continuations and generaliza-
tions of those of Henrici [ 10], Colton [3] and Aziz, Gilbert and Howard [ 1], [8].

3. Analytic Cauchy problem for (1.1). The integral representation in Lemma
3.1 below for the solution (2.3) in a simply connected G cD Ur UD has been
established by Vekua [21], and later extended to the boundary OG of G by Yu
[25].

LEMMA 3.1. Every C solution w(z) ofdifferential equation (2.3) in G has the
integral representation

W(Z) ((Z)+ rl(Z, , t, sro)t(t) dt
o

(3.1)
+ F2(z, i, zo, ’)c*(’) d" + Uo(z, ) exp A (z, t) dt,

where (zo, (o) is a fixed point in (G, G), b(z) is a holomorphic function in G,
Uo(z,() is a holomorphic function for z, (eDUcrUD, and F(z,(,t, z),
F2(z, (, t, ) are two holomorphic functions of the four variables z, t, (, -e
DUcrUD. In (3.1),

Uo(z, ()= Fo(z, ’) d" + d" Fl(Z, (, t, ’)Fo(t, ’) dt
o o o

(3.2)
+ d" r2(z, , t, ’)F’(r, t) dt,

o o

(3.3) FI(Z, (, t, )= F(z, (, t, n) dn,
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(3.4) F(z, ’, t, ’)= C(z, ’)+ C(, -)r(z, ’, , ) d
where F is the unique holomorphic solution o the Volterra integral equation

(3.5) r(z, , t, )= C(z, )C*(, t)+ dn C(, )C*(, t)r(z, (, , n) d,

or z, , t, reDUUD, and

Fo(z, )= F(z, () exp A (z, t) d

Conversely, the Nnction (z) whkh is given by ormula (3.1) is a solution o
differential equation (2.3) in G.

Moreover, w(z) is continuous in G U OGgandonly g(z) is continuous there.
Theorem 3.1 below provides a constructive method for obtaining a uNque

solution of the Cauchy problem for (2.3) and its domain of existence.
To 3.1. Let the Cauch data 0 (z) be holomorphk throughoutD U U

D. en the solution 4 the Cauchy problem (2.3), (2.5) is analytic or (x, y)e
D U U D, has the integral representation (3.13) below and can be constructed by
the method o[ successive approximation through (3.11), (3.12), and (3.13).

Pro@ Let us consider the integral equation

p(z) (z)+ r(z, z, t, O)(t) dt

(3.6)
+ F(z,z,O,)*()d+Uo(z,z) exp A(z,t)dt

for the unknown function (z), where F(z, (, t, 0), F(z, (, 0, ), and Uo(z, () are
functions given in Lemma 3.1 (for convenience, we set z0 (0 0), and recall that
they are holomorphic for z, (, t, e D U U D.

(3.7) h(z) p(z) exp A (z, t) d Uo(z, ),

(3.8) G(z, t)= F(z, z, t, 0),

(3.9) Gz(z, t)= Fz(z, z, 0, ’).

It then follows immediately from the definition of the * conjugate function that we
have

I0h*(z)=*(z)+ G(z, t)*(t) dt

(.o
+ G(z, t)(t) dr.

Using matrix notation, (3.6) and (3.10) are equivalent to the following
Volterra integral equation:

(3.11) H(z) q() + G(z, t)(t) dt

Set
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where

(h(z) (z)=(ck(z)H(z)= h*(z)/’ \k*(z)]’

( Ga(z, t), G2(z, t))G(z, t)= \G*z(z, t), G’(z,

Therefore, the existence and the uniqueness of the solution (2.6) follow from the
existence and uniqueness of solutions to the Volterra integral equation (3.11), and
the solution b(z) has the following integral representation"

io io(3.12) cb(z)=h(z) + Ia(z, t)h(t) dt + h(z, t)h*(t) dt

where the kernel function Ia(z, t), Iz(z, t) are holomorphic for z, t D t.J r t.J D,
depend only on G and Gz, and can be constructed explicitly by standard
procedures (see Vekua [21]).

Define the function

w(z) 4(z)+ ra(z,-, t, 0)4(t) dt

(3.13) + r(, z, O, ’)(’) dz + Uo(z, z)

exp A (z, t) dt

where 4(z) is given by (3.12).
By Lemma 3.1, the function w(z) is a solution of (2.3) inD U o- U D, and from

(3.13) and (3.6), w(x)= O(x). Hence w(z) is the desired solution of the Cauchy
problem.

Theorem 3.1 admits of the following converse"

To 3.2. Let w (z be a solution o (1.1) in D U o" U D. Then the
unction
(3.14) w(x)=p(x), xeo,,

is analytic on r and can be continued analytically into the whole D t.J r U D; i.e.,
p(z) is holomorphic for z D t_J o, t.J D.

Prool. It follows immediately from (3.1).
In view of Theorem 3.1 and Theorem 3.2, we may associate with _every

holomorphic function in D U o- t.J D a solution w(z) of (1.1) in D Ur UD. We
write accordingly

tion
Let W(D LJ r t.J 1) be the space of C solutions of the homogeneous equa-

OW
=Aw+B
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over the real field in D LI r LI D, with the topology of uniform convergence on
compact subsets. Also let H(D (.Jr [.J D) be the vector space of holomorphic
functions in .D (.Jr (.J D over the real field, with the topology of uniform con-
vergence on compact subsets. Then we have the following result connected with
the continuous dependence on the Cauchy data.

THEOREM 3.3. The transformation Tis an isomorphism from H(D (.J r (_J D)
onto W(D (.J r (.J D).

Proof. By (3.12) and (3.13), it is clear that T is 1-1, onto, linear and
continuous from H(D [3 r (.J D) to W(D (3 r D). Therefore, by the interior
mapping theorem T is an isomorphism between H(D [.J r (.J D) and W(D (_J r (3
D).

4. Analytic Cauehy problem for (1.2). We now seek a solution w(z) for (1.2)
which satisfies the Cauchy data (2.5).

Since the solution of the analytic elliptic equation is again analytic, we can
transform the Cauchy problem (2.4), (2.5) into complex form

(4.1) Wc =H(W, W*, z, (),

(4.2) W(z, sr)lc=z p(z)

where W(z, () w((z + ()/2, (z ()/2i), z x + iy, ( x iy, and W* is the *
conjugate function of W.

We assume that H(sl, sC2, z, t) is holomorphic for I(11 Is21 <M, z, t
D (_J r (.J/, and that [p (z)] <M for z D [_J r [.J/3. We then have

(4.3) W(z, ()=f(z) + H(W(z, t), W*(t, z), z, t) dt

where f(z) is a holomorphic function for z and W* is the * conjugate function of
W. Conversely, if W(z, () satisfies (4.3) then W(z, ) is a solution of (1.2).

We also find that the initial condition (4.2) is equivalent to

(4.4) p(z) =f(z) + H(W(z, t), W*(t, z), z, t) dt.

We conclude that the Cauchy problem (2.4), (2.5) is equivalent to the
following nonlinear .complex integral equation

W(z, () p(z)- H(W(z, t), W*(t, z), z, t) dt
(4.5)

+ H(W(z, t), W*(t, z), z, t) dr.

Define

(4.6)
(TW)(z, ()= p(z)- H(W(z, t), W*(t, z), z, t) dt

+ H(W(z, t), W*(t, z), z, t) dt.
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(4.7)

Let Ip(z)l, IW(z, ()l <M, for Izl, I1<; then

Io]TW[ <- Ip(z)l + H(W(z,t), W*(t,z),z, t) dt

+ H(W(z, t), W*(t, z), z, t) dt

_-< max Io()1 + (max IHI)lgl + (max IHI)II
<M

for r suciently small.
From Schwarz’s lemma H satisfies a Lipschitz condition with respect to the

first two arguments, i.e.,

(4.8) [g(e, nl, Z,t)-H(, n=,z,t)lNCo{l-=l+nl-n=[}
where Co is a positive constant. Hence for Wll, wl< Izl, I < r,

I,-=1 {H(WI, , z, t)-H(W=, , z, t)} at

(4.9) + {H(W, , z, t)-H( W=, , z, t)} dt

   o(sup
Therefore

(4.10) sup ]TWa TW2I--< 4rCo sup Wa- Wzl.
Izl,l’l<r Izl,l’l<r

Let r be small enough such that 4Cor < 1. Then in view of (4.10), the equation
(4.5) can be solved by the method of successive approximation. We then have"

THEOREM 4.1. If
(i) n(l, 2, z, () is holomorphic ]’or z, D U cr t.J 1, and ]’or I1, I=1 <M,

and
(ii) p (z) is holomorphic in D U r U and IO (z)l < M,

then the Cauchy problem (2.4), (2.5) has an unique analytic solution in Izl <-r, for r
suciently small, and can be constructed by the method ofsuccessive approximation
through (4.5).

PART II. CAUCHY PROBLEM WITH

NONANALYTIC DATA IN A GENERAL DOMAIN

The methods mentioned in Part I only work for analytic Cauchy data defined
in a conformally symmetric domain (see Gilbert [7, p. 196], [8]). For nonanalytic
Cauchy data, Hadmard [9] established a necessary and sufficient condition for the
existence of a solution of the Laplace equation in a neighborhood of the initial
line. Payne and Sather [18], and D. Sather and J. Sather [20] extended this result
to a class of elliptic-parabolic equations. John [13] also studied the existence
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theory of holomorphic functions, and suggested a method for constructing a
global solution.

Carleman [2] introduced the famous two constants theorem which gives
information on the continuous dependence of holomorphic functions on their
boundary data. In particular, a class of uniformly bounded holomorphic functions
is "stable". Work along this line was continued by John [11]-[14], Pucci [19],
Lavrentiev [ 15], Payne [16] and many others (see references cited in Payne [17]).

In real physical problems, the Cauchy data are obtained by measurement and
hence are not known precisely. Carleman [2] introduced an auxiliary function (the
so-called Carleman function) to construct an approximate solution for holomor-
phic functions with given imprecise data and Lavrentiev [15] extended this idea to
the Laplace equation in 3 variables.

We shall study the abovementioned topics for the equations (1.1) and (1.2).
From now on in this part (7 will denote a bounded simply connected subdomain in
D U o" U D, F’ is a part of boundary OG of G and F"= OG\F’.

5. "Stability" of the Cauchy problem for (1.1) in a bounded domain G. In
this section an estimate of "stability" for the solution of (1.1) in a (not necessarily
conformal symmetric) simply connected domain G is given.

Let w(z) be a bounded solution of (1.1) in G such that

[w(z)[ <_-M,

Let the values of w(z) on F’ be known, and suppose it is required to
determined w(z) in some part of G. Theorem 5.3 in this section will characterize
the stability of the solution of the problem.

Carleman [2] proved the following so-called two-constant theorem charac-
terizing the stability of a holomorphic function for the above mentioned problem.

THEOREM 5.1. Letf(z be a bounded holomorphicfunction in G, andsuppose
that

and

Then the inequality

If(z)l <M, z a,

If(z)l < e, z e r’.

I/(z)l <M
will also hold where oo (z) is the harmonic measure ofthe curve F’ with respect to the
point z and the domain G.

Proof. See Lavrentiev [15].
Let

(5.2) M1

(5.3) ME

(5.4) M3

sup {rl(z, zT, t, o), rE(z, , Zo, t)},
z,tc=GUOG

sup 4M exp {4Mlz tl},
z,tGUOG

sup
zGUOG

exp A(z,t) d
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(5.5) M4 sup A (z, t) d

TI-IZORZ 5.2. [f the solution w(z) of (2.3) (with F= O) in G is continuous in
G U 8G, bounded by a constantMin G and e in F’, i.e.

<5.6) Iw(z)[ <M, z G,

(5.7) Iw(z)l<e, z r’,

then the holomorphic function (z) in (3.1) satisfies the following inequalities:

(5.8)

(5.9) [(z)l <Ke, z e F’

where K depends on the coefficients of (2.3) and G only, and can be determined
through (5.13) and (5.14) below. Here we assume that the length of the path
connecting z and a fixed point Zo is less than a fixed constant.

Proof. Let

(5.10) k(z) w(z) exp A (z, t) d

therefore, (3.1) becomes (we may take (o o)

k(z)=(z)+ r(z,,t,o)(t)dt
0

(5.11)
+ / r(z, , Zo, t) dt

for z G U OG.
Let denote a path from zo to z. In view of the method of successive

approximation, we have

(5.12) b(z) k(z)+ H(z, t)k(t) dt + H2(z, t)k*(t) dt
0 0

for z y. Furthermore,

[n(z, t)[
[Sdz, t)] 4M exp (4M [z t[) <M2

for z, t e G U OG.
Hence, for z F’

(5.13)

and for z e G

[(z)l <-_eM3(l + 2M2 I [dt[)

(5.14) [(z)[ <-MM3(l + 2M2 I [dtl).
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The desired inequality therefore follows from (5.13) and (5.14).
Now we are in the position to give a solution for the "stability problem".
THEOREM 5.3. I[ W (Z) is a bounded solution of (1.1) in G, continuous in

G U F’, such that (5.6) and (5.7) hold, then

I(5.15) [w(z)l <-KM4 Ml-(zeo(z+2 Ml-O’(te(tldt
0

forz G, where w(z is the harmonic measure ofthe curve F’ with respect to thepoint
z and the domain G, K is the constant given in Theorem 5.2, and the line integral is
along the arc in G which takes the shortest length from Zo to z. Here, we again
assume that (1.1) is homogeneous.

Proof. According to Lemma 3.1 and Theorem 5.2, w (z) has the representa-
tion (3.1) and the function $(z) in (3.1) satisfies the inequalities (5.8) and (5.9).

In view of the Theorem 5.1,

(5.16) I (z)l =< (eK)’Z(KM)1-’z=KeZM1-z.

Therefore, from (3.1), we have

{[w(z)l<=M KMI-’zez+2KM1 Ml-O,eotldt]
0

Then the desired result follows from (5.7).
Remark 5.1. The above theorem has demonstrated that if one prescribes in

addition to the Cauchy data a supplementary condition, namely that the solution
of (1.1) be uniformly bounded by some constant M in its region of definition G,
then the Cauchy problem for (1.1) is stable.

Remark 5.2. The two-constant theorem also can be generalized to (1.1) with
bounded measurable coefficients, and to higher order elliptic equations. They will
be given in the forthcoming papers.

6. The construction of the elementary solution for (1.1) in G. The next few
sections will study the existence and the construction of solutions for (1.1) in a
general domain. Since our methods depend on the use of a generalized Cauchy
formula, we shall first construct the elementary solution for (2.3). Our method
simplifies the one given in Vekua [21]; in particular, we can omit the formulas on
pp. 79-80 in Vekua [21].

A convenient technical simplification results from using the transformation

(6.1) w(z, ) Wo(Z, ) exp A (z, t) dt

where (1 is a fixed point in G. Substituting (6.1) in (2.3), we obtain the differential
equation (see Vekua [21, (15.10) and (15.35b)])

OWo(6.2) C(z, $)Wo(Z, ) +Fo(z, .),
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where

(6.3) C(z, 2) B(z, 2) exp A *(2, t) dt- A (z, t) d

(6.4) Fo(z, 2) F(z, 2) exp A (z, t) d

Now we are in the position to construct the elementary solution of the
homogeneous differential equation

Ow
(6.5) =C(z, 2)w(z).

The following lemma can be found in Vekua [22]; for the sake of complete-
ness, we give a proof here.

LEMMA 6.1. Let u, v, w be the solutions of
OU

(6.6) --+ CO 0,

(6.7) --+ Ca 0,

Ow
(6.8)

0
Ck 0

in G, continuous in G OG. Then

f (uw dz- fff d2)= O.(6.9)

Proof. By Green’s formula, we have

uw dz dxdy,(6.10)
2i a 02

(6.11)
2i 0----

Hence,

1--- o (uw dz-,Tr d2)2i

(6.12)
Ou (0 Cu)} dxdy=O.-)+

LEM 6.2. Let

r (z, eo, zo, )() log(z-zo),
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where Co(Z) is analytic in a double connecteddomain G cD t.J r t.J D, L is a closed
curve in GI, and Zo is a fixed point. Then the function w(z, 2) defined by

(6.14)
w(z, 2) (z) + I’(z, 2, t, 2o)(t) dt

+ lP2(z, 2, Zo, t)*(t) dt

is a single valued solution of (6.5) in G.
Proof. See Vekua [21, pp. 72-75].
LEMMA 6.3. Let

1
(6.15) Co(Z)

Z-Zo

Then the ]’unction (z) in (6.13) is given by the formula
1

(6.16) (z)
z --Zo

C(z, 20) log (z -Zo).

Proof. See Vekua [21, p. 75].
LEMMA 6.4. Let

(6.17) &o(Z)
i(z -Zo)"

Then the ]’unction (z) in (6.13) is given by the formula
1 1

(6.18) (z) C(z, 2o) log (z-Zo).
i(z-zo)

Proof. We see that

(6.19)

but, by formula (3.4)

(6.20)

i((-Zo)

r’(z, o, Zo, Co) C(z, o).

Hence (6.13) takes the form (6.18).
Let

(6.21)

and

(6.22)

Xa(z, 5)= T{ 1

t--Zo
+ C(t, 20) log (t zo) }

1
XE(Z, 2)

i(t-Zo)
1-:C(t, 20) log (t Zo)}

J

fl(z, 2) 1/2(X + iXz), ’2(Z, 2) 1/2(X iX2).
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Then we have the following lemma.
LEMMA 6.5. The functions and ’2 are the solutions of the equations

(6.23) 0r/ -2 0, 0rt2+ 0.

Furthermore,

(6.24)
(z, L Zo, 50)

1
dt

1 + F(z, 2, t, 20)t ZoZ --Zo

F2(z, 2, Zo, r)C*(r, Zo) log (r- 20) dr,

and

(6.25)

2(Z, 2, Zo, 20)- lPz(Z, Zo, 7")
1

d, + C(z, o) log (z Zo)
T--Zo

+ F,(z, 2, t, 2o)C(t, 20) log (t-Zo) dt.

Proof. By direct substitution, the desired results follow from (6.21).
DEFINITION 6.1. We call the functions {fl, 122} a pair ofelementary solutions

for (6.5)
THEOREM 6.1. Let w(z) be a solution of (6.5) on G, continuous in G [.JOG.

Then

(6.26)
w(z)f(z, 2, Zo, 2o) dzw(zo) i

w(z)f2(z, Zo, o) de

for zoe G.
Proof. If we remove the circle [Z-Zol =< p from G, the functions t21, ’2 will be

analytic in the rest of G. We now have from Lemma 6.1 that

(6.27) [fh(z, , Zo, eo)W(Z) dz- O2(z, , Zo, eo)W(Z) de=0,

where w(z) is a solution of (1.1) in G, continuous in G UOG, and Yo
{z] Iz z01 p}. Ifwe pass to the limit as p --> 0 in (6.27), using Lemma 6.5 we have

1 I [w(z)f(z, 2, Zo, 2o) dz-- w(z)fl2(z, 2, Zo, 20) d2].w(zo)

7. The existence and construction of solutions to (1.1) in G. In this section
the Cauchy data p(x) in (2.5) is assumed to be bounded and continuous on o-. We
shall give necessary and sufficient conditions for the existence of the solution to
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the Cauchy problem for (2.3) in D and methods for constructing it. Since the
principal part of (2.3) is invariant under conformal mappings, the results in D U o-
can be extended to a more general domain G with nonanalytic initial curve. This
problem has been studied by Hadamard [9] for harmonic functions and John [13]
for holomorphic functions.

THEOREM 7.1. Let

(7.1) Go(z) - po(t)al dt-po(t)f2 d?

where po(t) is a bounded continuous]unction on tr. Then Go(z) is a solution of (6.5)
in D UD (off r). Furthermore, if po(t) is H8Ider continuous in tr, then

Go(z) G(x) 1/2p(x) + Go(x) as z x e

for z D, the first integral in (7.1) being understood as the Cauchy principal value,
and the second integral converging in the ordinary sense (we assume thatD is on the
left of cr).

Proof. The proof is accomplished by direct calculation and properties of
singular integrals.

TI-IZORZM 7.2. Let

(7.2) F(x) po(X)- Gd(x, x).

Then po(X)= Wo(X, x) ]’or a solution Wo(Z, .) of (6.5) in D if and only if F(x) is
analytic on cr and its analytic continuation F(z) is a holomorphic function in
DUGUD.

Proof. If Wo(Z, ) is a solution of the problem in D, then the function

H(z, ) Wo(Z, )- Go(z, )

1 Io Wo12 dt- 10’2 d’- Go(7.3) 2r-- o

1 fo Wo12 dt- I0’2
2ri o-,

is a solution in D Ur UD; hence F(z) H(z, z) is holomorphic in D U o- U D.
Conversely, if F(z) is holomorphic inD U r U D, by Theorem 3.1 there exists

a solution H(z, ) of (6.5) in D U o" UD such that H(x, x) F(x). Thus

(7.4) Wo(Z, e) H(z, e) + Go(z, e)

is a solution of the problem in D.
The proof of the above theorem also gives a constructive method for the

solution of the problem which we shall restate in the following theorem"
THEOREM 7.3. Let Wo(Z, ) be a solution of (6.5) in D, continuous in D U

Let the values of Wo(X, x) be known on tr. Also let

(7.5) F(x) Wo(X, x)-GJ(x, x).

Then the analytic continuation F(z) is holomorphic in D U r U D, and we can
construct a solution H(z, ) of (6.5) inD U r UDsuch thatH(x, x) F(x) by using
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Theorem 3.1. Then Wo(Z, ) is given by the formula
(7.6) Wo(Z, ) H(z, ) + Go(z, ).

By using the transformation (6.1) and formula (3.1) we can immediately obtain
the necessary and sufficient condition for the existence of a solution to (2.3) and a
procedure for its construction.

THEOREM 7.4. Let po(x) p(x) exp [-1A (x, t) dt]- Uo(x, x), where
Uo(z, ) is given in (3.2). Then p(x) is the Cauchy data for a solution w(z, ) of
(2.3) in D if and only if po(X) satisfies the condition for existence in Theorem 7.2.
Furthermore, ifthe solution w(z, ) exists inD t.J m w(z, ) is given by theformula

(7.7) w(z, ) {H(z, ) + Go(z, ) + Uo(z, zT)} exp A (z, t) dt

where Hand G are given in Theorem 7.2.
Another version for the necessary and sufficient condition can be stated as

follows.
THEOREM 7.5. The function w (x, x) is the Cauchy data for a solution w (z, )

of (2.3) in D if and only if the lunction ok(x) in the equation

(7.8) qb(x) k(x)+ Ha(x, t)k(t) dt + Hz(x, t)k*(t) dt
0 0

is the Cauchy data ]:or a holomorphic function cb (z) in D U o’. Furthermore, if the
solution w(z, ) exists, w(z, ) is given by the (3.1), where H1, Hz and k are defined
in (5.10)and (5.12).

The proof of Theorem 7.5 follows from formula (3.1).
Remark 7.1. The construction of 4,(z) in (7.8) can be obtained as follows:

Let

and let

1 I c(t)
dtG(z) / t’z

F(x) 4(x)- G+(x).

Then F(z) is holomorphic in D U o- t.J D, and thus 4’ (z) is given by the formula

qb(z)=F(z)+G(z).

Remark 7.2. Theorem 7.2 depends only on Green’s formula and an elemen-
tary solution; therefore its method should be applicable to more general elliptic
equations.

8. The construction of an approximate solution for (1.1) in G. We now come
to the case where w(z) is given on F’ only within an error e. We shall give two
methods for constructing the approximate solution of (6.5) in G. The methods are
based on the use of the Carleman function.
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DEFINITION 8.1. We call G(z, , a Carleman]’unctionfor the domain Gand
the curve F’ if G(z, , 8) has the following properties:

+ (z, , )(a) G(z, (, 6)
(-z

where G is a holomorphic function of the variable sr, holomorphic and bounded in
G.

(b) The function G(z, , ) satisfies the inequality

(c) The function

Ir IG(z, r, a)l Idffl =<,.

/z(z, ’)" e,’ M"

has a solution r(z, e) for each e and M, and z(z, e)+ 0 as e + 0, where y’ is the
length of F’ and/. (z, 8)= maxr,

The existence and the construction of the Carleman function in a simply
connected domain G can be found in Lavrentiev [15].

Let the Carleman function G(z, , 8) for the domain G and the curve F’ be
known where 0G F’ + F". Let the values of f(z) on the curve F’ be known with
accuracy e, i.e. a function f (z) is known on the curve F’ such that

(8.1) Ifi (z)-/(z)l -< e, z e r’.

Under the assumption that

Iflz)l-M, z r’,

we now construct the approximate solution for f(z).
THEOREM 8.1. Let the function fs (z) be defined by

(8.3)

Then

&(z) G(z, , a)f () d#.

(8.4) [f(z)-f,(z)l <= I-M "r(z, e),

forz G.
(This theorem can be found in [15]; however, for the sake of completeness,

we give a proof here.)
Proof. According to Cauchy’s formula

(8.5)
1 I G(z,,a)f()d.f(z) 77
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Therefore,

f(z)-G(z) =-i G(z, (, )f() d(

(8.6)

+i G(z, , )[f(()-B (0] d.

By virtue of the properties of the Carleman function we see

(8.7) Iv,, Gfd’l<-6"M’
and

(8.8) I G[f(’)-f,(g’)] d] _-</z(z, ). e. ’.

Substituting (8.7), (8.8) in (8.6) we obtain

(8.9)
If(z)-&(z)l--<2[SM+/z(z, )" e" ,’]

1M" r(z, e).

Let

(8.10)

Gl(z, , )= G(z, t, ) dt

1
dt+ J(z,t, 8)dt

t-z

In (-z)+G(z, , ),

where ’1 is an endpoint of F". Then

(8.II)

where y" is the length of F". And

(8.12) max [G(z, g’, $)1 r’/z (z, $).
’eF’

Define (see (6.24) and (6.25))

(8.13)
h(z, 2, Zo, 20, ) G(z, Zo, ) + F(z, 2, t, 2o)G(zo, t, ) dt

F2(z, 2, Zo, z)C*(z, zo)G* (Zo, t, ) dt,
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(8.14)

and let

a(Z, , Zo, o, t)= C(z, o)Gl(ZO, z,

+ F2(z, 2, Zo, r)G*(zo, r, ) dr

+ F(z, 2, t, 2o)C(t, 2o)G(zo, t, ) dr,

Ms sup C*(r, z).
’, D t.J U15

Then, by (8.13) and (8.14), we see

(8.16)

(8.17)

and

Ir I(z, , t, , 8)11dtl <-6 +M1/ +MsM6y",

fr lfi2(z, 2, t, i, a)ldtl <=M58y"+M18 +MsM1BT",

(8.18) maxl(z,z,(,(,6o)]<--_z(z,,){l+My’+M+Msy’y’},
eF’

(8.19) naax lfi2(z, z, (, (, ao)l <-_l(z, 8){Msy’ + y’M +MMl",/",/’}.
;eF’

Let 661, 882,/z(z, 6)63 and/z(z, 6)64 denote the values on the right side of
inequalities (8.16), (8.17), (8.18) and (8.19) respectively. We now construct the
approximate solutions for a solution w(z) of (6.5) in G.

TI-IZORM 8.2. Suppose

(8.20)

(8.21)

[w(z)l <-M for z G,

for z F’.

Let

(8.22)

Then

wa(z)=- w(t)fil(t, [, z, 2, 6) dt

w,(t)fi2(t, , z, 2, 6) dl.

(8.23) Iw(z)- Wea(z) --< 2M6’r(z, 8)

where

forz 6G

M6 M(61 + 62),
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r(z, e) is a solution o[

(8.24) e (Z, 7")’]/’(t3 q" t4) M(61 + 62),

and r(z, e)-->O as e 0.
Proof. By (8.13), (8.14), Lemma 6.5, and the argument using for deriving the

generalized Cauchy formula (Theorem 6.1), we have

w(t)(t, t, z, Y,, 8) dtw(z)
(8.25)

Therefore,

(8.26)

w(t)lz(t, t", z, ., 6 dt".

W(Z)-- Wea(Z) W(t)l(t, t, z, , a) dt

w(t)2(t, t", z, ., a) d"

+-/ [w(t)- w(t)]a(t, t, z, , ) dt

-[w(t)- w,(t)]fie(t, , z, ., a) d

By virtue of (8.16), (8.17), (8.18) and (8.19), we have

(8.27)

and

Iv w(t)l dt- w(t)2 d[ <-Maa +Maa2= Ma(al

(8.28)
dt- [ro- #]12 di’} <-elx(z, t)(t3 + t4)’/".

Substituting (8.27) and (8.28) into (8.26), we obtain

1
(8.29) [w(z)-wa(z)[

Hence the desired inequality follows from (8.29) and (8.24).
We now give the second method for constructing an approximate solution.

Let

(8.30) k,(z)=w,(z)exp A(z,t) d zF’.

We define the function b (z) by

(8.31) qb(z) k(z)+ H(z, t)k(t) dt + H2(z, t)k*(t) dt,
0 0
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for z F’, where H1 andH2 are given by the formula (5.12), and z0 can be assumed
on F’. According to (8.20), (8.21),

<=M3e + 2MaeMET’
(8.32) eM3(1 + 2M2y’)

e’ on F’.

Again, by formula (5.8), we see

(8.33) I (z)l--<KM=M’
for z e G. Then by Theorem 8.1, we can construct a function 8,(z) to approxi-
mate (z), and have the estimate

(8.34) l8,’(z)-(z)l <=lM"r(z, e’) for z e G,

where r(z, e’) is a solution of

Then the function

(8.36)

is an approximate solution for the problem. Note that the line integrals in (8.36)
are along the shortest path from Zo to z in G. Furthermore

(8.37) [w(z)- w(z)[-<M4" 1--M’r(z, e’){1 + 2MIT},

where 3’ is the length of the integral path from Zo to z. We thus have
THZORM 8.3. If W(Z) is a solution of the homogeneous equation (2.3)

(F= 0) in G, satisfies the condition (8.20), and we(z) is a continuous]unction such
that (8.21) holds, then the function ws(z) in (8.36) is an approximate solution of
w(z) in G. Furthermore, the estimate of "stability" is given by (8.37).

9. "Stability" of the Cauchy problem for (2.4) in a simply connected domain
G. In order to establish "stability" for the Cauchy problem, we make use of the
fact that the difference, w w- w2, of two solutions satisfies a system of linear
elliptic equations. In fact, we have that

(9.1) we H(Wl, , z, 5),

(9.2) w2e H(w2, r2, z, 5)

and subtracting these two equations gives

(9.3) we H(w, , z, 5)-H(w, 2, z, )
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Let H(wi, #i, z, zT). Then the difference H1-H2 can be computed as follows.
Set

F(t) H[tWl + (1 t)w2, tiff1 + (1 t) r2, z, zT].

Then

(9.4) H1-H F’(t) dt w

Thus (9.3) may be written in the form

(9.5)

where

Hw dt + r H dt.

we Aw +Bff,,

(9.6) A Hw dt, B H dt.

Since we assume W and w2 have prior bound M, i.e.

(9.7) ]wl[, ]w2[ <M for z G,

the functions A and B are bounded by a fixed constants. Hence from (3.3), (3.4),
(3.5) the functions F, F2 (which depend only on w and w2) in (3.1) will have a
fixed boundM1 if wl and w.2 satisfy condition (9.7). Applying Theorem 5.3 to (9.5)
we have (using the notation given in Theorem 5.3) the following theorem.

THEOREM 9.1. I]’ Wl and w2 satisfy (9.7) in G and

then

forzeG.

for z I",

{ }[w(z)l <-KM4 MX-(z)e(z) + 2 M-(t)e(t) dt
0
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SECOND ORDER SINGULAR BOUNDARY VALUE PROBLEMS*

T. C. LEE AND D. WILLETT"

Abstract. A theorem for the existence of a solution to singular differential equations of the form
Ly =f(t, y, y’) satisfying generalized boundary conditions at two points a and b is proven. The
operator L is assumed to be a generalized disconjugate second order linear differential operator on
[a, b] and may be singular in the sense that the coefficients in L may be discontinuous at a or b, or a
may be -oo and b may be oo. The solution satisfies a -< y =</3 where it is assumed t and/3 are functions
satisfying a <-/3, Lfl <-_ f(t, fl,/3’) and La >= f(t, a, a’).

1. The result. The use of differential inequalities in the existence theory of
second order boundary value problems for ordinary differential equations is a
well-established proposition (cf., e.g., [1]-[6], [9]-[12], [14]-[20]). Recently [8],
[10] applications of this theory have been made in the area of singular perturba-
tion theory. The point of this paper is to present a comprehensive theorem in this
area extending a variety of known results and yet remaining relatively ehsy to
apply.

Let -oo =< a < b -< c and define

(1.1) L D2 +p(t)D + q(t) (D d/dt),

where p and q are generally assumed to be continuous functions on the open
interval (a, b), i.e., p, q C(a, b). We assume L is disconjugate in the generalized
sense on the closed interval [a, b ]. This and other less widely known concepts will
be made precise in the succeeding sections. Then Ly 0 has a fundamental
principal system (Ul, u2) of solutions on [a, b]. Let u Ul + u2 and define

(1.2) y(t)= lim
y(s) 1 w(u, y)(s)

s-t u(s)’
y(t) lim (a _<- t _-< b),

w(u ,

where w(g, h) always denotes the 2 2 Wronskian determinant of the functions g
and h and the above limits are the appropriate one-sided limits at a and b.

We will consider in this paper a boundary value problem for the differential
equation

(1.3) Ly=f(t, y, y’), a<t<b, (y’=Dy)

where f C[(a, b) x R e] [R (-oo, oo)] and f is further restricted in the following
manner. Let a,/3 be functions of class C’(a, b) such that a _-</3 and @a, @off, N a
and @1/3 are defined and bounded on [a, b]. Let

(1.4) F(t, y, z)=f(t, y,

(1.5)

u’(t)y + W(Ul, u2)(t)Z]
u(t) J’

max [0fl (b) a(a), ofl (a) cz(b)].
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We assume f satisfies a generalized Nagumo condition on (a, b) with respect to
such a pair (a,/3), i.e., there exists a positive function b on [A, o) such that

u-3--(t) IF(t, y, z)l(1.6) w2(ul, u2)(t)

for A --<lzl a(t)-<Y =<fl(t), a <t <b and

I.(1.7)
qb(s)

ds > a<t<bSUp @ff(t)- a<t<binf a(t)-= K.

Let N be any real number such that for all a < t < b,
N

S
(1.8) max(la(t),lfl(t))<N and K< -ds,
and let

(1.9)

Define

O(t) sup {IF(t, y, z)l lzl <=N, a(t) <= y _<--fl(t)}.

(1.10)

and

(1.11)

Finally, let

w(y, u)(t)ly(b) lim
’b- W(Ul, Ua)(t)’

W (//1, y)(l)ly(a) ,,+lim (--1 u2)(t)

j= Io q,(s)u(s)
W(Ul, u2)(s)

(I)o {(x, .fl(b)+J):a(a) <-x <-_ fl(a)}

LI {(x, a(b)-J):a(a)<-x <-fl (a)}

U {(fl(a), y)’@fl(b)+J>-y > lfl(a)}
U {(a(a), y) a(b)-J_-< y < ic(a)},

(I)1 {(X, Nfl (a) +J) a(b) <-x <- /3(b)}

U {(x, Na(a)-J) Na(b) -<x _-< Nfl(b)}
U {(fl(b), y):(a)+J>=y > lfl(b)}
U{(a(b), y):a(a)-J<-_y

and

So {(x, y)"a(a) =<x =< fl(a), a(b)-J <= y <= /3(b)+ J}

$1= {(x, y)’a(b)<-x<-(b), a(a)-J<-y -< /3(a) +J}.

THEOREM. Assume p, q e C(a, b), f C((a, b) x R2), and there exist func-
tions a, fl C2(a, b) such that fl >-a, Lfl <=f(t, fl, fl’), La >-_f(t, a, a’), a, ofl,
fl0la, lfl exist and are bounded on [a, b], f satisfies a generalized Nagumo
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condition on (a, b) with respect to (a, fl ), (u/(w(u 1, Uz)))La and (u/(w(u 1, Uz)))Lfl
are integrable on [a, b], and J, la(a), la(b), lfl(a), l(b) exist. If rio and
[11 are continua in So and $1, respectively, such that

(1.12) gl0Uo is connected

and

(1.13) gll1 is connected,

then there exists a solution y C2(a, b) of (1.3) such that

(1.14) (y(a),ly(a))6glo and (y(b),ly(b))[ll and a<=y<-_.
We will discuss in detail the main ideas of the above theorem in the next three

sections, prove the theorem in 5 and give some examples in 6. For generaliza-
tions of this theorem to functional differential equations and equations with just
one boundary condition, see Lee [8].

2. Generalized disconjugacy. A second order linear operator L=
Da+p(t)D + q(t) is said to be disconjugate on an interval I in which p and q are
continuous functions if no nontrivial solution of Ly 0 has more than one zero,
counting multiplicity, in I. For results identifying conditions on p and q which
imply disconjugacy of L see Willett [20]-[22]. If L is disconjugate on an open
interval I (a, b), then the solutions of Ly 0 form a hierarchy of functions at
each endpoint of I. In other words, there always exists at the endpoint b, and
similarly at a, a pair (Y l, Ya) of solutions such that

lim Y,! (t) 0.(2.1)
t_b_y2(t)

A pair (y 1, Ye) of nontrivial solutions of Ly 0 satisfying (2.1) is called a principal
system at b. Thus, (e -t, e t) is a principal system at oo for De 1, and (1 t, 1) is a
principal system at 1 for D2. For any nontrivial solution y of Ly 0 and principal
system (Yl, Ya) at b, there exist constants Cl and ca not both zero such that
y =ClYl+Caya. If ca=0, we define y to have a zero (generalized zero) at b; if
c2 # 0, we define y to not have a zero at b. This definition is clearly independent of
the principal system (yl, Ya); hence, it defines a way to attach zeros to solutions at
points (in this case, a and b) where the equation, and hence the solutions, are not
defined. Thus, the function 1 has a zero at oo and -0 with respect to the operator
Da, but does not have a zero at oo with respect to the operator Da+ D. Zeros
defined in this way depend upon the operator. Of course, if an operator L is
nonsingular at b (i.e., b < and p and q can be extended to be continuous at b),
then a solution y has a generalized zero at b if and only if

lim y(t) 0,
tb-

i.e., the continuous extension of y to b has an ordinary zero at b. Thus, if
p, q C(a, b) and a < c < b, generalized zero and ordinary zero mean the same
thing at c.
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A second order operator L with coefficient functions p and q assumed
continuous on just the open interval (a, b) is defined to be disconjugate in the
generalized sense on the closed interval [a, b] if no nontrivial solution of Ly 0 has
more than one zero in [a, b]. Thus, D2 is generalized disconjugate on [a, ] if a is
finite, but is not generalized disconjugate on [-oo, oo] because the constant
solutions of y"= 0 have two zeros, one at oo and one at -oo. A constant coefficient
operator D2 +pD + q (p and q constants), is generalized disconjugate on [-oo, oo]
if and only if p2_ 4q > 0, i.e., the characteristic numbers are real and distinct.

If L is disconjugate in the generalized sense on [a, b ], then there exist positive
solutions Ul and u2 of Ly =0 such that (Ul, u2) is a principal system at b and
(u2, Ul) is a principal system at a. Any such pair (u l, u2) is called a fundamental
principal system (f.p.s.) on [a, b]. In an f.p.s. (Ul, u2), the functions U and u2 are
each unique up to multiplication by positive constants. Thus, (1, t) is an f.p.s, on
[0, oo] of D2, (b-t, t-a)on[a, b] c (-oo, )ofD2 and (e -t, et-e-t)on[O, oo]of
D2-1. For further discussion and extension of these ideas to higher order
equations see Muldowney [13] or Willett [19].

The following two lemmas are consequences of the generalized disconjugacy
assumption and will be needed to prove the theorem. In these lemmas we assume
L is a generalized disconjugate second order linear operator on [a, b] and o and
1 are defined in terms of an f.p.s, on [a, b] of L by (1.2).

LZMMA 1. If y Cl(a, b) and @y(a), y(b) exist, then there exists an
g [a, b] such that

(2.2) Oy(b)_Oy(a ly(g,).

Proof. A generalized mean value theorem of Willett [19; Thm. 3.1, p. 1034]
implies, for the differential equation

w(u, y)
My 0,

W(Ul, U2)

that there exists a point g’t (t, b) such that

y(t) u(t)y(b) Ul(t)My(t).

Since ly(t)= My(g’t) and limt_,a u2(t)/u(t) O,

[u t) or, i.am+ elr *,)=,li.am+ i.Ui(iy(b)-,i().l e (b)-y(a).

Hence, there must exist an g in the closed interval [a, b] such that (2.2) holds.
LEMMA 2. If yC2(a,b), y(t)>0 for t(tl, te)(a,b) and y(tl)=0=

y(t2), there exists an (t, t2) such that

(2.3) ly(E) =0 and Ly(;)<=O.

Proof. Since y/u > 0 on (tl, t2) and

lim
y(t) y(t)

t-t’ 0 lirrI,--,,, u(t)
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there exists an g (t, t2) at which y/u attains its maximum. Hence,

which implies

Xy() u() Y () 0.
W(Ul, U2)(’

and

which implies

y()=w(u,u_____) u_____ y_
u w(u, u) u

()_-<o.

3. Generalized Nagumo condition. The generalized Nagumo condition
defined in 1 (cf. (1.4)-(1.7)) includes the classical Nagumo condition [16], for
suppose L D2 and[a, b]c (-, ). Then, we can take ul(t) b-t, u2(t) t-a
and u(t)=b-a=w(ul, u2).. Hence, F(t, y, z)= f(t, y, z) and (1.6) simply
becomes

(b a)lf(t, y, z)l -which is equivalent to the classical Nagumo condition.
To illustrate the nature of the generalized Nagumo condition and to indicate

the direction where improvement is needed, consider the equation

(3.1) y"- y r(t)yy’,

Letting L De- 1 and f(t, y, z)= r(t)yz, we choose

Ul(t)=e-’ and u2(t)=et-e -t,

0<t<oo.

so that

u(t)=e’ and W(Ul, U)= 2.

Hence, (1.6) becomes

(3.2) Ir(t)y(y + 2e-’z)le3’/4 =< ([zl), 0 < t <

So if ,(t)=max(lB(t)l,l(t)l), we are essentially required to assume
r(t)/2(t) exp (3t) and r(t)’y(t)exp (2t) are bounded on (0, oo), which because of
the exponential factors is a rather stringent, although quite natural, assumption on
r(t). The exponential factor comes from the factor u3(t) in (1.6) and could be
improved if one had more freedom in choosing u(t), e.g., if u(t) u2(t) e-’ were
possible, then the factor u3(t) in (1.6) would be actually an asset. In general,
u(t)= ClUl(t)+c2u2(t) with Cl, c2->0 and not both zero is possible up to the final
stages of the proof of the theorem in 5 where technical difficulties arise unless
Cl >0 and c2 >0; hence, our choice of Cl 1 c2 right from the beginning.
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Assume now that f satisfies a generalized Nagumo condition on (a, b) with
respect to a,/3 ((1.4)-(1.7)), and let the number N satisfy (1.8). Define

F(t, y, z) when Izl--<N,
(3.3) F(t, y, z)= zbt,y,-N) when Izl >N.

LZMMA 3. Assume thatf satisfies a generalized Nagumo condition on (a, b)
with respect to a, and

Ly=Frv(t y, ly), a <t<b.

then

a(t) <--_ y(t) <--fl(t), a <t<b,

Ily(t)] < N, ce <t<b,

Ly f(t, y, y’).

Proof. Suppose Ily(t)l->N at some point in (a, b). By Lemma 1, there
exists an ’ [a, b] such that [ly()l <A <N. So by continuity there exist points
z(a,b) and r [a, b] such that [y(-)l N, ]y(r)] A andA <=lly(t)l<-_N
for t between - and r. The proof now divides into four cases depending upon the
sign of y(-) and whether z is to the left or right of o-. Since the details of the
cases are similar, we will do only one case explicitly.

Suppose that ly(.)= N, choose tr so that lly(o) A and suppose tr >-,
i.e., A _-<ly(t)_-<N for z<t<r. Consider -< t <tr. Since

Fir(t, y(t), ly(t))= F(t, y(t), ly(t))
and

DOy(t
w(ul, u2)(t)

u2(t) Y(t) >--0,

lyDly u (t)
W2(Ul, U)(t)

Therefore, if z y, then

F(t, y, ly)Dy _>--b(]lyl)Dy.

N z I, ly(t)Dly(t)
K<

ok(z)
dz

b(ly(t))

which is a contradiction.

dt <- Doy (t) dt

y(tr) y(-) _-< K,

4. The boundary conditions. Figure 1 illustrates (1.12) in the general case;
namely, fZo must be a continuum which intersects or approaches the line segments
composing o. A similar figure illustrates (1.13). These conditions are the same as
those considered by Muldowney and Willett [14], which can be consulted to see
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ly(a)

(/(a), 1/ (a))

FIG. 1.

-- y(a)

the various nonlinear boundary conditions in analytic form that are included in
(1.12) and (1.13). Here we will just illustrate how (1.12) (and similarly (1.13))
includes the classical linear combination of solution and first derivative type of
boundary condition.

Suppose the boundary condition at a (a >--oc) is of the form

(4.1) ay(a) +a2y(a) A,

where a 1, a2, A are real numbers. Thus, if a2 # 0, f0 is defined to be a straight line
with slope -alia2 (see Fig. 2), and if a2 0, fo is taken to be the vertical straight
line y(a)= A/a1. In the cases a2 # 0, 1o will intersect or approach the upper
part of (I)0 if

A al@off(a)=>lfl(a)
a2 a2

that is, if fl satisfies

1
(4.2) --[a2 (a + a o(a A] <- O.

a2

Similarly, when a2 # O, -]o intersects or approaches the lower part of o if o
satisfies

(4.3) l[a2la(a) + ala(a)- A]_-> 0.
a2
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FIG. 2.

, y(a)

In case a2--O, the corresponding conditions are

(4.4) a(a) <-_a/a <-_ fl (a).
Conditions (4.2)-(4.4) are similar to the classical conditions for the boundary

condition

aly(a)+ay’(a)=A

when a is a nonsingular point. Of course, when a is a nonsingular point, then

Oy(a)= y(a)
and ly(a)= u(a)y’(a)-u’l(a)y(a)

ul(a) W(Ul, u2)(a)

and the classical conditions follow from (4.2)-(4.4) by direct substitution.

5. Proof of the theorem. Two further preliminary lemmas will be proven.
LEMMA 4. If y C(a, b), Ly(t) is measurable and satisfies

A (t) <-Ly(t) <= y(t), a < < b,

with Au/(w(ul, u2)), yu/(w(ul, u2))Ll[a, b], and y(a), y(b), y(a) and
ly (b) exist, then

ds implies y(b) <- a(b)"Ul(S)’y(S)(5.1) y(a)<-a(b)-
W(Ul, u2)(s)

Ul(S)/ (S)
ds implies y(b) >- fl(b)"(5.2) ly(a)->@ff(b)-

W(Ul, u2)(s)

I, Ia U(S)X (S)
ds.

u(s)v(s) as<(5.3) @y(a)-
w(ul u2)(s)

y(b)_-<y(a)-
w(u, u)(s)
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Proof. From

y(t)=y(a)u(t)+y(a)u(t)+ g(t,s)Ly(s)ds,

where

(5.4) g(t, s)= [u2(t)ul(s)- u,(t)u2(s)]/W(Ul, u2)(s)

is the Cauchy function for L, we obtain

which proves (5.1). One proves (5.2) similarly.
To obtain (5.3), we consider

(5.5)

Then

b

y(t) ly(b)Ul(t)+ y(b)u2(t)- g(t, s)Ly(s) ds.

y(t)y(a) lim
,-,a+Ul(t)

US,)ay(b)+
W (U’I’,’ U)(’S’ Ly(s) ds

U(S)e(S)<-ay(b)+ ds,
W(Ul U2)(S)

from which the first inequality in (5.3) follows. One can obtain the second
inequality in (5.3) similarly from (5.5).

Let k(t) be any positive continuous function on (a, b) such that

(5.6)

Ia Iab Ul(S)I[t(S)z,- ’ u(s)k(s)
ds<_ ds,- wu, u)s) w(u,

b
"tr Ul(S)k(s)
2 w(ul, u2)(s)

U(S)q,(S)
ds <=

w(ul, u))(s)

Define

FN(t, (t), z) + k(t) Tan- (y’-fl(t))
FN(t, y, z)= Fc(y, y,z)

F(t, a(t), z)- k(t) Tan- (a(t)- y)

for c =</3.

for y >/3(t),

for a(t) <= y <=(t),

for y < a(t),
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LEMMA 5. Assume that a, fl C2(a, b), a <-fl, La >-f(t, a, a’), Lfl <-

f(t, fl, fl’), a(a), a(b), fl(a), fl(b) exist and N>max([la(t)[,
[1/3(t)[) for a < t <b. If

(5.7)

then

Ly =z(t, y, Xy), a(a) <_y(a) =< fl(a),
a(b) <_y(b) _-< /3(b),

a<=y<=B; i.e., Ly=F(t, y,ly).

Proof. Assume y(t)>/3(t) for some t (a, b). Then there exists an interval
[tl, tz]C[a,b] such that z(t)=y(t)-13(t)>O for t(tl, t2) and Z(tl)=0=
z(t2). Hence, Lemma 2 implies there exists an (tl, t2) such that

But

Iz(’)"-O and Lz()<-O.

Lz(,) Ly(,)- Lfl (,) ->/N(’, y(*), ly())_/(, (), fl,())

F(,/3(’), lfl(,)) + k(’) Tan- (z(*))-f(*, (), B’(g’))

k(ge) Tan-X z(g’) > 0,

which is a contradiction. Therefore,/3 _-> y; and similarly, a =< y.
Proof of theorem. Let

qoo {(x, /3(b) + J)"a(a) <_- x <_- /3(a)},

qol {(x,a(b) J)" @a(a) _<- x _-< /3(a)},

I/tl0 {(X, fl (a + J) a(b <= x <-fl(b)},

tll {(X, a(a)-J)" a(b) <-x <-_ fl(b)}.

We consider first the case where loLJqooUqOl and 1LIPlOLJq11 are both
connected.

Let N be chosen as in (1.8) and consider the equation

Lz N(t, z, lz), a < < b.

For eo sufficiently small, let 0 < e < eo and a be a function such that b > a > a
and a , a, as e , O. Let r -min (a- a, e), and define

pul(t)+qu2(t)

fOiar
a <t<a,

(5.8) z(t)
pul(t)+quz(t)+ g(t, s)rv(s, z(s-’), az(s-’)) ds

for a, -< t < b,

where g(t, s) is the Cauchy function for L (see (5.4)) and (p, q) R2. For each
(p, q) R 2, (5.8) defines a unique function z(t, p, q) =- z(t) C(a, b) f’) Cl(a,, b).
Define a mapping T-- T" R2 R 2 by

T(p, q)= (z(b; p, q), lz(b; p, q)),
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and consider TOo. Since

Lz(t) t PN(t’o, z(t-ze),

we have

ae < t < b,

a <t <de,

ILz(t)l<=g/(t)+(zr/2)k(t), a <t<b, tae.
Since p z(a) and q Iz(a), Lemma 4 and (5.6) imply

(5.9) a(a)-J<-_z(b)<-_(a)+J if a(a)<=p<-(a),

(5.10) z(b)>-fl(b) if q ->_ /3(b) + J,

(5.11) z(b)<-a(b) if q<-a(b)-J.
Since (p, q) Io implies a(a) <=p <-(a) and a(b)-J<-_q <-(b)+J,
we conclude that Tfo is a continuum in the strip a(a)-J<-lz(b)<-
/3(a) +J which intersects the lines z(b) a(b) and z(b) /3(b) (see
Fig. 3). By a result of Muldowney and Willett [14, Lemma 3, p. 702], Tfo 1
b, i.e. there exists (Pe, q) lo such that (z(b;p, q), Iz(b; p,, q)) I1. Let

z(t)=-z(t;p,qe).

FIG. 3.

z(b)

Since

qe--Pe fora<t<a,

u(s)Xze(t) q-Pe +
W(Ul u2)(s)ag

P(s, z,(s-z), z(s-z)) ds
for a, <- < b,

(pe, qe)120, which is bounded, and /?vl <_-g with u/w(ul, u)integrable on
[a, b], it is the case that the sets { z 0 < e < eo} and {lz,. 0 < e < So} are
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uniformly bounded and equicontinuous subsets of C[a, b]. By the Arzelt-Ascoli
theorem and the compactness of fo, there exists a sequence ek 0 (k oo),
functions z l, z2 C[a, b] and a point (Po, qo) fo such that

)OZek--> Zl, lzek-’> Z2, (P, q,,)(Po, qo).

Therefore, for a < < b,

(5.12) zl(t)u(t)=poul(t)+qou.(t)+ g(t,s)F(s, zl(s)u(s),z(s))ds,

U(S) PN(S, ZI(S)U(S Z2(S)) ds.(5.13) z2(t) qo-Po+
w(ul, u2)(s)

But (5.12) and (5.13) imply l(UZl)= z2; hence, let y uzl. Then,

Ly =N(t, y(t), ly(t)),. a <t<b,

(Y(a), ly(a)) (Po, qo) o,
and since

( fb U2lim p-lim lz (b p, q)
kk-oo W(Ul U2a,

U-2pN(S, UZ1, Z2) ds ly(b)=P0- w

and fl is compact,

(y(b), ly(b)) nl.
Clearly, (5.7) is satisfied; so Lemma 5 implies a _-< y _-</3; hence, Lemma 3 implies
Ily < N; and so finally

(5.14) Ly =f(t, y, y’),

which proves the theorem for this case.
Now consider the case when fo t.J oo 13 Ol or 1 (-J 1o (-J 11 are not

connected. There are several possibilities here, and they are all handled simi-
larly. We give the details for just one case, namely, assume 12ol.3 Ol is not
connected but 1)o LI ffoo and 1 (-J 1o (-J Itll are connected. Since 12o (.J o is con-
nected by assumption, it must be the case that y= fo f’){(a(a), y)" c(b)-
J<-y<=cla(a)} . Let /z sup {y" (a(a), y)y} and
{((a), y)’c(b)-J<_-y-<_/x}. It is now the case that 12o* (.J oot-J POl is con-
nected. Hence, by the part of the theorem already established, there exists a
solution y of (5.14) such that (y(a), ’y(a)) 1’, (y(b), ’y(b))O and
a<-_y<-_ft. We will show that necessarily (y(a),’y(a))fo. Suppose
y(a) (a) and t(b)-J<-ly(a)<-_lt(a). Then

0_--< y(t)-cz (t)= l(y-t)(a)u2(t)+ Ia g(t, s)L(y- cz)(s) ds
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or

0_--<l(y-a)(a)+ lim+
1 Iata uz(t) g(t, s)L(y-a)(s) ds l(y-ct)(a).

Hence, it must be the case that

ly(a)= la(a)= i,

and (y(a), ly(a))= (a(a), la(a))E 0.
6. Examples. Consider first the problem

(6.1) y"-y r(t)yy’, y(0) 0, lim e-ty(t) 1,

where r E C[0, ) and r _>- 0. Let L D2 1, (u 1, u2) (e -t, e e-t), u e t, a 0
and/3 e t. Since

e 3tu3(t) IF(t, y, z)l ]r(t)l lyl ly + 2e-’zl,w2(ul, u2)(t)

the generalized Nagumo condition (1.6), as well as all the other conditions of the
theorem, will be satisfied for (a,/3) (0, e’) provided

(6.2) r(t) O(e-St) as .
Thus, (6.1) has a solution if (6.2) holds. Similarly, one can conclude that

y" r(t)y, 0_-<t<o,

has a solution such that

provided

(6.3)

lim t-ly(t)= 1
t---

r_->0 and r O(t-4) as t

which indicates a certain lack of sharpness in the application of our results since

(6.4) r O(t-2-) for some e >0

is all that is needed in this case. We will show in another paper on asymptotics how
the general method can be adapted to obtain sharp asymptotic results for this and
other problems without linearity restrictions.

Consider next the equation

(6.5) t2y"+ aty’ + by r(t)yy’ 0 < t < 1

where a and b are constants such that (a-1)2>4b and r(t)= O(t), as t0+.
Then the Euler equation

Ly =- y"+ at-ly + bt-2y 0



754 T.C. LEE AND D. WILLETT

is disconjugate in a neighborhood of 0 and has the fundamental set of solutions 1,
tx2 where

2X2 1-a +x/(a- 1)2-4b, 2A1 1-a-x/(a- 1)2-4b.
By taking a (t) 0 and

/3(t) CtXl(1 + t) (C> 0),

where tr is chosen so that O<tr<min (/x +A-I, /(-i)2-4b), the theorem
implies that (6.5) always has a solution y(t) such that

tli0nt t-aly(t)= C
provided

A+/x-l>O.
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A NOTE ON POSITIVE REAL FUNCTIONS*

J. L. GOLDBERG AND J. L. ULLMAN"

Abstract. In this riote we investigate properties of certain special classes of analytic functionsm
those which map the right half-plane into itself and the real axis into the real axis. These so-called
"positive real" functions play a significant role in the synthesis of two-terminal, passive networks. Our
concern is with the Taylor coefficients in the expansion about the point Zo Xo + iyo, Xo > 0. If

f(z)=u+iv=Za,(Z-Zo)",

then it is well known that lanl <-- UoX", where f(zo) Uo + ivo. We derive results on arg an, one such
being:

Iff is a nonfinear positive realfunction and x is a real, positive number, then for every integerN >=
there exist integers nNand m >=N such that f(n)(x) nd f(")(x) have opposite signs.

1. Introduction. Suppose f is a nonconstant single-valued, analytic function
in the open right half-plane. If f maps the open right half-plane into itself, we say f
is a positive function (or more briefly; f is positive) and denote this by f P. If f is
positive and if in addition maps the positive real axis into itself, we say f is positive
real and denote this by f PR. For the purposes of notational convention, we
formulate these definitions as follows.

DEFINITION 1.1. Let z =x + iy and f(z)= u(z)+ iv(z). ThenfP if
(a) f is nonconstant, single-valued and analytic in x > 0

and
(b) u > 0 for x > 0.
DEFINITION 1.2. Let f P. Then f PR if
(c) f(z) is real for z x > 0.
Besides their mathematical interest, the class of positive real functions has

been extensively studied because of its importance in the synthesis of two-
terminal passive networks (see [1], [2]).

Let Zo Xo + iyo, Xo > 0 and f(zo) Uo + ivo. Then, if f is positive, f is analytic
at Zo and we have

(1.1) f(z)= Y a.(Z-Zo)"
n=0

valid in a circle at least as large as Iz- z01 < x0. It was shown in [4] and [5] that

[f"(zo) =--;, n=l,2,...,(1 2) n! x0
a constraint on the growth of the modulus of the derivatives of f. In this note we
derive constraints on the argument of f(’)(Zo). As corollaries to the basic argu-
ment, we shall derive a number of interesting results on positive real functions--
see, in particular, Theorems 3.3 and 3.4.

We conclude the Introduction with the statement of a well-known theorem
on positive functions. The theorem has a long history and many proofs (see [3]).

* Received by the editors January 28, 1976, and in revised form September 8, 1976.

" Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48104.
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THEOREM 1.3. Iff P, then

(1.3) lim f(z)/z lim u(z)/x lim f’(z)= A >= 0

uniformly in the wedge, larg zl =< 8 < rr/2. Moreover, iff is nonlinear, then (z)
f(z)-Az is a positive function.

We shall find it convenient to use this theorem for normalizing positive and
positive real functions.

DEFINITION 1.4. If f is positive, then f is normalized if limz_.oo f’(z) A 0
for [arg z -< 6 < r/2.

Note that f(z)= f(z)-Az is positive real (or constant) if f is positive real,
since A is a real constant.

2. Some preliminaries and a fundamental lemma. Consider the linear
fractional transformation

Z --Zo(2.1)
z +Zo

and its inverse

(2.2) z
z0 + Sot

where Zo Xo + iyo, Xo>0 and o Xo-iyo. The first transformation maps the
right half-plane onto the unit disk while the second transformation is a mapping of
the unit disk onto the right half-plane. Write f(zo) Uo + ivo and note that if f is
positive, so is

F(z) u(f(z)-ivo)= U+ iV

since U= uu >0 for Xo>0 and x >0.
Define g(t) by the equation

F (.Zo +ot(2 3) g(t)
\ l"t ]"

Then (a) g(0) F(zo) 1 and (b) g(t) is analytic in Itl < 1 and has positive real part
there. From a theorem of Carath6odory [3],

(2.4)

and

(2.5)

U0 k=l k k!

Ig<")(0)l 2n !, n _-> 1.

We are now in a position to prove the fundamental lemma. Recall that

(2.6) f(z)= Y a,(Z-Zo)"
n=0

for Iz Zol < Xo, Zo Xo + iyo, Xo > O.
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LEMMA 2.1. If f is positive and if there exists a point Zo in the open right
half-plane and an integer N >-1 such that the set {ak}, k >-_N, lies in the same
half-plane whose boundary is a line through the origin, then the numbers
k >-N, all lie on the boundary of this half-plane.

Proof. Suppose ak =rk e ik, and suppose the half-plane of the hypothesis is
defined by

(2.7) 0 -<- 0k --< 0 + zr,

where we take 0k 0 if cek 0. We write (2.4) in the form

(2.8) (n -1)(2Xo)krk eik
ug")(O)

k=N k 1 n!
+ (2xo)k(--ak)

k= k 1

for 1 <N< n. If we multiply (2.8) by e -i’, then take imaginary parts of both sides,
then increase the right-hand side by replacing the imaginary part of e-’ (ak) by
]akl, we obtain with the aid of inequality (2.5),

(2.9) () 1(n-1)n-(2xo)krksin(Ok_d/)<__2Uo+ (2Xo) la l
k=rv k k= k 1

Since O --< Ok 0 + 71" for k _-> N, sin (0k ) 0 and thus each term on the left-
hand side of (2.9) is nonnegative. Hence, for each/’, 2 -< N_-<f -<_ n,

j- 1
(2x)r sin (0.- O)

-<2Uo+ (2Xo)lal
k= k 1

For fixed/" > N, 1 -< k -< N- 1, this leads to

0 =< (2Xo)Jr sin (0j O)

{-< lim 2Uo

/(n -l)(n I+ Y (2xo)klak]lim
k=l n-,c k

-----0.

Hence, r. sin (O if) 0. Thus either ce 0 or O is a multiple of 27r. In either
case, a. lies on the line through the origin with slope tan ft. This is the boundary of
the half-plane.

Prompted by this lemma we introduce the notation f P[zo, , N] to mean
thatf P and there exists Zo in the open right half-plane and an integerN >- 0 such
that _-< arg Ok t-+" ’/7" for all k _->N. The argument of zero is taken as if, by
convention.

LEMMA 2.2. Iff P[zo, , N], N >- 2, then f P[zo, O, 2].
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Proof. By Lemma 2.1, the numbers aN, aN+l, ", all lie on a line through the
origin. Hence au-1, au, aU+l, lie in some half-plane with this line as bound-
ary. Hence, by Lemma 2.1, the numbers aN-l, aN, aN+l, lie on the boundary.
That is, feP[zo, q,, N-1]. The argument may be repeated as long as N> 2.

LEMMA 2.3. If f P[zo, b, N] for Zo Xo + iyo, Xo > 0 and N >- 2, then f
P[zo + s, /, 2] [or all real s > -Xo.

Proof. By Lemma 2.2, f P[zo, g/, 2]. Suppose Xo < s < Xo. Since f is analytic
inx>0,

n!
(n

(z zo)

for k _-> 2 and for all z, [z Zol < Xo. Let z Zo + s. Then (z Zo)"- s- is real
andf((Zo + s) is the sum of co-linear vectors. Thusf((Zo + s) lies on the same line
as a, a, . A standard analytic continuation argument enables the removal of
the restriction s < Xo and this completes the proof.

Finally;
LEMMA 2.4. If f is a normalized positive function such that f e P[zo, g,, N],

N>-2, then fP[zo+s, O, 1]for all s >-Xo.
Proof. First note that [e P[zo+ t, g,, 2] for all t >-Xo by Lemma 2.4. Set

z Zo + and since f is analytic at z (Zl lies in the open right half-plane),

(2.10) f(1)(z) =f(1)(Zl)+ Z nr. ei(z -z1)n-1
n=2

for all z,

(2.11) [Z--Zl[<=t+Xo.
Here f(")(zl) r, e i* and r, may be negative. Fix z by setting z Zo + s, s real and
chosen so that inequality (2.11) is satisfied. Thus

(2.12) f((Zo+S)=f((Zo+t)+ Y nr, ei(s-t)"-I
n=2

valid for Is t] _-< t + Xo, > -Xo. Since f is normalized, we conclude from Theorem
1.3 that limt_,/(1)(Zo + t) 0. But then

f()(Zo+s)=e ’’ lim Y. nrn(S-t)n-1
teo n=2

follows from (2.12). Thus f(a)(zo + s) is a number on the line through the origin
with slope tan ,. Finally, s is restricted only by s >-Xo since for any s we may
select sufficiently large so that Is tl--< + Xo, > -Xo.

3. The main theorems. To avoid a repetition of certain notational conven-
tions we agree to write

f(z)=f(zo)+ E a,(Z-Zo)",
n=l

where z=x+iy, Zo=xo+iyo, Xo>0. Denote by H the half-plane H=
{w ". O =< arg w =< p + 7r}, where arg w p if w 0.
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Our first theorem summarizes the content of the lemmas of 2.
TI-mORM 3.1. If]’ is a normalized positive function and iffor some zo there

exists an integer N >- 1 such that {a}, k >-N, lie in the half-plane H, then the
numbers {a}, k >- 1, all lie on the line through the origin with slope tan O.

Lemma 2.4 can also be written as a theorem of mappings of normalized
positive functions.

COROLLARY 3.2. Iff satisfies the hypothesis of Theorem 3.1, then f maps the
line Zo + s for s > -Xo into the line

f(Zo) + eit, real.(3.1)

Proof. Since

we have

f(z)=f(zo)+ Y. a,,(Z-Zo)
n=l

flzo + s) flZo) + E
n=l

and by Theorem 3.1, this latter equation may be written

flZo + s) f(Zo) + e t,
where t is a real-valued function of s.

An immediate consequence of Theorem 3.1 is an interesting restriction on
the signs of the derivatives of positive real functions at each real, positive z.

THEOREM 3.3. Suppose f is a nonlinear positive real function and x is a real,
positive number. Then, for every integer N >= 1, there exist integers n and m both
larger than Nsuch that f("(x) and f(m(x) have opposite sign.

Proof. Let [ be the normalized function constructed from f so that )(z)=
f(z)-Az. Since f is neither constant nor linear, is nonconstant. Also,/(x) is real
since A is real andf is positive real. Suppose the conclusion were false. Then since
/((x) =f((x) for k > 1, there would exist some N sufficiently large such that all
the numbers {f((x)}, k _>-N> 1, would have the same sign. In this event, the
imaginary axis would be the boundary of a half-plane containing {a}, k N, and
hence from Theorem 3.1, ax, Ce2,"’, would be on the axis and real. Thus
Ol.k f(k)(x)/k! 0, k ->_ 1. Hence f(z) f(z)-Az would be constant and f would
either be linear or constant, neither of which is possible.

A similar argument generalizes the following idea" If f is positive and if the
numbers f(xo), f(X)(x0), f(2)(Xo), , x0 > 0 are all real, then by analytic continua-
tion f is real for all real, positive z. Hence f is positive real. Contrast this with the
conclusion of the next theorem.

THEOREM 3.4. Iff is positive andfor some Xo > 0 there is an integerN >- 1 such
that f(xo), f(U)(Xo), f(N+X)(X0),""", are all real, then f is positive real.

Proof. Define f(z)=.f(z)-Az so that [ is normalized. Of course, a
f()(Xo)/k! and we have feP[xo,.O,N]. By Lemma 2.5, eP[xo, O, 1] and thus
{/r()(Xo)}, k _-> 1, are real. Hence f is positive real and so is f.

An application of Corollary 3.2 follows next.

The derivatives of a positive real function at a positive number are all real.
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THEOREM 3.5. Suppose f is a normalized positive ]’unction [ P[zo, or/2, N].
Then [ has bounded real part; u <- 2u0.

Proof. By Corollary 3.2, equation (3.1),

(3.2) f(Zo + s) f(Zo) + it(s),

where t(s) is real. Thus [ maps the horizontal line Zo + s, s > -Xo, into the vertical
line f(Zo)+ it, and by the principle of symmetry, the image of the open right
half-plane must be symmetric with respect to the line f(Zo)+ it. But then the real
part of f cannot be unbounded. Indeed, u -< 2Uo must hold.

The next theorem is proved as a consequence of Theorem 3.1 and concludes
this note.

THEOREM 3.6. Supposefis positive and the numbers {cek}, k _->N=> 1, lie in the
wedge, {w" + 8 <-_ arg w -< + or 8, 0 < 8 < or/.2}. Then f is linear.

Proof. Suppose A->0 is defined so that [(z)=f(z)-Az is a normalized
positive function. The wedge given in the hypothesis is the intersection of two
half-planes whose boundaries are not co-incident. Theorem 3.1 implies, for each
of these half-planes, that {ak }, k -> 1, lie on both boundaries simultaneously. The
boundaries have only the origin in common. Thus, 0 a a and ) is
therefore a constant. Thus f(z)= "y + Az. Since f is not a constant, A 0 and f
must be linear.
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A VARIATIONAL APPROACH TO MULTIPARAMETER
EIGENVALUE PROBLEMS FOR MATRICES*

PAUL BINDING AND PATRICK J. BROWNE"

Abstract. The variational theory of eigenvalues and eigenvectors is extended to the multiparame-
ter problem (Tr + Ys-- As Vrs)Xr O, 1, , k, where Tr and Vr are linear operators on finite-
dimensional Hilbert spaces Hr. Appropriate variational problems are posed in]) k__ Hr and (k= Hr
and give, for example, existence and reality of eigentuples and orthonormality of eigenvectors in an
appropriate sense. The fact that the numerical range of an Hermitian matrix is the convex hull of its

eigenvalues is directly generalized. An Rk-valued generalized Rayleigh quotient is shown to possess
analogues of constrained minimaxima and unconstrained saddle points, when evaluated at eigenvec-
tors. Finally, dependence of Tr and Vrs on a parameter is investigated.

1. Introduction. It is the aim of this paper to discuss multiparameter
eigenvalue problems of the type considered by Atkinson [1] from a variational
point of view. Differential equation problems have been discussed in [9].

Let Hr denote the complex finite-dimensional Hilbert space C", and let T
and V, be Hermitian linear operators on H,, r, s- 1,..., k. A multiparameter
eigenvalue problem is formulated by asking for k-tuples A (A,..., Ak) of
complex numbers and nonzero vectors x H, r 1, 2,. , k, such that

k

(1) Tx,+ E ,LVx, =0, r=l,...,k.
s--1

A is then called an eigenvalue and x X (R)"" (R) Xk e (),k= H, a corresponding
eigenvector. It is also possible to regard the eigenvector x (x 1, , Xk) as a point
int) k Hr.r=l

We shall repose the problem (1) in variational terms in several ways and shall
draw corresponding conclusions about existence and extremal properties of
eigenvalues, geometric properties of eigenvectors and a type of numerical range
of the system.

Using the ),k= Hr setting for eigenvectors, one such variational formulation
turns out to be the vector maximization of the k-vector of real numbers

(2) (det Dr(x))k=l subjectto det Do(x) 1,

where

[Do(X)Its Vrsxr, x) [Di (x)]r, 0 # s,

[Oi (X)]ri Tr3(,r, Xr), i, r, s 1,’’’, k.

In this work, a -< b where a, b are real k-vectors shall mean ar =< b, r 1, , k. A
vector a e S c Rk is said to be a vector maximum of S if it exceeds all points of S
with which it is comparable.

* Received by the editors August 21, 1975, and in revised form, April 19, 1976.
f Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada

T2N 1N4. The research of the authors was supported in part by the National Research Council of
Canada, Grant No. A 9071 and Grant No. A 9073, respectively.

763



764 PAUL BINDING AND PATRICK J. BROWNE

We shall assume that Do(x) is a positive definite matrix for any x=
Hr with each xr 0. Note that this assumption implies that an

eigenvalue A (A 1, , Ak) has real entries ,r: see for example, [1, Thm. 7.2.1, p.
117].

Before proceeding, we review a few well-known facts concerning the prob-
lem in the case k 1. We shall omit subscripts for convenience. The problem
becomes one of maximizing

(3) -(Tx, x) subject to (Vx, x) 1,

where, by assurnption, T and V are Hermitian and V is positive definite. Then (3)
can be solved by adjoining the constraint (Vx, x)= 1 with a Lagrange multiplier A
giving the first order condition Tx + A Vx 0 which is just (1) in case k 1. Exactly
rn real possibilities AI,... ,Am exist for A corresponding to the various
extreme values of -(Tx, x) at eigenvectors xl, ,x m. These eigenvectors are
V-orthogonal in the sense that for Ai A we have (Vx i, x) 0. Further it is
possible to form a V-orthonormal basis of H consisting of eigenvectors. Also T
admits the spectral decomposition

Tx - . / Vx, xi) Vxi o.
i=1

Finally, if the/i are ordered by

(4) A,<... /1
then

/i max {-(Tx, x)l(Vx, x) 1, (Vx, xj) O, 1 _j < i}

min {max {-(Tx, x)l(Vx, x) 1, (Vx, yJ) 0}ly 0, 1 j < i}

with similar characterizations involving minima and maximinima. In particular,
for any y 0,

A 2 _-<max {-(Tx, x)l(Vx x) 1, (Vx, y) 0} _--<A 1,

and so on, leading to Rayleigh-Ritz approximation procedures. Suitable refer-
ences for these facts are [5, Chap. 1] and [7, Chap. 2].

We shall obtain generalizations of these results to the case k > 1 in 2 and 3.
The key tool, now common in multiparameter theory (see Atkinson [1] or Browne

k[4]) is a second reformulation of (1) in the tensor product space H=@r=l Hrma
complex Hllbert space of finite dimensionM I-It= mr. This leads to a version of
(2) inHwhere the constraint set is compact which it need not be for (2) as posed in
@r- Hr. In this multiparameter case, exactly M real eigenvalues exist. Although
they cannot be ordered as in (4)--indeed there may be egenvalues noncompara-
ble in our sense of ordering of k-vectorsmanalogues of the extremal characteriza-
tions, along with Rayleigh-Ritz like formulas, do hold as will be seen.

In 4 we obtain more quantitative information about the extremal nature of
the eigenvalues. Specifically we set

(5) /r(X) det Dr(x)/det Do(x), r 1,. ., k.
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Unconstrained vector maximization of the k-tuple (‘i(x)) is a further reformula-
tion of (2). Evidently this reduces to maximizing

X(x)=-(Tx, x)/(Vx, x)

in case k 1. Direct computation gives ,ix 0, ,ixx =-2(T+,i V), where sub-
scripts denote differentiation at the corresponding eigenvector. In particular ,i has
a maximum (minimum) at ,i a( ,i ,,) and a saddle point at ,i for ,i >,i >,i ,,,. Our
results for the multiparameter case show that

(9,i-’r 0, "=t92,ir 0, # j,
3X OX OXj

and characterize O2,ir/Ox at eigenvectors.
An example demonstrating the various possibilities for maxima and minima

of eigenvalues will be given in 5. We conclude with a short discussion of the
situation in which the various operators depend continuously on a parameter.

2. The tensor product formulation. The maps Tr, V induce maps T*, Vr*
on H. For a decomposable tensor x x (R)" (R) x H, T*x
xa (R)" (R) Xr-a (R) T,x,. (R) x,.+a (R)" (R) x. T* is then extended to all of H by
linearity. V* is defined similarly. We now define operators Ao, An, , A on H
by means of the formal determinantal expansion

k

Ol0 Od Odk

T Vkl Vkk

the Ceo,"’, ce being arbitrary complex numbers. Note that operators from
different rows of this determinant commute. It is easily seen that the operators
Ao, ., A are Hermitian on H with respect to the inner product (. ,. induced
by the inner products in the spaces/-L.

As is customary in multiparameter theory we shall adopt the definiteness
hypothesis: Ao is positive definite. Accordingly, we may define a new inner product
onHby[x, y] (Aox, y). We shallwrite S ={x Hl[x,x]= 1} and also Fs A- As,
s=l,"’,k.

The eigenvalue problem (1) is equivalent to the simultaneous problems in H:

(6) Fx=asX, s=l,...,k, xsH,

for decomposable x, see [1, 6.8, pp. 111,112].
The variational approach leads us to consider the Nk-valued function A

defined on nonzero elements of H by

(7) (Ax)r IF,x, x]/[x, x], r 1,..., k.

DEFINITION. The vectorial range of the problem (1) is the set A(S) _c k.
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Obviously A(S)=.A(H-{0}), and indeed if K is any linear subspace of H,
then A(S f3 K) A(K-{0}). In case k 1, A"H is just the Rayleigh quotient
whose "numerical" range A(S) is the interval [A % ,t 1] (see (4)).

We propose maximizing linear functionals over the vectorial range; that is,
we shall investigate exposed faces of co A(S), the real convex hull of A(S).

LEMMA 1. Let Iz ff have unit norm. The problem of maximizing tzTAx
subfect to x S possesses solutions satisfying

k

(8) Y Fx vx,
r=l

(9) tzTAx V,

for some real u. Further the set ofsolutions of (8) forfixed I and vforms a subspace
K,, ofH, invariant for each Fs, s 1,..., k.

Proof. S is compact since H is finite-dimensional. A is continuous on S and
thus tzTA is a real-valued continuous function on S. Accordingly, a maximizer
x S for/z TA exists. The problem may be solved by using a Lagrange multiplier u
for the constraint [x, x]= 1. Equation (8) is then the first order maximization
condition. Finally we note that, since Ix, x] 1,

v=[vX, X] tzrFrx, x Z tzr(Ax)r=tzTAx.
r=l

Suppose x satisfies (8). We apply F to both sides of this equation and use
ys Fsx together with the commutativity of the operators F1,’’’, Fk [1, Thm.
6.7.2, p. 110] to obtain

k

This shows that Ys K. and so FsK.
_
K..

We are now ready to establish the existence of eigenvalues and eigenvectors.
If dim K. 1, then the corresponding vector x will be a solution of (6). In
general, we shall simultaneously maximize enough functionals tz TA over S so as to
ensure a 1-dimensional space of solutions.

THEOREM 1. (i) The problem (6) possesses at least one solution whose
eigenvector e maximizes appropriate functionals tzTAx over x S, Ae being the
corresponding eigenvalue.

(ii) e may be taken decomposable in H and thus solves (1).
Proof. From Lemma 1 we have dim K. => 1. Should equality hold for some/z

and corresponding v, then the proof is complete. If not, we select/z (and v) so that
dim K. is minimal. We shall write K K. and for any other/z’ (and correspond-
ing u’), K’ K.,,.

First suppose that K H, so K’ H for all/x’. Then choosing/x’ as the usual
coordinate vectors in k in turn we reach (6) for all x H, h ,..., h being the
corresponding values of v’ for these choices of/z’. Hence any x s H is a solution of
(6) with As (Ax)s, s 1,. ., k.

We are left to consider 1 < dim K<M and first isolate two cases.
Case 1. K’_K for each/z’ and corresponding u’.
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Again taking/x’ as coordinate vectors in k we obtain (6) for all x K and so
any x K is an eigenvector.

Case 2. K’ fqK- {0} for each/.’ and corresponding u’.
Let x’ K’ and write x’= y + z, where y K, z K+/- (the [., orthocomple-

ment of K). Now we have by (8) with/z’ and v’,
k k

Z ’Fry + Y, I.,’,,F,.z v’y + v’z.
r=l r=l

Since K is an invariant subspaee for each of the [., ]-Hermitian operators F, so
is K-, and thus we see that

k k

la, rFry=v’y, Y ia,’rFrZ "--’VZ.
r=l r=l

In particular, this gives y e K’ and so y 0. Accordingly,

(10) x’ z K+/-.

We shall now take sequences/, v, x converging to/, v and some x K. Since
the v depend on/g we must digress slightly to ensure that/.t can be chosen so
that the v do approach v. Let F denote the face of co A(S) normal to/, so that

F co {A(x)[x maximizes/ TA(x) subject to x S}.

Pick x K so that A A(x) is an exposed point of F; that is, so that for some
: k, the inequality

sc:r(a --ae)--> 0, aeF,

has only one solution, viz. a a e. Set

U --(I.* + i-()/]lt-* + i-ll
and let x S be any maximizer of I.iTA.

Since S is compact we may assume that x -> x* S (passing to a subsequence
if necessary). Let

Now

a A(x i) ._> A * co A(S).

[dl, Tl [d Tl V/ s co A(S)

because x is a maximizer of t.*iTA, and hence

* _-> a Ya s co A(S),

whence A * 6 F by definition. Thus addition of the inequalities

--,T(li--le)’O, (Idl, --Fi-l)T(ai--ae)>O
yields

T(li--le)o.
Letting -> oo in this final equation we obtain a * a e. The limiting versions of (8)
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and (9) now show that x* K and u - u. On the other hand, x* K+/- f3 S follows
from (10).

This contradiction shows that Case 2 cannot occur. We complete the proof of
part (i) of the Theorem by applying the same reasoning to successively smaller
invariant subspaces. Select/x’ and u’ so that dim L is minimal where L K f3 K’.
Having eliminated Cases 1 and 2, we are left with

1 -< dim L < dim K.

We now use the above argument with L in place of K since K’ and hence L is
invariant under each Fr. If dim L 1, or more generally if K" L for all/x" and u",
then (6) holds for all x L. If not, we take a third functional (/x") 7-A giving minimal
dim (L (3 K"). Continuing in this way with at most k such functionals required we
eventually produce an eigenspace.

(ii) So far then we have that a maximizing vector x satisfies Fsx &x. It now
follows that

k

Tx + Y’. ,L V*,x O, r 1,..., k,
s----1

(see Atkinson 1, Thm. 6.8.1, p. 111]). That x may be taken decomposable and is
thus an eigenvector follows from

0 # x e ker Tr* + ,is V*s ker Tr + Z As Vrs
r=l s=l r--1 s=l

(see Atkinson [1, Thm. 4.7.2, p. 72]). This completes the proof.
As was pointed out earlier, (2) need not give a compact constraint set when

posed in )k= H# consider k 2, m m2 1, so that

det Do(x)= (VI V22- V2 V21)(XIX2)2= 1,

the V0. being real numbers in this case. This constraint gives two complex
hyperbolae in the x-x2-planenot a compact constraint set.

THEORE 2. There are &I 1-[k= mr possible eigenvalues (counted according
to multiplicity) all real k-tuples. Eigenvectors corresponding to different eigenvalues
are [.,. ]-orthogonal. A [.,. ]-orthonormal basis of H can be constructed from
eigenvectors.

Proof. The reality of eigenvalues is an easy consequence of our definiteness
hypothesis and the Hermitian nature of the matrices involved (for a similar
argument, see Browne [3, Thm. 1, p. 553]). If A,/ are different eigenvalues and
x x (R)" (R) Xk, y y (R)" (R) Yk corresponding eigenvectors, then

k

rrXr’+" E lsVrsxr ---’0,
s=l

k

rrYr+ E sVrsYr --0,
s--1
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so that

k

Y. ( m)(V,x,, y,) o, r , k.

Hence det (VrsXr, Yr)-" 0; that is, Ix, y]--0.
The construction of an [.,. ]-orthonormal basis can be carried out by the

usual procedure of first selecting a decomposable x solving the problem (6) with
corresponding eigenvalue A and then repeating the maximization arguments of
Theorem 1 subject to the additional constraint [x, x ] 0. Continuing in this way
we produce M eigenvalues A, 2, At (counted according to multiplicity)
and a system of [.,. ]-orthogonal corresponding eigenvectors x xt

We now have the following eigenvector expansion theorem and Parseval
equality.

COROLLARY 1. Let x x, xI be [.,. ]-orthonormal eigenvectors for the
multiparameter problem (1). Then for any x H,

M

(i) x- Y [x, xijx i,
i=1

M

(ii) IX, X] E I[x, xi] 12.
i=1

In terms of projections we may state
COROLLARY 2. Define operators pi, Qi, i= 1,... ,M, by Pix =[x, xi]x i,

Qix (AoX, xi)AoX i, 1, M. Then

M(i)
I= Z

i=1

M

(ii) Ao= Z Oi,
i=1

M

(iii) rr-- Z irP
i=1

M

(iv) Ar- Z A rQ.
i=1

Thus we have produced an alternative approach to the theory of Atkinson [1,
7.9, pp. 133-134].

3. The vectorial range. The vectorial range of the problem (1) is defined as
A(S) (see (7)), and in case k 1, it is the convex hull of the eigenvalues. The proof
of Theorem 1 shows that the eigenvalues possess certain extremal properties
relative both to the set A(S) and to certain real-valued functionals/xTA defined on
S. In this section we demonstrate that A(S) is a convex polyhedron whose vertices
are eigenvalues A i, so the corresponding functionals are those defined by the
normals to A(S) at A i.
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Let ! denote the index set {1, 2,..., M}, J any subset thereof and J its
complement in L Further we set

the ,t Rk being obtained from Theorem 2. In particular, rx is called the spectrum
of the problem (1). For a subset G = H, sp G will denote its linear span. Finally we
shall use

Sj {x Sl[x, x/] O, ] J} S fq sp {x’ li "J}.

Here, x 1, xM represent a [. ]-orthonormal basis of eigenvectors corres-
ponding to ,t 1, "’, ,t as per Theorem 2.

LEMMA 2. A(Sj) co (o’_,).
In particular,

A(S) co (,).

Proof. LetxS be written x Y,il aixi. Then Y,il lail2= 1 andx Sj if and
only if a 0 for j J. Thus for x S we have

M

/=1

Conversely, if Y,_/3/A is a point in co (o-_) we take x _j x/- x/. The above
analysis shows that x S and A(x)= Y,_ fl/,t/. This completes the proof.

The principal result of this section is a generalization of the minimax theorem
which in case k 1 admits the interpretation that a set of constraints of the form
Ix, y/] 0, 1 -</" -< p < m, applied to the Rayleigh quotient cannot force its numeri-
cal range entirely to the left of A"+I (or to the right of ,t ,,-,-1 corresponding to the
maximin theorem). Put another way, the said range must intersect the interval
[,t o+1, A 1]. We now show in the k-parameter case that for y/e H,/" 1, , p <
M, and J a p-element subset of I, the constraints

() Ix, y;] 0, /= ,..., p,

cannot force the range of A "farther" from o-_j than do the constraints corres-
ponding to choosing y/= x/, / 1, , p.

We denote by G the set of those x Hsatisfying (11) and put (2 A(G S).
THEOREM 3. LetJbe any subset oflcontainingp elements and let z Sj. Then

(2 intersects co {A(z), trj}. In particular ifJ K
_
IandKcontains p + 1 elements,

then Q intersects co
Proof. G has dimension at least M-p and so intersects

T sp {z, x If J}

in at least a line. Let such a line intersect S at t. Then arguing as in Lemma 2 we
have A(t) co {A(z), try}. However A(t) A(G fq Tf’) S) A(G f’) S) Q.

If the constraints (11) take a specially simple form in terms of the coefficients
of x (the a/of Lemma 2), the range Q may be convex; however, an example of
nonconvex range will be given later.

Returning to the vector ordering in k we can restate the above results to give
analogues of extremal characterizations of eigenvalues. Let ,t 1.i, 1,. n (1),
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denote the noncomparable vector maxima of the spectrum listed in their lexicog-
raphic order. We term this collection the first cycle ofeigenvalues. The f-th cycle of
eigenvalues, written ,t ’, 1,. ., n(f), will be the set of noncomparable eigen-
values A with the property that if ix represents another eigenvalue, then ,t -< ix
holds for at least one ix from the preceding cycle and A =< ix cannot hold unless ix
comes from an earlier cycle. That is, the/’th cycle consists of the set of vector

i-1 (cycle i). Each cycle will be listed according to the lexico-maxima of trz-13 i=1

graphic order of its members. This provides a listing A I’, 1,..., n(f), f
1, 2,. , of all the eigenvalues. We shall denote the corresponding eigenvectors
by x’’. As an imr0ediate consequence of Lemma 2 we claim

COROLLARY 3. Letf >--_ 1 and consider the vectorial range A subfect also to the
constraints Ix, xp’q] 0, q 1,. ., n(p), p 1,. ,/’- 1. Then the f-th cycle is a
subset of the set Vofvector maxima of A. Further, the vertices of Vform a subset of
the ]-th cycle.

If extra constraints of the form Ix, x’r] 0 for say r 1, , s < n (]) are also
imposed, then the corresponding set A will have the remainder of the jth cycle as
vector maxima but there may also be further vertices of the form ,t u,o for u >/"
among the vector maxima. We close this section with a direct analogue of the
minimax theorem.

j-1COROLLARY 4. Letp q= n (q). Ifthe set A is subfect top extra constraints of
the form (11) with Q as the corresponding vectorial range, then for each point A j.i in
the f-th cycle there is a vector maximum ix of Q with A .i <_ ix.

4. Differenliability of eigenvalues. It will now be convenient to return to the
space )=1 Hr and to recall (5) where we defined

(5) ,t (x)= (,tr(x))= (det Dr(x)/det D0(x))=l.

Evidently ,t (x) A(x (R). (R) Xk) as defined in (7). We shall regard ,t as a function
of the k vector variables x,..., Xk. Air, Airs will denote derivatives
02Aj/Oxr Oxs etc. Notice that (OAj/Oxr)(x) is a linear map defined on Hr and taking
values in C and as such (OAj/Oxr)(x) can be regarded as a point in Hr. In similar
fashion, Airr can be regarded as a linear map defined on Hr and taking values in

THEOREM 4. At any eigenvector xi, the function defined by (5) is infinitely
differentiable. Further all first order, and all higher order mixed derivatives vanish
and

(2 T - lj(xi) rs + E [Do(x’)]rAss(x’)= O.
j=l

Proof. The differentiability of ,t at an eigenvalue is clear from its definition.
We write

k

Ur(x) Tr + A.(x) Vri: Hr Hr, r 1,..., k,
=1

Ors(X) [Do(x)]rs, r, s 1,"’, k.
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Then (5) may be written

(x,, U,(x)x,) O,
and differentiating both sides of this equation with respect to x we obtain

k

(12) 2Ur(X)Xrrs h- or] (x)a]s (X) 0.
]=1

At x X we have Ur(Xi)X i--, 0 and so

k

Or](X)/js(xi)’-’O.
=1

The nonsingularity of Do(xi) now yields

/js (xi) 0.

Next we differentiate both sides of (12) with respect to xt, s, to obtain atx x,

k

/=1

Thus at an eigenvalue the second and similarly all higher order mixed partial
derivatives must vanish. Finally we differentiate both sides of (12) with respect to
x to obtain at x x,

k

2U (xi)rs + 1)rj(Xi)ljss(Xi) O.
=1

This holds for r, s 1, ., k and 1, , M. Higher order derivatives may be
treated similarly. In particular, the invertibility of D0(x/) enables us to solve the
last equation for A]ss(xi).

5. An example. We take k 2, m m2 2 and consider the 2-parameter
system of equations for x, y s R2, A, tts R:

Ux=
1 0

+’
0 -2 +tt 0

x=0,

Here we shall use (A, ix) for an eigenvalue. Calculation of the eigenvalues and
eigenvectors is easily carried out via the characteristic equations

0 det
1 -21 -/x -A -/x
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This gives the following system of 4 eigenvalues and eigenvectors’

(a, tt)=(+l/v/,0), x
\ 1 Y= 0

(a, t)= (+ 1/CRY, :1//), x=
+x/ Y=

The eigenvalues are displayed as A, B, C and D on the accompanying
manutract. According to the classification of Corollary 3, A and B form the first
cycle, C and D the second. Observe that no single eigenvalue is a vector
maximum, also that C=B. Theorem 1 indicates that the eigenvector ea

corresponding to A maximizes the form

OX1X2(y 12 -]’- y 22) ISXIX2y

subject to

(Xl2 + 2x22)(y 12 + y22) + (2x12-x22)y22 1

parallelogram is the vectorial range of our system; that is, it is the range of the
function A (see (7)). If orthogonality to ea (in the [.,. sense) is imposed on the
function A, the resulting range becomes the triangle BCD, while if [.,. ]-
orthogonality to the eigenvector for B is also imposed, the range becomes the line
segment CD, and so on.

According to Theorem 3, imposing [.,. ]-orthogonality to any point in H
will force the range to intersect every line joining pairs of the vertices A, B, C and
D. In particular, this range cannot be interior to any of the triangles ABC, ABD,
BCD and ACD.

We now give an example promised earlier of a nonconvex range arising from
suitable orthogonality conditions. Let ea, eB, ec and eD be the eigenvectors
corresponding to A, B, C and D. We consider the function A subject to conditions
of orthogonality to the vectors ea + eB + ec eD and eA 2eD. The elements (A,/x)
of this range, being in the parallelogram ABCD, may be expressed as

(a, tz) a2A + fl2B + T
2C+ 62D,

where a,/3, y, 8 are real and satisfy

a+fl+y=6, a=26 and 2 2 ,3/2 2a + + +8 =1.

Eliminating a and 6 we obtain an ellipse in (/3, 3’) coordinates and hence a
quadratic equation in/3 2 and 3, 2. Since a 2 46 2 (l 2

,)t 2), it follows that the
range is a curve. This curve is in fact closed, but we merely show its nonconvexity
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by exhibiting the three points

P (-(2/+ 34)/12, 4/6), corresponding to a 0;

O ((%/+ 24)/36, -,f/18), corresponding to/3 =0;

R (,//3, 0), corresponding to y 0.

It is easy to check that these points are not collinear.
Finally, we classify the extremal natures of A, B, C and D according to

Theorem 4. For the pair A and C (+/- 1/x/,0) we have

2)(0 (-4U= V= Do
1 : 0 q=l/ 0 -1

Theorem 4 now gives

2(U 0V)+(-4 31)(Axx AYY)=0,0 0 \ld,

where Axx 021/OX 2 at the appropriate eigenvector. Solving we obtain

/Xxx /xyy/ 0 4V"

For the case A (1/x/, 0), U is negative semidefinite as is V. Hence we see that A
has a local maximum jointly in x and y while/x has a point of inflection in x and a
maximum in y.

For the case C(-1/x/, 0), both U and V are positive semidefinite so that the
above conclusions hold with maximum replaced by minimum.

For the pair B and D (wl/Vr, +1/,/) we have

) 0)+1_
--, V= Do

0 0 -1 -1

Arguing as before we obtain

tX Iz y - U 7

For the case B(-1/4, 1/x/), U is positive semidefinite while V is negative
semidefinite. Hence , has a joint minimum while/z has a joint maximum.

For the case D(1/x/, -1/x/), U is negative semidefinite while V is positive
semidefinite. Hence the conclusions for B hold here with maximum and minimum
interchanged.
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(1/,, O) h

FIG.

6. Conclusion. In ordinary spectral theory, the variational approach extends
to both infinite-dimensional operators and to those depending on a parameter.
We hope to extend our theory to infinite-dimensional operators in a separate
work. To conclude the present paper we present a brief discussion of the situation
in which our operators depend continuously on the parameter which for
simplicity we take as ranging through a compact real interval containing zero.

THEOREM 5. Let the operators Tr, Vrs depend continuously on t. Then eigen-
values depend continuously and eigenspaces upper semicontinuously on t.

Proof. For notational ease, we treat only the case 0. In the finite-
dimensional case here, upper semicontinuity of eigenspaces means that if xt H is
an eigenvector of the system corresponding to t and if xt x H as t 0, then x is
an eigenvector for the system at 0.

Fix/z k,/z 0 and let x, maximize/x rAt(x) over the [., It unit ball $,. Set

Xo, xd[x,,

to give Xot So and let x* So be any accumulation point of Xot as t 0 so that
without loss we take Xot x*. From this it readily follows that xt x* by virtue of
the continuous dependence of Ao on t. Thus, as 0,

/z TAt(xt) ,a TAo(X *) ----</.z TAo(Xo).
Conversely, with

]1/2X,o Xo/[Xo, ,o,,
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we obtain x,0 S, and X,o- Xo. Hence we have

TAt(xt) >=l.l, TAt(xto)--> rAo(xo) as t->O.

So far then, the vectorial range A,(S,) is continuous in the sense of affine (support)
functionals. This guarantees that each exposed point of Ao(So) is the limit of
exposed points of At(S,) as t 0, and also ensures that we may find a compact set
K c k containing each numerical range At(S,).

The upper semicontinuity of eigenspaces is easily established, for suppose we
have eigenvectors x, such that x, x as 0 through a sequence of values. By
taking a subsequence if necessary we may assume that the corresponding eigen-
values A, converge to say A k. Now we have

F,x, Ax,, s 1, k,

and letting 0 through this sequence we obtain

Fsx Asx, s 1, k.

If we take Ix, x,], 1 it follows that [x,x]o 1 and so we see that x is an
eigenvector.

A similar argument shows that any accumulation point of eigenvalues A, must
be an eigenvalue for the 0 problem. Finally to show the dependence of the
spectrum on t, let A 0, 1, .., M, be an enumeration of the eigenvalues for t 0.
Suppose there exist e >0 and a sequence of values with IA,-Al>e,
1,. ., M, for at least one At. These eigenvalues At must have a point of accumula-
tion A* which by the above is an eigenvalue for t=0. However, we have
]A *-a] _-> e, 1,. , M. This contradiction shows thate >0:1 8(e) such that

M

O B).
i=1

Here, trt represents the spectrum at and B(A o, e) represents the k-dimensional
ball with center A o and radius e. This is the desired eigenvalue continuity.

COROLLARY 5. Let v be a regular Borel measure defined on . If Tr, Vs are
u-measurable functions of t, then a u-measurable [.,. ]t-orthonormal basis of
eigenvectors x 1,... M, exists. Eigenvalues A,, are also u-measurable.

Proof. The result is similar to Kaz’s theorem [6, pp. 1341-1345]. We sketch a
proof based on the ideas of [2, Thm. 3]. We require Vitali’s theorem [6, Lemma
17, p. 1218] which states that measurable functions are continuous except on sets
of arbitrarily small measure. Let u. work then with a compact set on which Tr and
Vr are all continuous. We have seen that the set of eigenvectors is an upper
semicontinuous function of and the same is clearly true for the set of all
[.,. ]t-orthonormal bases of eigenvectors. Using the selection theorem of [8, p.

being a v-x, each x,398], we obtain a [.,.]t-orthonormal basis xt,’"
measurable function of t. Now the eigenvalues are given by :--A,(x),
1 M, and A being continuous in we obtain u-measurable eigenvalues A t,

1 =< =<M. Vitali’s theorem now shows that these considerations are sufficient to
justify our claim.
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REGULAR SINGULAR DIFFERENTIAL EQUATIONS WHOSE
CONJUGATE EQUATION HAS POLYNOMIAL SOLUTIONS*

L. M. HALL

Abstract. Consider the n-dimensional singular differential system defined by the operator
L" (Ly)(z)=zOy’(z)+A(z)y(z), where z is a complex variable and p is a positive integer. The
solvability of the nonhomogeneous system Ly =g depends on the solutions of the homogeneous
conjugate system, L*f 0, where L* is the operator conjugate to L. We show that L*f 0 has
polynomial solutions if the constant matrix in the series expansion of A (z) has at least one nonpositive
integer eigenvalue. Also, we show that if L*f 0 has a polynomial solution, then a finite number of the
coefficients of A (z) must satisfy certain properties. These results are then used to obtain a solvability
condition for the nonhomogeneous Bessel equation of integer order.

1. Introduction. Let A,n be the space of n-vector functions whose compo-
nents are analytic in the open unit disc and q times continuously differentiable on
the closed unit disc. A norm can be defined so that A,n is a Banach space. Letp be
a positive integer, let A (z) be an n n matrix with columns in A0,n, and define the
operator L" A 1,n --> A0,, by

(1.1) Ly(z) z"y’(z) +A (z)y(z).

The following theorem, due to Grimm and Hall [2], states necessary and sufficient
conditions for the nonhomogeneous system Ly g, g e A0,,, to have a solution in

THOZM A. The system Ly g has a solution in A, if and only if
(1.2) lim B (g, f; r) 0

for all f belonging to the conjugate space A* such thatO,n

(1.3) lim B(Ly, f; r) 0
rl-

for all y in A,.
If u(z)==o uz and v(z)==o vz are n-vector functions analytic in

the unit disc, B(u, v; z) denotes the Hadamard product of u and v, i.e.,
B(u, v; Z)=k=o (Uk Vk)zk, whereuk Vk UkVk+UV+" .+UkVk. Adetailed
treatment of the relationship between the Hadamard product and the space A*0,1
has been given by Taylor [5], and his results were extended to the vector case by
Grimm and Hall [2].

Equation (1.3) characterizes K(L *), the kernel of the conjugate operator L*,
and (1.2) characterizes the annihilator of K(L*). In this paper we shall study
systems for which (1.3) has polynomial solutions, and we shall also study the
relationship between the regular singular property at z 0 and the existence of
polynomials in K(L*) for such systems.

* Received by the editors November 18, 1975.

" Department of Mathematics and Statistics, University of Nebraska--Lincoln, Lincoln, Neb-
raska 68508. This research was supported in part under National Science Foundation Grant
MPS75-06368.
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2. Preliminaries. We first rewrite (1.3) in a more useful form. Let f(z)=
k=0 fkZ k,A (Z) k=o Akzk, and T denote transpose. Then (1.3) is equivalent to
the following infinite system of equations"

E o
k=0

k=O

lfp+l-
k=O

Also, we shall assume that the first nonzero coefficient in the power series
expansion of A (z) is in Jordan normal form. This can be done without loss of
generality, and will facilitate several proofs.

3. Results for niipotent Ao. In this section we assume that the matrix Ao is
nilpotent. In this case, if the rank of Ao is r,

Ao=diag{J1,’ ",

where each Ji is an elementary Jordan matrix of dimension pi, ,i= pi n. We can
arrange the matrices J so that pl >= p2 >=" >= Pn-r. Hence A0 is nilpotent of index
pl, and each J is nilpotent of index pi. Now define the n n matrices Ji,

1,..., n-r, as the matrices formed by replacing each elementary Jordan
matrix in Ao except J; by the zero matrix of corresponding dimension. Clearly,
each . is nilpotent of index pi. In case pi 1, define Joi-1 to be the n n matrix
with a one in the ((i.-11 pj)+ 1, i=1 p.)th position, and zeros elsewhere.

THEOREM 3.1. lfAo is as given above, andp 1, then there exist n r linearly
independent vectors fo, such that the constantfunctions f (z) foi belong to K(L*),

1,..., n- r. Also, no other polynomials belong to K(L*) in this case.

Proof. Since the rank of A0 is r, there exist exactly n r linearly independent
vectors fo, such that f,Ao 0. These vectors can be written as

f0,-(0,’", 0, 1, 0,..., 0) T,

where the 1 is in the (--1 p.)th position. Therefore the functions fi(z) =fo, satisfy
(2.1), i= 1,..., n-r.

N kNow suppose that f(z) k--o fkz belongs to K(L*) with N >- 1 and fN # 0.
Then from (2.1) fN must satisfy fAo =--NfTN. This is impossible since Ao is
nilpotent. If we let N 0 then we obtain the same vectors as before, and so the
proof is complete.

THEOREM 3.2. Let Ao be as given above and let p >=2. 1]: there exists a
nonnegative integer Nsuch that, for 1,. ., n -r,

J*’i-lAk--O k=l,...,N, kp-1,



780 L.M. HALL

and

J’’-l[Ap_l+(N-p+l)I]=O (if N>=p-1),

then there exist n-r linearly independent vectors fN, such that fi(z)= fNiz N,
1,..., n- r, belongs to K(L *).

Proof. As in the proof of Theorem 3.1 we can define the vectors

i=l,.. .,n-r,

such that TfN,AO 0. IfN 0, then we are done. IfN> 0, the condition ]7i-lAk 0
is equivalent to requiring that the (YI=I p.)th row of Ak is all zeros, i=
1,...,n-r,k=l,...,N,k#p-1. Hencef.A=0fori=l,...,n-r and
k 1, , N, k # p 1. Similarly, the condition J7’-l[Ap_ + (N-p + 1)I] 0
implies that TfN,A-I =-(N-p + 1)f, for i= 1,.’’, n-r. Hence, the functions
fi(z) =fN,zN belong to K(L*), and the proof is complete.

The two preceding theorems do not, however, completely describe K(L*)
unless dim K(L*) n r. Since we know from [2] that

(3.1) dim K(L*) n(p- 1) + dim K(L),

then when p- 1, dim K(L*)= n-r if and only if dim K(L)= n- r, and when
p 2, dim K(L*) n r if and only if r 0 and dim K(L) O.

4. Results for systems with a regular singular point. In this section we drop
the assumption that Ao is nilpotent. However, if p _>-_ 2 and (1.1) has a regular
singular point at z 0, Harris [3] has shown that Ao must be nilpotent, and so the
results of 3 will apply to such .systems.

THEORZM4.1. Letf(z)==ofgZ belongtoK(L withN>p-1 andevery
component off nonzero. Then A (z) must satisfy:

(i) A =0, k =0,... ,p-2,

(ii) Ap-1 -(N-p + 1)L

and

(iii)
N

]:[A (N-p + 1)ff-1
k=p

(4.1)

N

fk+N-,-Ak 2f-2
k=p

T]CAp --/-1.
Proof. We first remark that when p 1 condition (i) is vacuously satisfied.

Since f is a solution of (2.1) we must have, for p -> 2, fTNA0 0. Because Ao is in
Jordan normal form, each eigenvalue of Ao must occur at least once as the only
nonzero element of some column. But this means that every eigenvalue of Ao is
zero, since no component of fN is zero andfAo 0. The same argument can now
be used again to show that every element of the superdiagonal of Ao is zero and
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that, consequently, Ao 0. The same argument yields A A2 Ap-2 0
and (i) is proved.

Counting from the bottom up, the first equation from (2.1) for this f with a
nonzero right-hand side is

(4.2) Tfu-p+lAo+" +fruA,- -(N-p + 1)f.

Condition (i) implies that (4.2) is equivalent tofA,_a + (N-p + 1)I] 0, and the
same argument as before yields [A,_ + (N-p + 1)] 0, or Ap_a =-(N-p + 1)/.
This proves (ii)’.

The remaining equations from (2.1) for this f are equivalent to (4.1). Since f
belongs to K(L*), these equations must be satisfied by Ap,..., AN and so (iii)
holds.

The next theorem provides conditions which guarantee that K(L*) contains
only polynomials. Further, these polynomials will be constructed.

THEOREM 4.2. In (1.1)letp 1 and letAo -NI, Napositive integer. Then
(i) K(L *) {fi(z )}, 1,. ., n, where thef are linearly independentpolyno-

mials of degree N,
(ii) dim K(L) n, and z 0 is an apparent singularity (see 1]) for Ly O.
Proof. Let {/N,}, 1,’" ’, n, be an arbitrary set of n linearly independent

constant vectors. We can now uniquely define the vectors {fk,}, k N- 1, , 0,
and i=l,...,n by the system (4.1). The functions fi(z)=YkN=ofiZ , i=
1,’’’, n, all satisfy (2.1), and so belong to K(L*). Since the fi are linearly
independent, dim K(L *) >= n. From (3.1) we have dim K(L *) dim K(L). But
dim K(L) <- n, so dim K(L*) dim K(L) n. This proves (i). To complete the
proof we note that dim K(L) n implies that every fundamental matrix for Ly 0
is analytic at z 0. Hence z 0 is an apparent singularity as defined in [1].

The condition that A0 be a multiple of the identity matrix in Theorem 4.2 is
quite restrictive. In the next theorem we find that a weaker hypothesis still
guarantees the existence of polynomials in K(L*). However, these polynomials
no longer span K(L*).

THEOREM 4.3. Let Ao have a nonpositive integer eigenvalue, let -N be the
largest such eigenvalue, and let m be the number of linearly independent eigenvec-
tors ofAg corresponding to -N. Then ifz 0 is a regular singularpointfor Ly O,
them existm linearly independentpolynomials ofdegreeNwhich belong to K(L *).

Proof. If p >_- 2, then, since z 0 is a regular singular point, A0 is nilpotent, and
so we have N 0. Hence, if the rank of Ao is r, then m n r and we can apply
Theorem 3.2.

Assume p 1. Then Ly 0 always has a regular singular point at z 0. Let
{fN, }, 1, , m, be m linearly independent eigenvectors of Ac corresponding
to the eigenvalue -N, and therefore satisfying T Tfu..Ao =--NfN,. Now successively
define the vectors {f,}, k N- 1,. , 0 and 1,. , m, by

(4.3) fT fj+k),A/. (Ao + kI)-.
/’=1

These vectors are uniquely defined for each in terms of ]’u, and A (z) since -N is
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the largest nonpositive integer eigenvalue of A0. Hence the rn polynomials
N/(z) =o f,z, 1,.", m, belong to K(L*) and the proof is complete.

We shall now give two theorems which provide necessary and sufficient
conditions for K(L*) to contain a nontrivial polynomial in the regular singular and
irregular singular cases, respectively.

THEOREM 4.4. Let z 0 be a regular singular point for Ly O. Then K(L*)
contains a nontrivial polynomial if and only if Ao has a nonpositive integer
eigenvalue.

Proof. Assume K(L*) contains a nontrivial polynomial of degree N. If p 1,
the coefficient of z u, call it fu, must satisfy fAo =-Nf. Hence -N is an
eigenvalue of A0. If p-> 2, Ao is nilpotent by the result of Harris mentioned
before, and so zero is an eigenvalue of A0.

The converse is a direct application of Theorem 4.3.
THZORZM 4.5. Let z 0 be an irregular singularpointforLy O. Then K(L*)

contains a nontrivial polynomial if and only ifAo is singular.
Proof. Since z 0 is an irregular singular point, we must have p ->_ 2.

N kAssume f(z) Y=o fz belongs to K(L *), withN -> 0 andfu 0. Then (2.1)
implies that fAo 0 and hence Ao is singular.

Assume A0 is singular. Then there exists a nonzero vector, fo, such that
fAo 0. Letf(z fo. The quantityf satisfies (2.1) and hence belongs to K(L*).

5. Examples. To illustrate some of the preceding results, we consider the
following linear second order equation, with a, b, and g in Ao,"
(5.1) z2y"+ za(z)y’+ b(z)y g(z).

This equation clearly has a regular singular point at z 0 and, as a system, has the
form

z 0 y +
0 -1 y 0(5.2)

0 z y b(z) a(z)-I y g(z)

where y a=y and y2= zy’. Hence the matrix Ao is given by

(5.3) A= b(0) a(0)-I

Ao, as given in (5.3), is not in Jordan normal form. However, since the eigenvalues
of a constant matrix are invariant under similarity transformations, (5.3) will be
used to calculate the eigenvalues of Ao. If J is the Jordan normal form of Ao, then
there exists a nonsingular matrix P such that J P-AoP. In the remainder of this
section, L will be the operator corresponding to the system obtained from (5.2)
after Ao has been converted to Jordan normal form.

If b(0)= 0 and a (0)= 1, then A0 will be nilpotent of index two, and we can
apply Theorem 3.1. In this case, any constant two-dimensional vector whose first
component is zero belongs to K(L*), and so, by Theorem A, if g(0) # 0, then (5.1)
is not solvable in A ,:.

If a(z)= 1 and b(z)=z-u, then (5.1) becomes the nonhomogeneous
Bessel equation of order u. In this case the eigenvalues of Ao, from (5.3), are -u
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and u and so, if u is a positive integer, K(L*) contains a polynomial of degree u.
Moreover, this polynomial spans K(L*) since, from (3.1), dim K(L*) dim K(L)
and dim K(L)= 1 for Bessel’s equation. We shall now construct this polynomial
using Theorem 4.3 with u N.

In (5.2) let Y (yl, y2), let U PY, and multiply both sides of (5.2) by p-l,
where

System (5.2) then becomes

where G =(1/(2u))(g, _g)T. The operator equation LU G will now refer to
(5.4), and we shall rename Ao so that Ao diag (-u, u).

The one linearly independent eigenvector of A o
v corresponding to u can be

written as f (1, 0) T. Then (4.3) yields

1 -1

f= 1 u-k u+k
v f’r+: -1 1

v-k v+k

or, equivalently,

(5.5)
/! (i-1)!f,,v_,= 1 1 (v--i). --(V ]

]=1

Hence, K(L*) is spanned by the polynomial

(;u) Iv/2]

/(z)= + E L-z
i=1

where f-2, is given in (5.5).
If we now apply TheoremA to the system (5.4) we see that (5.4) has a solution

in A 1,2 if and only if v is a positive integer, and

(5.6) tzJ ((u-/)! +f(u-/-1)!)g,, + 22/ g-zj O.
= v!j.

Clearly, (5.4) has a solution in A1,2 if and only if (5.1), with a(z)= 1 and
b (z) z2- u2, has a solution in A 1,1.

Remark. Condition (5.6) corresponds to a condition given by Ibragimov and
Kuniruk [4], who obtained their result by using the equivalence of the Bessel
and Euler operators. They also gave a solvability condition for certain
nonhomogeneous Euler equations which we can obtain by using Theorem 4.3 and
Theorem A as we did with Bessel’s equation.
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MEAN VALUE INEQUALITIES*

A. M. FINK?

Abstract. We find the best possible constants Ki Ki(c), 1, 2, for inequalities of the kind

[(t) oOe(s)) ds <--Kiq([(t)) [(s) ds

when q is a given positive function, valid for all functions [ such that f(0)= 0 and either (i 1) f is
increasing and convex, or (i 2) f is increasing.

1. Introduction. Burton 1] in a recent paper needed an inequality of the sort

i0 io(,) y(s) (y’(u)) duds<-_Ky(t)+l.o.t., 0_-<t<l,

where 1.o.t. means a polynomial in y(t) of degree -<2 whose coefficients may
depend on y, and where y, y’, and y" +m as 1-

If it is assumed that y,y’,y"0 and y(0)=0, then Io(y’(u))duN
( y’(u) du)y ’(s) y (s)y ’(s). An integration yields (,) with K 1/3 and 1.o.t. 0.
However, Burton needed the result (,) for some constant K<l/3. Several
examples show that K 2/9 ought to work.

One may proceed formally, searching for alternate forms of (,). The in-
equality (,) may be written, assuming the limit exists, and y(0)= 0,

lim Io y(s) Io (Y’(U)) du dSNK:
tl- y3(t)

In this form l’H6pital’s rule suggests showing

I’o 6K.
3y(t)y’(t)

In this form (,) becomes (K 2/9)

(**) (y’(U))2 du N 2/3y(t)y’(t).

Now, if (**) is true and y(t)0 with y(0)=0, then (,) follows directly with
K 2/9 and 1.o.t. 0.

Now (**) with y’ =f and y(0) 0 becomes

(1) /2(s) ds 2/3f(t) f(s) ds.

When written in the form

* Received by the editors June 14, 1975, and in revised form May 26, 1976.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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an integration under the integral sign is suggested. So, assuming f’ >0, and
f(0) 0 and using parts

Iot fot ds3/(s) ds 3f2(s)f’(s) f’(s----

i,(t--i+
Similarly

/2(t) Iot /"(s)
2/(s) ds f-+ f2(s) [f,()] ds.

Thus the inequality (1) is equivalent to

I"(s)
D]z. )-f(t)] ds <-O.

This is true provided f"=>0 since f(s)-f(t)<=O. Thus (1) is verified if f(0) =0,
f’>0, and f"=>0, and (,) is verified for K= 2/9 and 1.o.t.=0 when y(0)=0,
y’(0)=0, y">0, y’">-0. This special case implies the general result (,) for
functions y with y’"=> 0. For if y is given let z y + at + b with a, b chosen so that z
satisfies the special conditions on [to, 1); applying (,) to z yields (,) with y and
1.o.t. 0.

The above formulation suggests the problem of finding a general class of
inequalities (1). If one writes (1) as

fe(t) /2(s) ds f(- f(s) ds

one can think of replacing the square by an arbitrary positive function, say q. In
the terminology to be introduced, the above arguments show that Kl(0)= 2/3
and K2(o)= 1 with o(x)= x 2. Different proofs are given below.

2. Formulation of the problem. We will show that (1) is one of an interesting
class of inequalities and that 2/3 is the best possible constant.

Specifically, let all functions be defined on [0, oo) and consider the classes

A1 ---{f; f(O)-’0,f C2, f’>0,/" - 0},

A2 {f; f(0) 0, f e C’, f’ > 0}, and

B {o; o(0) 0, o’(0 +) exists, o > 0 on (0, oo)}.

Fix o B. We consider the inequalities

(2)
o(f(t))

q(f(s)) ds <-K() f(s) ds.

We let Ki (o) denote the best possible constants for which (2) holds for all f s Ai. In
this terminology, Kl(x2)=2/3, while Kz(x2) 1 is an obvious inequality. In
general K1(q) <= K2(q) since A cA2.
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3. Reformulation of the problem. The inequalities (2) can be viewed as
some sort of averages over the range space. It is thus desirable to rewrite (2) to
maintain this viewpoint more clearly. Let u -f(t) and change the variables in the
integrals by v =f(s). One then gets the equivalent inequality

(3) [uo(v)-Ki(o)vo(u)]g(v) dv <=0,

where g(v)= Tf= [U(v)]’= [f’(f-a(v))]-. The values u for which (3) is to hold
depends on the range of ]’. Note that the domain of f is irrelevant here. It is clear
that the sets Ai are transformed by the mapping T into the sets

fi,1 =- {gig C1[0, c), g > 0, g’ -< 0}
and

fi2 {gig C[0, o), g >0}.
In fact the mapping is onto. Since g A is continuous, and positive one can solve
the equation g (f-a),, f-(0) 0 byf-(x)= g(s) ds and observe thatf has an

f-1inverse function whose derivative is continuous and positive and if g A 1, is
concave so that f is convex.

Thus K(0) for i.nequalities (2) are also the best possible constants for which
(3) holds for all g A. We may assume the domain of these functions is [0,

4. Characterizations o,t Kt(o). The problem of finding K2 is straightfor-
ward.

LEMMA 1. Let h be continuous, Then b h(u)g(u) du <-0 for all g2 ifand
only if h(u)<=O on [a, b].

Proof. If A=-{u[h(u)<-O} is not [a,b], then k(x)=dist(x,A)>-O and
b k(x)h(x) dx >0. For small e >0, g(x)= k(x)+e is ina2 and a h(u)g(u) du >
0; thus A [a, b]. The converse is trivial.

It now follows that K2(o) is the smallest constant K such that

(4) uo(v)-Kvo(u) <-_ O, 0<= v <= u < oo.

THEOREM 1. If q B, then

u
K2(o) sup sup

.>o

where K2(q) +o is interpreted that no constant exists ]’or (2).
The K1 inequality requires a different lemma.
LEMA 2. Let h be continuous on [a, b]. Then b, h(u)g(u) du <=0 for all

g if and only if

H(u)= h(s) ds < O on [a, b].

Proof. If g A 1, then by the mean value theorem, there is s (a, b) such that

h(u)g(u) du g(a) h(u) du + g(b) h(u) du

[g(a) g(b)]H() + g(b)H(b).
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Now g(a >= g(b > 0 and H(sc) =< 0, H(b <= 0 so fb h (u )g(u du <= O. Conversely, if
bA =- {x IH(x) > 0} is nonempty, then HXA /> 0. Find a continuous function k

such that k(x)<-0 and I [k -bXAI2 -< (na/4{I (H)a}). Then

fab fab fabkH= (k +XA)H-- /yAH

< k -b/"A 12 (n)2
1/2

Now let g be defined by g’(x)=k(x) and g(b)=e >0. Then g.&a and
b b

fa h(U)g(u) du g(b)H(b)- f, H(u)g’(u) du

>= ell(b) + r//2 > 0 if e is sufficiently small.

ThusA = and H_-<0.

It now follows that Kl(q) is the smallest constant K such that

o
uq s Kso u ] ds <=0, 0<= v _<-_ u < Oo

Let (u) o q(s) ds. Then this condition is ((I)())/V 2) (u/rc(u))<=K, 0< v _-<u.
THeOReM 2. Let B, then

u o(v)
Kl(qg) sup sup 2 o(u) v

If Kl(qg)-- -bOO, then there is no inequality (2).

5. Corollaries and examples. The most accessible examples are afforded by
the functions qg(t) , a -> 1. It follows that K2(t) 1 and Ka(t) 2(a + 1)-1.
There are other classes of functions for which these constants can either be
computed exactly or estimated. Again we let O(t)= o o(s) ds.

We assume in this section that q B.
COROLLARY 1. If qg(t)t-1 is nondecreasing (q is convex for example), then

K2(o)-- 1. If p(t)t-1 is nonincreasing then K2(o)= q’(0) limt_,o (t/q(t)).
These follow directly from Theorem 1.
Example 1. Let o(t) 1+ t-e -k’, k >0; then q(t)t- is nonincreasing and

K() 1 + k.
Example 2. Let q(t)=t(l+Bt)/(l+t), 0<B<I. Then q(t)t-1 is nonin-

creasing and K2(o)=B-. Also (t)t-2=B/2+(l-B)r(t)owhere o-(t)=
t-l-t-210g(l+t). It can be shown that r is decreasing. Therefore
supo<=<u v-2(v) lim_,o+ (v)v-2 1/2. Thus K(o) B-1.

Remark 1. Any positive number can be a K(q) since Example 2 gives any
number >_- 1 and Ka(t) give the numbers in (0, 1].

COROLLARY 2. For any , K2(qg) 1 and any number in [1, OO) is a K2().
Proof. Example 2 gives the range of K2(q) as including 1, OO). On the other

hand, if K2(o) -< 1, then (u/q (u )) (o(v)/v <- 1, 0 < v < u. This implies that o(t)t-is nondecreasing which by Corollary 1 implies that K2(q)= 1.
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COROLLARY 3. If q is concave, then Kl(qg)=K2(q)=o’(O+)limt_
(t/o(t)) >= l.

Proof. If q is concave then o(t)t-1 and (t)t-2 are nonincreasing. The
inequality follows from Corollary 2.

Note that Example 2 is a case in point.
COROLLARY 4. /f q(v)v -2 is nondecreasing, then Kl(o)= 2 supt>o[dp(t)/

(to (t))].
In the situation of Corollary 4, the function [(t) is an extremal, since when

this [ is put into (2), then gl is the smallest number for which that inequality holds.
It is worthwhile to look at the class of functions which satisfy the hypotheses

of Corollary 4. For this purpose, consider the class

{ }B2-- pB;qiscontinuous,(1/t) qg(s)ds<=1/2cp(t)forallt>O.

Since [(t)t-2]’= t-3[tqg(t) 2(t)], q (t)t-2 is nondecreasing if and only if 0 B2.
THEOREM 3. Let o be continuous. Then Ka(o)<= 1 if and only if 0 B2.

Consequently, if 0 B2 then

(t)
Kl(O 2 sup

t>o tq(t)"

Proof. If Kl(qg) < 1 then let f(t) and (2) becomes the defining inequality of
B2. On the other hand, if q9 B2, then 0(t)t-2 is nondecreasing and Corollary 4
applies. The defining inequality of B2 gives Kl(o)-< 1.

COROLLARY 5. If q is convex and continuous, then

co(t)
Kl(O) 2 sup

,>o to(t)

This follows from the fact that if o is convex then q B2.
The idea of the set B2 may be extended. Consider for n => 2,

B. -= q 6 B q is continuous, - o (s) ds <-_ 1/nq (t) for all t > 0

COROLLARY 6. If q is continuous, then Kl(q)<=2/n if and only if q 6B..
The proof is a paraphrase of the proof of Theorem 3.
A related class is given by

D, {o Iq9 is continuous and 0 < q9 (s) <= (s/t)"o (t) for 0 < s =< t}.

Observe that o Dn implies o(0)= 0, and q’(0)= 0 exists, so that q B.
LEMMA 3. Let o be continuous, then,:
(i) q B. if and only if
(ii) D. B.+I.

(iii) If o D., then
Proof. If q9 B., then (t)=< t/n Cb’(t). One solves this differential inequality

to get D.. Conversely, if D. then (t)t-" is nondecreasing. Its derivative is
nonnegative. This gives q B.. If q D., then integrate the defining inequality
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with respect to s from 0 to u _-< t to get

(u) < _<
u2 o (t) n+l-n+l"

This implies by Theorem 2 that Kl(q) -< 2(n + 1)-, so o B,+. Now (i) and (ii)
combine to give (iii).

THOgM 4. Suppose p is (n + 1) times continuously differentiable with
o)(0) 0,/" =0,..., n- 1, o("(0) >_- 0, and q"+) >0 for t>0. Then q D, and
K(o) =< 2(n + 1)-a. Iffurther ")(0) O, then K()= 2(n + 1)-a.

Proof. Considej the auxiliary function (u) t"(u)- u"(t) on 0 u t.
Then O(i)(0) 0, / 0,. ., n 1, O(t) 0. Also (")(0) t"("(0) n (t)
-[t"+/(n + 1)]("+)(() for some (>0 by Taylor’s theorem. Thus ("(0)<0.
Furthermore, ("+l)(u) t"("+(u) >0 on (0, t). Thus can have no more than
n + 1 zeros on [0, t]. Since n + 1 are accounted for, is nonzero on (0, t). Since
(")(0) < 0, < 0 on (0, t) and D,. Now B,+I so by Corollary 6, K1()
2/(n + 1) but by l’H6pital’s rule

lim
(t)

li+
(t) (")(t) 1

o= (t)+t’(t)- lim
(n + 1)("(t)+t("+a)(t)-n + 1tO

i (")(o)# 0. So K()2/(- ).
Example 3. To construct an example or Theorem 4 let ( be a unction with

{(")(0) 0 an ("+)(t)>0 on (0, ). Dene (t)=(t)-Z75o ()(0)//i. In par-
ticular ,(t) e-i ti// and k(,) 2(n + 1)-a.

COROLLARY 7. [ On, then K2()= 1.
Proof. The defining inequality gives supo<< (v)/v (u)/u.

6. Remark. It might be o interest to ask the question whether or a fixed
[ 6 A, one can get an inequality o the orm

l fo’ l fo’
to hold for some class of ’s, say for B and convex. The transformed problem
becomes

u o(v)g(v) dv <-Mg,(u) vg(v) dr.

Consider u fixed and M(u) the best constant. Then M(f) SUpu>o M(u). But for u
fixed, we may assume q(u)= 1 since the inequality is homogeneous in o. Then
M(u) is merely the sup,on,o,vex u o(v)g(v) dv/I vg(v) dr. Note that g >0 so
that the sup is computed by taking the pointwise sup of the functions, i.e.
o(t) t/u in which case M(u)= 1 and M(f)= 1. In general, if Cc B and q is
required to be in C in computing M, then one needs to take the "maximal"
element in C in the above argument, provided C is closed under scalar multiples.
For example, if C is the concave functions,

u g(v) dv
M(u)= -uIo vg(v dv
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so that

f(t) I’o ds tf(t)
M(f) sup M(u) sup sup

>o ,>o I’o f(s)ds >o F(t)’

where F(t) Io f(s) ds. If f s A 1, then

M-l(f) inf
F(t) < sup

F(t)
,>o t- ,>o t- 1/2Kl(f)"

REFERENCE
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EXISTENCE AND UNIQUENESS FOR PERIODIC SOLUTIONS
OF THE BENJAMIN-BONA-MAHONY EQUATION*

L. A. MEDEIROS AND G. PERLA MENZALA"

.bstract. We consider the problem ut- uxxt + uux 0 in -oo < x, < oo witia initial data at 0
which is 1-periodic and the boundary condition u(x + 1, t)= u(x, t) for all x, t; proving the existence
and uniqueness of the solutions of such a problem. We use the semi-discrete approach together with
the energy method.

1. Introduction. In this paper we shall prove an existence and uniqueness
theorem for regular solutions of the equation

(1.1) u, + UUx Ux, 0

on-oo < x < +m, >_-0 with the initial data

(1.2) u(x, O)= Uo(X), -oo<x <

and the boundary condition

(1.3) u (x + 1, t)= u(x, t) for all x and t.

The equation (1.1) appears in fluid mechanics and was proposed by Benjamin-
Bona-Mahony in the study of water waves (see [8]). It is usually called the BBM
equation and is a modification of the Korteweg-de Vries equation ut + UUx +
Uxxx 0, which has been studied intensively in recent years.

To prove existence and uniqueness for regular solutions of problem (1.1)-
(1.2)-(1.3), we use the differential-difference method as done by Sj6berg in [1] for
the Korteweg-de Vries equation. However, in the case of BBM it is much simpler.
More precisely, our main result is:

THEOREM 1. Suppose Uo: N N real numbers, with Uo(X + 1) Uo(X) for all
x , Uo three times differentiable and d3uo/dx 3 Riemann square integrable on
0 <= x <- 1. Then there exists one and only onefunction u N x [0, +00) N satisfying
the following conditions:

(i) u has all derivatives in and is twice continuously differentiable in x,
(ii) ut + uux Uxx 0 pointwise on R x [0, m),
(iii) u (x, 0)= Uo(X) for all x ,
(iv) u (x + 1, t)= u (x, t) for all x and t.
Some related results concerning (1.1) can be found in [2] and [6].

2. Differential-difference scheme. In this section we solve a discrete problem
associated with (1.1), with discretization only on the space variable x. We will
obtain a system of ordinary differential equations, which has a regular solution in
for all t => O. With the solution of this system, we shall prove in the next section the
existence of solutions for (1.1) by discrete Fourier series and the Arzeli-Ascoli
theorem.

* Received by the editors March 25, 1975, and in final revised form May 17, 1976.
t Instituto de Matemitica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

This work was supported by FINEP, CEPG-UFRJ and by CBPF.
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Let n > 0 be a natural number and let us take N= 2n + 1 and consider a
decomposition of the interval [0, 1] in N equal parts, each one with length
h 1IN. The point rh of [0, 1] is represented by xr for all r 1, 2,..., N. The
difference operators D+, D_, and Do are defined as follows: hD+uN(xr, t)=
us(x,+, t)-UN(X,, t), hD_UN(X, t)= tN(Xr, t)--UN(Xr-1, t), and 2hDoUN(X, t)=
Us(Xr+l,t)--UN(Xr-,t). For technical reasons, we write the (1.1) as u+
1/2[uu+(uE)x]-Ut =0. Let us consider the following discrete problem: Find
the grid function u(x,, t), r 1, 2,..., N, >-0, such tat the following condi-
tions are satisfied:

(a)
0 1- UN(X, t) +-[UN(Xr, t)DoUN(Xr, t) + Dou2u(x, t)]

-D+D_uN(Xr, t) O,

(b) UN(X, O)= Uo(X),

(C) ,tN(Xr+N, t)= ,tN(Xr, t),

for r= 1, 2,...,N.
The set (a), (b), and (c) is a system of differential-difference equations which

has a solution on a time-interval (depending on N) which we will denote by [0, tN).
This solution is defined at the point .(xr, t) of the grid for all t, 0 < < tN, and has
derivatives of all orders with respect to t. By a priori estimates we shall prove that
the solution exists on an interval (independent of N) which we will denote with
[0, T). It will be seen that the argument can be repeated indefinitely so establishing
the existence of a solution over an arbitrary time-interval. First, we define a
discrete inner product in the sace of gridfunctions by

N

(U, I))h E U(Xr)l)(xr)h
r=l

where ti is the complex conjugate of u. The discrete norm is defined by ]lull
(u, U)h. By (’,") and I1"11 we represent the usual inner product and norm given by

I0(u, v)= av dx and Ilull2- lu dx,

Observation 1. We have the following relations:

(U, D+))h -(D_u, 1))h (hi, D-t))h -(D+u, f.))h

and (u, Dot))h =-(Dou, V)h for all N-periodic gridfunctions u, v.
LEMMA 2.1. Let UN(X, t), r 1, 2, ", N, be a solution of the discrete problem

(a), (b), (c) on the interval [0, tN). Then there exists a constant C> 0 independent of
Nsuch that

Ilu(-, t)ll / IIO-uu(., t)ll2h < C

for all N and all in [0, tu).
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Proofi Taking the inner product of the equation (a) with us(xr, t) we obtain

1(NN, )h t’-[(UN, UNDoUN)h -I-(UN, DoU 2N)h]

Ouu.] =0us, D/D_-]h

which is true for each in [0, tN). By the definition of the discrete inner product
2(’,")h it follows that (us, UNDoUN)h q-(UN, DoU)h 0. Also, by Observation 1

above (2.1) reduces to

(2.2)

By integrating from 0 to < ts we obtain

IlU(Xr, t)ll + }[D_u(x, t)}l, IlUo(X)l}, + IID-uo(x)ll2h.

But, since ][UO(Xr)l[h 2[[U0[I2 and [ID_Uo(Xr)ll2h 211duo/dxll for small h (recall that
Uo has all the same hypotheses as in Theorem 1), the proof of the lemma is
complete.

Observation 2. Since D/D_ D_D/ and 2Do D/ +D_ it follows just be
rewriting Lemma 2.1 that liD+u,,(., t)ll and IlOou,,(’, t)l[ are bounded by a
constant on [0, tu) independent of N.

LEMMA 2.2. Let us be as in the aboveLemma 2.1; then there exist constants Ci,

f 1, 2, 3, 4, independent ofNsuch that

(i) Ilu ,(x , t)[ < C ]’or all r,

(ii)
h -Otllh

(iii) <C3,
Ot

<iv) t: +
h Or2

2

for all in [0, ts).
Proof. To prove the estimate (i) we consider the discrete Sobolev inequality

which states that, for each e > 0 there exists C C(e) > 0 such that

max lus(x, t)]-< ellD-us]] + C(e)llus]]h;
l<--r<=N

and from this inequality and Lemma 2.1 we obtain estimate (i). To prove (ii), let us
consider the inner product of (a) with Ous/Ot to get

(2.3)
2

usDous, ----/ h

1
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We observe that

3 Ot ]h 5 max luN(Xr, t)[ [Oou[ ou[
l<=r<--V Ot h

(2.4) --3 lzmax [u(x,/)11100ull,h h

because of the Lemma 2. l(i), and the elementary inequality 2a a + for any
pair of real numbers a and . Similarly, we have

Dour, ]hOU N 2 lrNmax lu(x, t)[ IlDoullhgll,h
(.)

a II0u ll =
N4C +llll h

where C is positive constant. Now, (2.4) and (2.5) together with (2.3) complete
the proof of (ii).

To prove (iii), we obtain from (a):

  lu ll0t IIh h

which shows (iii) because the right side is bounded by a constant independent of N
for all in [0, t). In fact, 1/2(uDou + Dou2N) uDouN which can be estimated in
the norm II’ll in terms of maxl__<r_<_ lU(Xr, t)[ and IIOou,&.

Now, we take the derivative with respect to t of equation (a). To simplify the
notation let us write v u/Ot and wN Ov/Ot. Then we have

(2.7) wu-D+D-wzv -1/2vNDouN-1/2uuDovN-}Do(uNvu).
Taking the inner product with wN we get

wll+ liD-wll -l(vDou, Wu)h--1/2 (uuDpvN, Wu)h
(2.8)

-}(Do(uuvu), Wu)h.

We observe that

(2.9)
]l(vlvOUl, W)h[ IIVDoUrIIh1/211WIIh

Since I]vzvDoUlvllh _--< max _<r __<N IVv(Xr, t)lllDoUlvllh, it follows that IIvOoull?, is
bounded, because of the discrete Sobolev inequality and the previous discussion.
Similarly

(2.10) 1/21(UNDoVN, w,,), I<-_ &llu,Oovll / 11w,,ll,.
Aso, liuOovll, <-maxx__<r_<_v [urv(Xr, t)[ IIDoVN[Ih which shows that liUNOoVNllh is
bounded.
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Finally, we observe that

(2 11) l(Do(uvvN), WN)h I=<’ 2

The first term of the right side of (2.1 1) is bounded because 2Do D+ +D_ and by
the previous inequalities. Now, because of (2.9), (2.1), and (2.11) together with
(2.8) the last part, (iv), of the lemma is proved.

LEMMA 2.3. There exist constants C5, C6 and C7, independentofN, such that

(i) ]ID+D2uNI}h <
(ii) [ID_DoUNIIh < C6,

for all in [0, tu).
Proof. In fact, let us apply D_ to equation (a) to get

D+D20UN-- --D_(uuDouN) D_ Ou---.
at at

Therefore,

(2.12) D+D ---iIh
<- [ID---[[/+-llD-(uuDoUN)+D-(Dou

The first term of the right side is already bounded. To bound the second term, let
us represent it by 1/2X. We have, by the definition of

N

X2 Y [D_(u,Dour) +D_(DouZ)lh
r=l

where we have written ur uu(x, t). Using the fact that Ur+lDou, + u,-IDou,
Do/gr2 we have by direct calculation

[D_(urDou) +D_(Dou2){ [D_(uDour) +D-(ur+lDour) + D_(U,_lDoU)[
[ur_D_Dou + uD_Dou +D+uDour
+D-u-IDoUr-1 +D_uDou + Ur_ID_Dou];

therefore,

X2_-<const. max lurl (ID-Dour +]D_ur]21Dour
lr=N

(2.13)

Now by using Lemmas 2.1-2.2 and the discrete Sobolev inequality we obtain
(provided that liDau,,ll < const.)"

(2.14) X2 G (liD-Dour-limb + IIDoull).

Note’ by Sobolev’s inequality max ID_url <= Cl(e) for some CI(e) > 0. From (2.12)
and (2.14) we observe that to bound ItD/D _(OudOt)l[ we need to bound
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[[D-DoUNIIh, but since 2Do= D+ +D_, it follows that it is sufficient to bound
IIO/D-u,dl, and IID_u,,II. Let us take the inner product of equation (a) with
D+D_UN to obtain

1 2t.FllD_ull2h + ilD+D_u,dl2] llDou[hllO/D-"llh2

/ llu,,Oou,,ll IlD+O-ullh
C+ Ilo-UNll + [Io+o-uNll.

By integrating the above inequality from 0 to < tu and then using Gronwall’s
inequality we obtain that [ID+D-uuII is bounded, because of our hypotheses on
Uo. Similarly, by taking the inner product of equation (a) with 2 2D+D_uu we obtain

10
2 t[llD2uuli + IID+D-uuII

llD-(uuDouu) +D_Dou21IID+D2UN]]h

<---d[C[ID-Dou[lh+ IIDou,,[l,] + [ID+DLuNIIh

_-< c/ liD

_
u,,ll, / [IO/O_u,,i[Z

from which it follows that ]ID+D2uuIIh is bounded, as is IID-Doullh and the
lemma is proved.

Observation 3. If we take the derivative with respect to of equation (a), we
can obtain an estimate for IID+D_(Ouu/Ot)ll independent of N in [0, tu). We will
use this fact in the next section.

By the a priori estimates of Lemma 2.2, the discrete Sobolev inequality and a
standard theorem of continuation of solutions of ordinary differential eqtations
(see [3, p. 47]) it follows that the solutions of the discrete problem exist for all io.
[0, T) independent of N, for all 0 < T< +

3. Regular solutions. Let us consider the solution uN(xr, t), r 1, 2,. , N,
of the discrete problem. By N(x, t) we represent the discrete Fourier polynomial
of uu, that is

rbN(x, t)= aN(k, t) exp (2krix)

where aN(k, t) (exp (2kTrixr), Ul(Xr, t))h and N 2n + 1 with Nh 1. We are
going to prove that the family {N} satisfies the conditions of the Arzeli-Ascoli
theorem. If this is so, it follows that there exists a subsequence which we still
represent by {N} that converges in f [0, 1] x [0, T] to a function u(x, t) which is
the solution claimed in Theorem 1. All this argument is based on the lemmas
below.
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LEMMA 3.1. There exist constants kl and k2 > 0 such that

for all in [0, T) independent of N.
Proof. We have

(3.1)

and -dN(’, t)

D+dPN(x, t)= aN(k, t)D+ exp (2kTrix)

aN(k, t)z exp (2krix)
k..--l

where hz exp (2kTrih)-1. Also, we have

aN(k, t)z (z exp (2krixr), uN(xr, t))h

(D+ exp (2krixr), UN(Xr, t))h.
Therefore from (3.1) it follows that

IID/,(’, t)/I== [(exp (2kTrixr), D-UN(Xr, t))hi
k

(3.)
[lO_u(., t)ll < const.

for all t 0 and all N.
In [1] we find the proof of the following result: let r, be nonnegative

integers with + r Then, if N is a Fourier polynomial, we have

; [[DLDL*(", t)II=IIDLIDL=*(", t)l[

which proves the first part of the lemma, by taking 0, 2 1 and using
(3.2). Now, since

(, t)= E b(g, t) exp (vix)

where bN(k, t)= (exp (2kTrix,), (OUN/Ot)(Xr, t))h. It is not difficult to show that a
similar argument used in Lemma 2.2 and the above discussion gives us

t)[I < const.(3.3) IIxOt "’
independent of N for all in [0, T). This clearly implies the second part of the
lemma.

It is not difficult to prove that N(x, t) is bounded by a constant for all t -> 0,
independent of N. The uniform bounds for ()N, OcbN/Ot, and OdN/OX in the
LE-norm, imply that N(x, t) satisfies the conditions of Arzeli-Ascoli (see, for
example, [7, p. 186]). It follows that there exists a subsequence, which we still
represent by {N}, such that N(X, t) - U (X, t) uniformly on lq. Now, we claim that
Olv/Ot-->Ou/Ot uniformly on f. In fact, we already have uniform bounds for
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cgdPN/Ot 02N/Cgt2 and c92(IPN/CgXOt in the L2-norm. By using the same argument as
above, the Arzelfi-Ascoli theorem gives us OON/Ot-) V uniformly on 12. We now
write

(3.4) ON(X, t) ON(X, O) + (X, S) ds.

By passing to the limit in (3.4) as N--> +oo we get

(3.5) u(x, t)= Uo(X) + v(x, s) ds.

Since v is continuous on 11, we conclude that u is differentiable with respect to
and Ou/Ot v. A similar argument shows that Odc/Ox Ou/Ot uniformly on lI and
also that 03dpN/OX2Ot--)O3U/OX20t uniformly on 12. Now it is trivial that u is a
periodic solution of problem (1.1), (1.2), and (1.3). The uniqueness part of
Theorem 1 is standard and quite easy. In fact, let us assume that u and v are
solutions of (1.1), (1.2), and (1.3). Then the function w u-v satisfies the
equation

W Wxx -" WU + I)W 0

with w(x, 0)= 0. Multiplying by w and integrating we get

Ot
[w2 + w2] dx <-const. [w2 + w2] dx

from which it follows that w w_ O; therefore u v.

Aeknowledgmeni. We would like to take this opportunity to express our
gratitude to the referees of this Journal for a number of valuable criticisms, which
have led to the clarification of various points.
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LAMi POLYNOMIALS OF LARGE ORDER*

B. A. HARGRAVE" AND B. D. SLEEMAN{

Abstract. Lam6’s equation

w"+{h-N(N+ 1)k sn2z}w(z)=O
is an example of a two parameter eigenvalue problem in ordinary differential equations. Here we
present new results for the value of h when Nk and Nk’ assume large, real values. Uniform asymptotic
expansions for Lam6 polynomials are also derived. All asymptotic solutions of Lam6’s equation are
presented in conjunction with a realistic error bound and constitute a uniform reduction of free
variables.

The asymptotic expansions are derived for values of z on the rectangle bounded by the lines
Im (z) 0, K’, Re (z) 0, K. Some of the results presented here replace known nonuniform results
whilst others appear to be entirely new.

1. Introduction and notation. The standard form of Lam6’s equation is taken
to be

w"+{h-(2n +p)(2n +p+ 1)k 2 sn2 z}w(z)=O.

Both n and p will always assume integer values. With this restriction, Lam6’s
equation admits a solution of the form

(1.2) sn z cn z dn zPn (sn2 z),

where Pn(sn2 z) is a polynomial of degree n in sn2 z, whenever h assumes an
eigenvalue of a particular matrix.

In (1.2) p, r arid " may take either the value zero or unity subject to the
following constraint:

(1.3) p +o-+" =p.

The general symbol for a Lam6 polynomial is .’2mn+p(Z, k), this symbol being
prefixed by the letters s, c, d according as O, r, " are nonzero in (1.2). If all
members of the latter set of parameters are zero then the symbol is prefixed by the
letter u. Note that the modulus k of the full notation is normally suppressed, unless
emphasis is to be laid on the value of the modulus.

The advantages of the above notation are
(i) n denotes tb.e total number of zeros of the polynomial in

{zllm (z) 0, Re (z)e (0, K)} U {z IRe (z) K, Im (z)e (0, K’)},

K and K’ being the complete elliptic integrals of the first kind, associated with the
modulus k. The integer n is known as the order of the Lam6 polynomial.

(ii) rn may take the values 0, 1, , n and is equal to the number of zeros of
the polynomial in the real interval (0, K).

(iii) The species of a Lam6 polynomial depends on the number of factors
preceding Pn in (1.2) and is defined to be.equal to p + 1.

* Received by the editors July 9, 1974, and in final revised form August 23, 1976.

" Department of Mathematics, University of Aberdeen, Aberdeen, Scotland. Now at Logica Ltd.,
London W1, England.

$ Department of Mathematics, University of Dundee, Dundee, Scotland.
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The eigenvalue h of Lam6’s equation, corresponding to the polynomial
En+,(z, k), is denoted by h,+,(k). When there is no ambiguity, the eigenvalue is
written simply as h.

From the general form (1.2) it is clear that Lam6 polynomials satisfy
boundary conditions of the form

(1.4) ETn(1;)(O) x-:’2n+plTm(1--’)"’k .’2n+pl’m(1-’)(K + iK’) O,

where f(i)(Xo) denotes the ith derivative of f evaluated at x0. The convention that
f()(Xo) f(xo) is adopted. This notation will occur frequently in the later sections
and helps to simplify the expression for the boundary conditions and the matching

m(o) {[’l 127m(’) g" E(;),(K+ iK’) These matching coefficients arecoefficients A2n+pk,j, J_2n+pklx ),

the nonzero values of the Lam6 polynomial or its derivative at the respective
points. It is clear from the boundary condition (1.4) that either the Lam6
polynomial or its derivative vanishes at the points O, K, K +iK’. It is also
apparent from the form of the differential equation (1.1) that one of these
quantities must be nonzero. The matching coefficients enable asymptotic expan-
sions obtained in one region to be related to asymptotic expansions obtained in a
second region, and hence they may be continued into this second region. Conse-
quently the matching coefficients will be of frequent occurrence in later sections.

A transformation which is extremely useful in the theory of Lam6’s equation
is the simultaneous application of a transformation of independent variable

(1.5a) z K + iK’- i

and Jacobi’s imaginary transformation for elliptic functions. We shall refer to the
transformation as Jacobi’s imaginary transformation for Lamd polynomials. This
transformation leads to results of the form

(1.5b) Ez+p(z, k)= AtF,’,-+%(, k’),

where A is a multiplicative constant. If the function on the left hand side of (1.5b)
has parameters p, r and - and the function on the right has parameters p’, o,’ and -’
then p’= -, r’= r and -’= p. Consequently the polynomials in (1.5b) are of the
same species. The eight cases of the Jacobi imaginary transformation for Lam6
polynomials are given in full in 13. A consequence of the above transformation
is that

(1.6) hzm+p(k)=(Zn+p)(Zn+p+l)-h’,-+(k’).

Lam6 polynomials as defined above are determined except for a multiplica-
tive constant, which may be specified by adopting a normalization convention.
Three different conventions exist, each one being convenient to display certain
properties of Lam6 polynomials.

The particular convention which is suitable here is that Lam6 polynomials are
constrained to assume the value unity if they are nonzero at the origin, or if they
are zero at the origin the derivative is unity. The condition may be expressed in the
concise notational form

(1.7) "(pm 1j_2n+pkV]
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The reader is referred to [1] for a complete exposition of the theory of Lam6’s
equation.

In 6-11 the independent variable z in (1.1) will be finite assuming values
on a rectangle. This rectangle bounded by the lines Im (z)= 0, K’, Re (z)= 0, K
will be called the ]’undamental rectangle. In the development we shall attempt to
obtain asymptotic expansions for Lam6 polynomials for all possible values of the
argument on the fundamental rectangle. The sides of this rectangle will be
denoted by [0, K], [K, K+ iK’], [iK’, K+ iK’] and [0, iK’]. This notation is used to
avoid the necessity of writing both the real and imaginary parts of the interval. A
notation similar to the above for closed intervals will be used for both open and
semi-open intervals.

The choice of large parameter is conveniently taken to be X, where

(1.8) x=2n+p+1/2.

The reason or this choice will be apparent in 8 and 9. In all the following
sections it is assumed that xk and xk’ are large.

2. Descriptive treatment of the problem. The material presented in the
following sections constitutes a comprehensive treatment of the behavior of Lam6
polynomials of large order. Present knowledge of the asymptotic behavior of such
polynomials is restricted to the following cases (i), (ii) and (iii) below.

(i) If n is large and rn O(1), Ince [7] derives an asymptotic series for the
eigenvalue h, namely

(2.1) h’,,+,(k)(4m+2p+l)k+O(1),

where

(2.2) ,2= (2n +p)(2n +p + 1).

Hence in the variable ,, the leading term of the coefficient of w(z) in Lam6’s
equation has a double zero at the origin. Ince used the Liouville-Green approxi-
mation to obtain asymptotic expansions for Lam6 polynomials, which are valid in
the interval (0, K] O [K, K+ iK’] provided , sn z is large.

(ii) If n m is O(1), one may apply the Jacobi imaginary transformation for
Lam6 polynomials to derive corresponding results to those in (i). In this case
Lam6’s equation has a double turning point at z- K+ iK’ and the Liouville-
Green approximation is valid in [0, K] U [K, K+ iK’) provided , dn z is large.

(iii) An interesting exceptional case arises for Lam6 polynomials, which are
identical except for a multiplicative factor on the intervals [0, K] and [K, K+ iK’].
Such polynomials satisfy identical boundary conditions at z 0 and z -K+ iK’.
There is however no restriction on the boundary condition at z K. Consequently
this behavior may only occur for four types of Lam6 polynomial. Furthermore
m n and kz= 1/2. For such polynomials

n/2(2.3) h2,+(1/4) 1/2(2n +p)(2n +p+ 1).

This result was observed by Erd61yi [4]. However, asymptotic approximations for
Lam6 polynomials have not been obtained for this case.
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In the light of the above knowledge, the following questions naturally arise.
(i) How does the turning point move as m increases, whilst k and n are

fixed?
(ii) Given k, what is the ratio of m to n such that z K is a turning point of

the differential equation (1.1)?
Obviously the location of the turning point at z K leads to a critical value of

the ratio m n. One may define m to be the value of rn such that the turning point
is located at z- K. There are five distinct configurations of turning points for
Lam6 polynomials, which may be conveniently illustrated by Figs. 1 to 5.

-2K -K 0 K 2K

FIG.

In the five figures a dot enclosed by a circle denotes the location of a double
turning point, whilst the center of a cross denotes the location of a simple turning
point.

Figures 2 and 4 demonstrate the cases which occur most frequently, whilst
Figs. 1, 3 and 5 portray cases of confluence, in which two simple turning points
coalesce. Note that any line Im (z) raK’, or any line Re (z) r2K (rl, r integers)
are lines of symmetry in all cases.

When rn is O(1), a confluent case (Fig. 1) applies. As rn increases the two
simple turning points separate and the turning points are located as in Fig. 2. As rn
approaches the critical value m, the simple turning points coalesce at z
+K, +3K, +5K, ., as in Fig. 3. As rn increases still further the turning points
separate along the lines Re (z) +K, +3K, +5K, , as in Fig. 4. Finally as rn
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-K 0 K 2K

FIG. 2

approaches the value n the simple turning poles coalesce as in Fig. 5. In all cases
double poles exist at the points z =-iK’ mod {2K, 2iK’}.

The behavior of the solutions of a differential equation on opposite sides of
turning points is often completely different. For simple turning points, the solution

-2K -K K 2K

FIG. 3
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-2K -K

iK

0

-iK’

K 2K

FG. 4

on one side is oscillatory whilst on the other side exponential decay or growth
occurs. The reason for this behavior is clearly that the solutions in this case may be
expressed in terms of Airy functions which exhibit this kind of behavior. The sign
of the coefficient of w(z) in Lam6’s equation determines the qualitative behavior

___._1

2K -K

iK

0

-iK’ "-

K 2K

FIG. 5
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of Lam6 polynomials. For the case. described by Fig. 2, in (0, K) to the left of the
turning point the coefficient of w (z) is positive so that the solutions are oscillatory
whilst to the right of the turning point, exponential behavior occurs. On the line
Re (z) K, the solutions are oscillatory. Thus for the case of Fig. 1, the solutions
on the real line will behave exponentially away from the origin whilst for the case
of Fig. 3 the solutions on both the real line and the line Re (z)= K will be
oscillatory. When the turning point is located on the line Re (z) K, the real line
will be an interval possessing oscillatory solutions, whilst the part of the line
Re (z) K between z K and the turning point will have solutions which behave
exponentially. Between the turning point and K+ iK’ the solutions will again be
oscillatory.

On account of the Jacobi imaginary transformation for Lam6 polynomials, it
is always possible to associate a Lam6 polynomial with a turning point on the line
Im (z)= K with a Lam6 polynomial which has a turning point on the real line.
Thus, when one calculates asymptotic expansions for Lam6 polynomials it is only
necessary to discuss the case of turning points on the real line.

In 3 and 4 eigenvalues of Lam6’s equation are discussed. In the former
section certain integrals which occur in connection with both eigenvalues and
Lam6 polynomials are also investigated.

In 5 basic properties of the solutions of the approximating equation are
introduced. These solutions occur frequently throughout 6, 7, 8 and 9, in which
asymptotic solutions of Lam6’s equations are calculated on the four sides of the
fundamental rectangle. In 10 and 11 the properties of the approximating
functions are used to enable the constant multipliers, which characterize Lam6
polynomials, to be determined.

In 12, the range of validity of the results of 10 and 11 is extended beyond
the fundamental rectangle. Further reference is made to the Jacobi imaginary
transformation for Lam6 polynomials in order that Lam6 polynomials with
turning points on Re (z) K may be identified. Some special cases are discussed
in 13 and conclusions are presented in 14.

3. The eigenvalue condition or h. For the purpose of obtaining eigenvalues
of Lam6’s equation it is often advantageous to reformulate the three point
boundary value problem in the complex plane, (1.1) and (1.4), as a two parameter
problem, whose independent variables assume real values. The reformulated
problem is

w(x)w{h-x2k2sn2x +1/4k2sn2x}wl(X)=O,
(3.1a)

w (’-’)(O) w (’-’)(K) O,

w{(y) + {h’-xek ’e sne y + 1/4k ’ sne y}w2(y) 0,
(3.1b)

W(21-’r)(0) W(21-)(K’) 0,

where all the elliptic functions occurring in (3.1b) have modulus k’, and h’=
2

X -(1/4+ h). Throughout this section elliptic functions with argument y have
modulus k’. The former equation is Lam6’s equation on the real line with
appropriate boundary conditions, whilst the latter is obtained by applying the
Jacobi imaginary transformation to LamO’s equation on the line Re (z)= K.
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Classical Sturm-Liouville theory [2, Chap. 10] may be applied to equations
(3.1a, b) in order to deduce that

h >0, h ’i >0, h i+1
2+p .+p ,+p< h2+p, Vi.

Hence 0-< h 2"n /p =< X- 1/4 for all integers m, which implies that all the turning
points of Lam6’s equation lie on the lines Im(z)=0mod{2K’} or Re(z)=
K mod{2K}. Thus two of the intervals, namely [0, iK’] and [iK’, K+ iK’], on
which asymptotic expansions for Lam6 polynomials are to be constructed, are in
general free from turning points. The exceptional case occurs when the turning
point on the real line is located at the origin or the turning point on the line
Re (z)= K is located at z K+ iK’.

In order to answer the first question posed in 2, it is necessary to consider
the coefficient of w(z) in Lam6’s equation. This is (h -xk2 sn2 z + 1/4k sn z). The
dominant terms of the coefficient are, except in the neighborhood of turning
points, the first two. These may be conveniently rewritten as

(3.2) h-xk sn z x2k2(a- sn2 z),

for some real .
Consider the union I of the two intervals [0, K] and [K, K+ iK’]. The

function sn z is monotonic increasing as z moves from the origin to K+ iK’
remaining in the set/. Hence there exists at most one z0 I such that

(3.3) a sn Zo.

The upper and lower bounds for h given above imply that

(3.4) 0<a<l/k.

Condition (3.4) is sufficient to ensure that a Zo satisfying (3.3) exists.
Consequently Lam6’s equation possesses a unique turning point in L Provided
Ic 11 is sufficiently large, it is possible to use a direct method for the calculation of
eigenvalues, whilst for small values of I 11 it is preferable to calculate solutions
of the differential equation and deduce the eigenvalues from these solutions. The
range of orders of magnitude for la- 11, which enables eigenvalues to be calcu-
lated directly, will be obtained later in this section. All results for the case
1 < a < 1/k may be deduced by similar methods to those employed for the case
0 -< < 1, so that we may concentrate on the latter case giving only the results for
the former case. The aim of the discussion is the establishment of a condition
such that (3.1a, b) admit solutions which are Lam6 polynomials.

Let us suppose that 0 -< c < 1, then there exists a Zo e [0, K) such that

a sn Zo.

As this value of Zo is unique in/, it is clear that for all z [K, K+ iK’],
2

O sn Z,

since sn z is nonnegative for z s I. This is precisely the condition for the Liouville-
Green approximation to lead to uniformly valid solutions of Lam6’s equation in
[K, K+ iK’]. This is equivalent to saying that it is possible to obtain an asymptotic
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series for the eigenvalues, from the modified Priifer angular equation correspond-
ing to (3.1b). The modified Priifer substitution is defined by [2, p. 267]

W.z(y) R (y)(h’-xZk ’2 sn2 y + 1/4k ’2 sn2 y)-1/4 cos b (y),

W,z(y)=R(y)(h,_xZk,2 sn2 Y +1/4k,2 sn2 y)1/4 sin b (y),

and the resulting angular equation is

c’= -(h’-x2k’ sn y +41-k’ sn2 y)1/2
(3.5) (g2-1/4)k ’2 sn y cn y dn Ysin 2b(y).

2(h’- (,2-1/4)k ’2 sn2 y)

The boundary conditions for this equation are

b (0) 1/2 ’zr, b (K’) -(n m)Tr 1/2 rzr.
These conditions ensure that the solution has (n-m) zeros in the open

interval (0, K’). Integration of (3.5) leads to

[4]:’= -1’ dn y ka--ana y dy

(3.6)
1 "’ (1-1/4-)k’ sn y cn y dn y

sin 2b(y) dy.
2 Jo (dn2 y-aZkZ-(1/4xZ)k ’2 sn2 y)

On account of the restriction on a, we may infer that 4’ has no stationary
points and that

k ’2 sn y cn y dn Y/(dn2 Y -ce2k2-12 dn2 Y)
is finite throughout the region of integration. The latter integral will thus have an
integrand of O(1) provided a is bounded away from unity as 1’-->oo, and the
dominant contribution to the latter integral is O(1/’) as the integrand vanishes at
the end points [12, p. 97]. The former integrand may be expanded as a binomial
series and integrated to produce the result

I0
K’

2k2 1/2(3.7) [(n m) + 1/2 (o" + z)]r X (dn y a dy + O

The behavior of this integral is of particular interest as a approaches unity
from below. Suppose that

1 a O(x-), 3 > O.

The neglected term in the first integral in (3.6) is O(1/X1-(t3/2)), whilst the
second integral is O(g2-1) [12, p. 98]. Thus (3.7) is.valid with error term o(1)
provided/3 < 1/2.

In terms of the original variable z, where

z K+ iK’- iy and sn (z, k) k-1 dn (y, k’),
K+iK’

(3.8) [n-m + 1/2 (o" + ’)]r t’k (sna z-)/ dz +o(1).

provided 1 O(,g-), [0, 1/2).
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The integral of k(sn2 s- 02) 1/2 will prove to be of critical importance in later
sections. If the function k(a2- sI12 )/2 is integrated around the contour y of Fig.
6, one may apply Cauchy’s theorem to deduce that

k f/ (ce2--sn2 )1/2 d(= 0.

The contributions to this integral are real if

(i) O=<<Zo,

(ii) g<=sC<=K+iK’,

(iii) I- iK’l e,

and pure imaginary otherwise. Thus

(3.9)
foZO f

K+iK’

k (a2_sn2 )1/2 d" + k (a2_ sn2 )1/2 d
-K

iK’-ie

)1/2+ k (0 2 -sn2 d: 0
K+e

and

K fiK’+e )1/2k (a2_ snz )1/2 d+ k (2-- sn2 d(
o aK+iK’

I+ k (a2_ sn2 )1/2 d: O.
K’--ie

Zo K

FIG. 6

K +iK’
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(3.10)

This latter equation may be rewritten in terms of real valued integrals as
K fiK’+e 2)1/2k (sn2 :-ce2)/2 dsc + k (sn sc-a dsc
o aK+iK’

iK-ie

2)1/2 d.k (sn2 : ce

In the above integrals, the branch of (a2-sn2 :)1/2 in the regions on which
(o2--sn2 ) is negative is the one which is consistent with the limiting case ce 1,
i.e. (ce2-sn2 :)1/2 cn :, when c 1.

Consequently arg (ce2-sn2 )1/2 ,rr, in the latter two integrands in (3.9).
On account of the pole at : iK’, (3.9) simplifies to

(3.11) k loz
K+iK’

(ce2_ sn2 )1/2 ds+ k (ce2_ sn2 )1/2 ds="dU

The results (3.8) and (3.11) imply that

z
--sn2 1/2)rr-[n-m + 1/2 (r + r)]Tr + o(1),xk (ce2 :) 1/2 d=

(3.12)
z

-sn2 d=mr+prr+1/4rr+o(1),xk (02 )1/2

provided fl e [0, 1/2). Thus if the turning point is located on the real line, for fixed n,
k, (3.12) describes the movement of the turning point for different choices of m,
until m is such that the turning point is located in a neighborhood, of radius
0(X-1/2), of the point z K. The relation (3.12) is the condition to be satisfied by
the parameter h, related to a by (3.2), if Lam6’s equation is to admit a polynomial
solution satisfying the relevant boundary conditions and possessing m zeros in
(0, K) and n m zeros in (K, K+ iK’) with the above restriction on the location of
the turning point. The integral on the left hand side of (3.12) is a monotonic
increasing function of ce. Thus for a given Lain6 polynomial n, rn and k are known,
and the parameter ce is determined uniquely by the condition (3.12).

Observe also that as ce + 1,
K

2)1/2 -2B),(3.13) (sn2 f- dr= O(x if B >0.
0

This result may be seen immediately by replacing sn : by its Taylor series
expansion in the neighborhood of : K.

The results corresponding to (3.8), (3.10) and (3.12) for the case 1 < ce < k-1

are

(3.14a)

(3.14b)

’ E)/,,’k (2 sn2 d=mcr+(p+o’),rr+o(1),

K+iK’

xk (a-sn2 so) 1/2 d=(n-m)rr+rrr+1/4rr+o(1)
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and
iK’+e

d: + k (sn2 :- a d:k (sn2 sc_a2)/2 )/2
aK+iK’

fiK-ie --O(2) 1/2k (sn s ds.
a0

4. The critical ratio of m to n gor fixed values ot n and k. We have established
conditions in the previous section for the determination of eigenvalues when the
turning point is either located on the real line or located on the line Re (z) K.
Both conditions are subject to the restriction that the turning point must not be
too close to the point z K. If the turning point is located at z K, we know a
priori that h has the asymptotic behavior

h --,’2k 2.

Consequently the leading term of the asymptotic series for h is known once a
condition constraining the turning point to be located at z K has been estab-
lished. This condition will take the form of a critical value of the ratio m’n. Let
this critical value be denoted by C. Cwill of course be a function of the modulus k.

The critical case arises when

h-x2k2 sn2 K 0, i.e. a 1.

For a given Lam6 polynomial m, n and k are known. Here we wish to keep n
and k fixed and allow rn to assume various integer values between zero and n.

Consider I(a) Io (a2_ sn 2 ()1/2 d(, a e [0, 1], where as before sn Zo a. As
a consequence of the restriction on a, Zoe [0, K]. Observe that I’(a) is positive so
that I is a monotonic increasing function of a. Observe also that

n 1 _aI(0)=0, I(1)= cn dsC=-sin k.

Thus for 0 _-< a < 1, i.e. the case of a turning point in the interval [0, K),

Crr 1
(4.1) 0 -<-<- sin-1 k.

This follows from (3.12). For a el1, 1/k], define
K+iK’

J(a) (a- sn2 so) 1/2 d,
0

where sn Zo a, and arg (a2- snz ()/2 _1/2 7r in [zo, K+ iK’]. The restriction on
a implies that Zoe [K, K+ iK’]. Now J’(a) < 0, so that Jis a monotonic decreasing
function of a. Also,

1
J(1) - sin-1 k’, J 0.
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Thus for a turning point in (K, K+ iK’],

(4.2) 0<(l-C) 1
2---Tr<-sin-a k’.

This follows from (3.14b). Now if a is equal to unity, it is not possible for C to
satisfy either (4.1) or (4.2). If C were to lie in either interval the turning point
would no longer be at z K and a would not be unity. Also C is restricted by the
fact that 0 -< rn -< n so that 0 =< C =< 1. Thus the only possible value for C for tb.e
case a 1 is the limiting value of (4.1) and (4.2), i.e.,

2
(4.3) C sin- k.

This predicted value for C agrees not only with the known results mentioned
in 2, but also with numerically computed results [5] for eigenvalues of Lam6
polynomials of large order.

5. Solutions of the approximating equations. These solutions, which are
constructed in the following sections, are exponential functions, trigonometric
functions or parabolic cylinder functions. As different forms for standard solu-
tions of the parabolic cylinder equations exist, we take this opportunity to specify
the functions that will be used in the later sections.

In the notation of Miller [9], 10], the standard form f the parabolic cylinder
equation is

(5.1) w"=(a+1/4xZ)w.
This equation has solutions U(a, +x) and U(a, +x), both of which may be

defined in terms of the confluent hypergeometric function 1F1 by

U(a, +x)= 1/22-(2a+1)/4 e-XZ/41Fl(1/2a q-1/4; 1/2; 1/2xa)/F(1/4+1/2a)
(5.2a) q=’rt’l/22-(2a-1)/4e-X2/4X 1Fl(1/2a h-; ; 1/2x)lr(1/4+1/2a),

(5.2b)
0(a, +x)= 7r-1/:2-(2a+/F(1/4-1/2a) sin (1/47r- 1/2act) e-X2/41F1(1/2a +1/4; 1/2; 1/2x a)

: r-2-(:-l/’r(]-1/2a)sin (45-zr-1/2art)e-’:/4XlFl(1/2a +43-; 1/2; 1/2x2).

When the sign of the 1/4X 2 term in (5.1) is negative new standard solutions must
be defined. The equation is

(5.3) w"=(a-1/4x2)w
and the standard solutions are W(a, +/-x), defined by

W(a, +/-x) 2-3/41I-’(1/4 + 1/2ia )/F(-] + 1/2ia )11/2 eiX2/41F1 (1/2ia + 1/4; 1/2; -1/2ix 2)
(5.4)

qz2-a/41F(1/4 + 1/2ia)/F(1/4 + 1/2ia)la/2 eiZV4x 1Fa(1/2ia +-];-}; -1/2ix2).
In (5.2) and (5.4) the usual convention, i.e. that the upper or lower sign should

be used throughout, is adopted. The reader is referred to Olver [11], [13] for the
properties of the functions defined by (5.2) and (5.4).
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In later sections auxiliary functions, related to parabolic cylinder functions,
occur in the error terms. These functions are defined in [13]. In [13], Olver uses
the general symbols E, M and N to denote these auxiliary functions for both (5.1)
and (5.3). We modify this notation giving each function a suffix, unity for functions
associated with (5.1) and two for the functions associated with (5.3). A further
notational change from [13] is that the function

{1 +exp (2ra)}1/2- exp (ra)

is denoted by l(a).

6. Solutions of Lam6’s equation on the real line, The solutions, which are
investigated here, correspond to the case 0=<a-<_ 1. Thus Lam6’s equation
possesses a turning point, which we shall assume to be located at z Zo, in the
interval [0, K]. Lam6’s equation also possesses turning points at z =-Zo and
z 2K-Zo, so that if either Zo- 0 or Zo- K, two turning points are coalescing.
For Zo (0, K), examination of Lam6’s equation shows that the turning point is
simple. The behavior of Lam6 polynomials in the two cases Zo- 0 and Zo K is
unfortunately diverse as the comparison equation is different for each of these
cases. Thus it is necessary to consider solutions in each of these cases separately.
The theory [13] that is used is however applicable to simple turning points, which
may coalesce to form a double turning point. It is therefore possible to cover the
case 0 =< a < 1 with one application of the theory and the case 0 < a =< 1 with a
second application of the theory. This would result in a dupfication of the results
for a (0, 1), so we restrict attention to the following cases:

(a) 0 < <O -,

(b) 1/2
In 6 to 9 the two cases will be treated separately.
Case (a). In order to use the theory of [13], preliminary transformations of

both dependent and independent variable are required to reduce Lam6’s equation
to standard form. Lam6’s equation may be written as

(6.1a) w"(z) {xZk 2 sI12 z h -1/4k 2 sn2 z}w(z),
ioeo

(6. lb) w"(z)=[xZk2{sn2z-a2}-1/4k 2 sn2 z]w(z),

where X is defined by (1.8).
A new dependent variable is introduced by

(6.2a) W((1) (dl)-1/2
w(z),

whilst the new independent variable "1 is given by

(6.2b) (l)2k2(sn2 z _o2) (_ v21,

where u is not yet specified.
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This choice of transformation is made since the leading term on the right hand
side of (6. lb) is negative between the turning points located at +z0. On account of
the symmetry of the problem about the origin, it is only necessary to consider the
behavior of Wand (1 for positive st1. This enables us to simplify a little the method

The parameter v is at present arbitrary. It may be specified by stipulating
that (1(0)=0 and sr(zo) u, ( being considered as a function of z. Thus on
rearranging (6.2b) and integrating

zO IO’1 2) 1/2k (a 2 sn2 t) 1/2 dt (v-r dr,

or

I0z (a2_sn2/)1/2 dt.(6.3) v 4k

The dependence of ( upon z may be expressed by means of the following
two integral relations:

fo fo(6.4a) k (a2--sn2 t) 1/2 dt= (v-’2)/2 d" for z-<zo,

and

(6.4b) k (sn2 t-- 0( 2)1/2 dt 0.2 __/,21)1/2 d" for z _-> Zo.
0

Observe that relations (6.4a, b) imply that sr is a continuous, increasing
function of z in [0, K]. The transformations (6.2a, b) lead to the comparison
equation

d2W
(6.5)

where

l(dZ]2k2 (dz)
1/2 d2

(dz)
-1/2

(6.6) 4’(X, v, ()= -- \d(a/
sn z + 1

In order to construct error bounds a positive valued function on (-oo, o),
which is O(x) as x , is required. A suitable function is thus

The error control function may now be defined as

FI(X, V, (1): f 61(x,

with associated variational operator [12, p. 2]

d.
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The main theorem of [13] may now be applied to (6.5). This theorem states
that two continuous, twice differentiable, independent solutions of (6.5) are given
by

(6.7a) Wll(X,/’1, ’1) U(-X/1,12 "1) -’[- Ell(/,/,1, ’1),

Wx2(/,,/.t 1, .1) O(1 2
’Xp 1, "1") + E 12(,,,/, /"1, 1),(6.7b)

where

(6.8a)

and

(6.8b)

,, (1)t IOe  .(x,
M(-Xt", ’VIx) (2X)1/2N1(-1/2X, X)

=<JI(--1/2XPl2, ’1’/) exp
1/2

In the above formulas (1 (a(K).
On returning to the original independent variable, one finds that solutions of

Lam6’s equation have the general form

(6.9) (()’/2[AIW,(X, 1, (a)+AlzWz(X, u, ")],

where A la, A l: are constants. As Lam6 polynomials are real valued on the real
line and all the functions in (6.9) are also real, it follows that these constants will be
real for Lam6 polynomials. As the function ff(X, t,, sr) is bounded for (1 e [0, ]
the variation of F1 will also be bounded. One may evaluate the error control
function, replacing the auxiliary function M1 by Airy functions [13]. It may be
shown that the variation is O(g-a/2). Consequently the inequalities for the error
terms have a factor of O(1/X) on the right hand side, which is sufficient to ensure
that the error terms are satisfactorily small.

Case (b). The turning point Zo of Lam6’s equation may be close to z K.
There is a corresponding turning point at 2K-Zo, which may also be close to
z K. Between these turning points the leading term of the coefficient of w(z) in
(6.1b) is positive. Hence the following transformations are used:

(6.10a) W(2) (d2)-1/2w(z),
and

(6.10b)
\d(2/

k2(ce2-sn: z)= (-- ’:.
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The parameter//’2 is once again at our disposal: on this occasion is it specified
by the requirement that ’2(K)= 0 and (2(Zo)= u2. Thus from (6.10b),

(6.11)

ioeo

K

2)1/2 r2)1/2k (sn2 a dt (v dr,

(6.12) v2
2 4k I/ 2)1/2(sn2 a dt.

77"

Once again on account of symmetry it will not be necessary to consider
negative values of (2. The relation between (2 and z may be deduced from (6.10b)
to be

K

2)1/2(6.12a) k (sn2 t--a dt= (b’22--7"2) 1/2 dr for z >=Zo

and

I ’2z
sn2 t) 1/2(6.12b) k (a 2 dt (r2_/,,.)1/2 dr for z Zo.

Thus st2 is a continuous, decreasing function of z for z [0, K]. The transfor-
mations (6.10a, b) lead to the comparison equation

(6.13)
d2W

where

(6.14) 1(2)2 (2)2(X, V2, (2)=-- k 2 sn2z +

A suitable function for definition of the error control function is

1
2(X) 2M2(Xv,x)"

The error control function is

F2(X, v2, (2)= d&.

The main theorem of [13] may now be applied to (6.13). This equation,
consequently, has two continuous, twice differentiable, independent solutions
given by

(6.15a)

(6.15b) W4(X, v2, (2)= l/2(Xv) W(Xv,-(2)+ e 14(X, v2, (2),
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where

(6.16a)

13(//, /22, (2)J JO’ 13(X)/22, (2)/0(21
2 2Mz(Xu2, (2x/X) (2X)l/ZNz(1/2Xu2,)

1/2

and

(6.16b)

--< E:<1/2Xt,, (2VX) exp X o,,(F)}- 1].
In the above formulas 2 2(0) Thus in terms of the original independent

variable, the general solution of Lam6’s equation may be expressed as

(6.17) (2)1/2[A13 W13(X, pz, (:) +A14 W14(X, ’2, ’2)],

where A 13, A 14 are constants. As (dz/d(2) is negative and Lam6 polynomials are
real in [0, K], then A 13, A 14 corresponding to Lam6 polynomials will be pure
imaginary. One may also observe that as 02(X, u:, (2) is bounded for (2 E [0, (2],
the variation of F. is O(1/X 1/2) and consequently the right hand sides of both
inequalities for the error terms have factors of O(1/X). This implies that the
bounds for the error terms are satisfactorily small.

7. Solutions of Lam’s equation on the line Re (z)=K.
Case (a). The turning point is bounded away from z K as X oo, so that the

interval [K, K+ iK’] is free from turning points. For a region free from turning
points it is natural to use the Liouville-Green approximation as in [12, p. 222].
Observe that although z is complex in this region the functions of z occurring in
(6.1b) are real. The results of the Liouville-Green method may be applied
immediately. However it is first convenient to adopt a notation for some functions
of z which occur frequently. In (6.1b) define

(7.1a)

(7. lb)

f(x, z) k2(sn2 z -a2),
g(z) =-1/4k 2 sn2 z.

Thus equation (6.1b) may be written as

(7.1c) w"(z) {xf(x, z) + e, (z)}w(z).
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In (7.1c), g(z) is O(1) so that the equation has the correct form for the
Liouville-Green approximation. Consequently (7.1c) has two twice ditterenti-
able, independent solutions given by

(7.2a)

(7.2b)

where

(7.2c)

where

W21(z {f(/,, z)}-1/4 exp X fa/2(X, t) dt {1 + eza(X, z)},

W22(z) {f(/’, Z)}-1/4 exp -X fl/2(/,,, t) dt {1 + ezz(X, z)},

le2z(Y, z)l, x-lf-a/2(X, z)le’2i(X, z)l

_-<exp F,, (G) -1,

(7.2d) G(X,z) fal/4dz 2 dz,

/’=1,2,

and a K, a2 K+ iK’ and 7/" is the variational operator.
It is easily verified that the integrand of (7.2d) is purely real. Note also that the

solutions (7.2a, b) are oscillatory as the integrand fa/2(X, t) is real but the region of
integration is in the imaginary direction. The right hand side of relation (7.2c) is
O(x-1) which provides a realistic error bound.

The solutions (7.2a, b) allow us to express the general form of solutions of
Lam6’s equation on [K, K+ iK’], as

(7.3) A2a W21(z)+A22 W22(z),

where Aza, A22 are complex constants.
Case (b). In this situation Lam6’s equation has two turning points at Zo,

2K- Zo which are arbitrarily close to K as z0 --> K. For the same reason as in Case
(a) above it is possible to apply the theory of 13 for the case of two turning points
arbitrarily close to the interval of definition of the differential equation.

Similar transformations to (6.10) are made, the new independent variable
being (3 and the sign of u changing to positive in (6.10b). Integration of this latter
equation shows that the choice of u2 is consistent with the conditions (3(K) 0 and
’(Z0) itt2, since

I =f (r2+ dr,
Zo

dt=
4 Jo

k (1 2
SR

2 t)1/2 irrv2 iv2
/2)1/2

the argument of (a2--sn2 t) a/2 being - r in this interval (cf. 3).
The main theorem of [13] may be applied to deduce that the general solution

of Lam6’s equation is of the form

(7.4)
dz ] l/z

3/ {az3W230(, v2, (3)+AzaWz4(X, v2, ’3)},
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where A23, A24 are constants. In (7.4),

w 3(x, +
W24(,, b’2, (3)= W( 1/2 ,/2 22 (3q/) nt" E24(,,//2, (3),

where the error terms have a factor O(x-1) and are consequently realistically
small (cf. {} 6, Case (b)).

8. Solutions of Lam6’s equation on [K+ iK’, iK’]. The derivation of solu-
tions for Lam6’s equation in this region is simpler than the same problem for the
other three intervals. Observe that the turning point of Lam6’s equation is located
on the real line for all values of a [0, 1]. Thus the line Im (z)= K’ is free from
turning points in both cases and the Liouville-Green method may be applied.

Case (a). Recall the formulation of Lam6’s equation described by equations
(7. l a, b, c). Equation (7.1c) has two twice differentiable, independent solutions

(8.1a) W31(z) {f(X, z)}-1/4 exp ,t’ fl/z(,t,, t) dt {1 + e31(,t’, z)},
+iK’

(8.1b) W32(z) {f(x, Z)-1/4 exp -X fl/2(/,, t) dt {1 + e32(X, z)},
+iK’

where

(8.2a)

and

]e ’31(g, z )[ =< exp {X o//.t+i:,, z(G) } 1le31(g, z)l, 2Xfl/2(X, z)

(8.2b)
1;20, z)l _<_ exp { (G) } 1

with G defined by (7.2d).
There are two remarks which should be made concerning the above expres-

sions. First of all fl/z(x, z) is real for z [K + iK’, iK’], so that one solution will be
exponentially increasing and one exponentially decreasing as z moves away from
K+iK’. Secondly, the differential equation (7.1c) possesses a double pole at
z iK’. It is therefore necessary to show that these asymptotic solutions are valid
in the neighborhood of this pole.

The justification of this assertion presents the first illustration that the choice
of large parameter ,t’ made in (1.8) was correct. Conditions for //’g+iK,.z(G) and
7#u,.z(G) to be convergent are given by [12, p. 205]. The dominant function
f(X, z) has a double pole at z iK’. The condition for convergence is that the
function g(z) may be expanded as a power series of the following form:

(8.3) g(z)
4(iK’-z)2 1 +

s=l

y gs(iK’-z)*

As g(z) -1/4k 2 sn2 2’ and sn z has a simple pole with residue 1/k at z iK’,
(8.3) is satisfied.



820 13. A. HARGRAVE AND B. D. SLEEMAN

Thus the terms on the right hand side of (8.2a, b) are both O(1/X) and the
error terms are uniformly valid for z [iK’, K+ iK’]. Furthermore (8.1a, b) give
asymptotic representations for the dominant and recessive solutions in the
neighborhood of z iK’. The general solution of Lam6’s equation in this region is
thus

(8.4) A3 W3l(Z) "A3W3(z),

where A31, A32 are constants. As Lam6 polynomials are real in this region if
0"+7": 1, A31, A32 corresponding to Lam6 polynomials will be real if this
condition is satisfied and pure imaginary otherwise.

Case (b). The form of the solutions will be identical to those of (8.1a, b),
(8.2a, b) and for the same reasons as in Case (a) the asymptotic representations
will be valid at z iK’. However, the constant multipliers of W31, W32 corres-
ponding to Lam6 polynomials will necessarily be different due to the differences in
the behavior of the Lam6 polynomials between Cases (a) and (b) in the regions
[0, K] and [K, K+ iK’]. Thus the general solution of Lam6’s equation will be

A33 W31(z)q-A34 W32(z),

where the constants A33, A34 are governed by o- and - as in Case (a) above.

9. Solutions of Lam6’s equation on [0, iK’].
Case (a). Lam6’s equation does not have a turning point on the line Re (z) 0

in general. However, if a is allowed to approach zero two turning points located at
+Zo are coalescing at the origin so that in the limiting case a 0, Lam6’s equation
has a turning point of second order at z 0. As a -> 0 the function X[(X, z) of
(7.1c) is no. longer dominant on the whole of the interval [0, iK’] and the
Liouville-Green approximation does not lead to uniformly valid asymptotic
expansions. Consequently it is appropriate to use the theory of [13] for Case (a).

A further complication on the line Re (z)= 0 is the presence of the pole at
z iK’. However, due to the correct choice of large parameter X, it is possible to
show that the error terms are bounded at the pole, and consequently the solutions
obtained from the method of [13] provide asymptotic representations of the
dominant and recessive solutions in the neighborhood of the pole.

Introduce the following transformations of dependent and independent
variable"

(9.1a) W((4) (4)
-/

w(z)

and

( +(9.1b) \4/ kZ(sn2 z-a

as the dominant term in (6.1b) is positive for Re (z)= 0. The parameter ’1 is
defined by the relation (6.3). The choice of ul is sufficient to ensure that

st4(0)=0 and ’4(Z0)=--iVl,
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since

and

2Zo
-sn d: by (6.3)k (a )/

(/112" 7"2) 1/2 dr= i[ iv] 2

The relation between r4 and z may thus be expressed as

f0’4(9.2) k (a2_ sn2 ()1/2 d:= (’2+ v)1/ dr.

Thus, as z increases on Re (z)= 0, (4 is real and increasing. Furthermore (4 is
an analytic function of z, for z e [0, iK’], the derivative d(n/dz having argument

zr/2.
Thus as z increases on Re (z) 0, st4 is real and increasing. Furthermore st4 is

dzW
(9.3) ={Xz

d(4
((] "/3) " @4(/", /31, ’4)}W

where

l(dZ2k2 (dz)
1/2 d2

(dz) -1/2

(9.4) 04(X,/21, 4)-’--- \d(41 sn2 z + 44 242 4

as
The function "4 of the error control function may be conveniently specified

’4(X) r(1/2 +1/2x,,blu(1/2x,,, x)U(x,,,

This function is nonnegative and has the correct behavior as x--> +oo. The
error control function for this case is

4(x, , 4)= I I,(x, 1,/4)1
4.

One may apply the main theorem of [13] to deduce that, for sr4 e [0, oo), (9.3)
has two continuous, twice differentiable, independent solutions, which are given
by

(9.5a)

and

(9.5b) W42(//, Vl, ’4)’- 2
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where

(9.6a)

(9.6b)

and

la(a)= 1+ sup
x(-,)

U’(a,-x)U(a,x)}U’(a,x)U(a, -x)

In the above expressions, the variation of F4 is defined over an infinite range
of values of (4, since (4 o as z iK’. The-integral will be convergent provided
that

(9.7) t4(X, Pl, rD=o(1) as r4+.
The convergence of the integral is also sufficient to ensure that the error

bounds are realistic and the two solutions of (9.5) provide asymptotic representa-
tions of the dominant and recessive solutions in the neighborhood of the pole.

To show that this is in fact the case, it is only necessary to consider the case of
positive (4. The result for negative values of (4 follows immediately by a symmetry
argument. The proof of this result is facilitated by considering both the Schwar-
zian derivative and the relation between (4 and z in more explicit form.

Introduce the function P(X, Zo, z) in which the first two arguments are usually
suppressed, by

(9.8) P(X, Zo, z)= k=(sn2 z -az)/(zZ-z).
Then, for z e [0, iK’), p(z) is negative and in particular

1
p(z) (z=_zg)l(ig,_z)[,{1 + O([ig’-z[=)}

d, [{i/ (e-n)= p"(z)
4 p(z)

(9.9)

and

as z iK’.

Denoting the derivative dz/d(4 by ,
5 p’=(z)} (z=_z,)_ ’(z___2)
16 pZ(z). 4p(z)

z(zz-z)

_1/4(3zZ+2z)] r42 + v (4z)p(z)(z-_z) 0

On account of the behavior of the function p(z) in the neighborhood of iK’,

p"(z__)=p(z) liK’-z6 ]{l+O(liK’-z[2)},

p’(z___) 2{1 + O(iK,_zlZ)}
p(z) lig’-zl
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so that the right hand side of (9.9) is

1 1- liK,_z[2{1 + O(lig’-zl)} p(z)(z _zg) + o

Once again applying the result for p(z) as z --> iK’, we see that this reduces to

41-((42+ Vl){1 + O(liK’-zl)}+ 0(-1,).
\4/

Now

Hence

(+ v
2) (-1/4k2 snZ z)22g(z) k2(sn2 z -a

-1/4(r] + v){1 + O([iK’- z [2)}.

(9.10) o   liK’-zl+

In order to show that 04 is o(1) as (4 oo, one needs to know the relation
between (4 and z and z iK’. In (9.2) a and Vl are both 0(1) so that we may
deduce that the dominant term on the left hand side of (9.2) is

-k sn ( d( -i In lliK’-z-’---il+ O(1),
for some finite Z e (0, iK’), such that Isn Zll > if"

The negative sign appears as (-sn ()/ is positive in this region whilst sn (
is pure imaginary with argument r/2. The right hand side of (9.2) is

.[I 2 2(4 421Pl ln--+1/2( +O(1).
/21

Thus on exponentiating (9.2) and comparing the large terms one obtains

(9.11) CliK’-zI=-V exp {-1/2 (}{1+ o(1)},

and it follows that the order term on the right hand side of (9.10) may be replaced
by O((22) and (9.7) holds. Consequently the general solution of Lam6’s equation
in the region [0, iK’] may be expressed as

(9.12) (d2) 1/2[A41W41(,,/21, ’4)’t-A42 W42(,, Pl, 4)],

where A41, A42 are constants. On account of the result proved for O4(X, Vl, ’4) as

’4 ’’> (30, it follows that all error bounds are realistic, containing a factor of O(X-1),
and are uniformly valid for z e [0, iK’].

Case (b). A much simpler problem ensues when the turning point of Lam6’s
equation is bounded away from the origin. The Liouville-Green approximation
may be used to deduce that two independent solutions of Lam6’s equation are
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given by

{Io }(9.13a) W4(z) {-/(X, z)}-/ exp ix {-f(X, t)}/2 dt {1 + e4(X, z)}

and

{ Io(9.13b) W44(z) {-f(X, z)}-/4 exp -ix {-f(X, /)}1/2 dt {1 -" 44(,’,

As before the error terms are uniformly valid for z [0, iK’], possessing a
factor of O(x-). Thus the solution of Lam6’s equation in this region has the
general form

(9o14) A43 W32(z) + A44 W44(z),

where A43, A44 are constants,

10. Identification of Lam polynomials for Case (a). The identification of
Lam polynomials consists of the determination of the constants occurring as
multiplicative factors of solutions of Lam’s equation. In each region a pair of such
factors occurs. The criteria available for the determination of these factors are of
two types. First of all there are boundary conditions to be satisfied, which enable
us to relate one factor to the second member of the pair. If there are two boundary
conditions to be satisfied on one interval the fact that h assumes an eigenvalue
ensures that the second boundary condition is satisfied.

Each Lam polynomial has associated parameters p, cr and -, which deter-
mine the boundary conditions. These conditions are of the form (1.4). The
quantities, which are nonzero at the points O, K, K+ iK’, introduced in 1 as
matching coefficients, are used for the determination of the remaining multiplica-
five constant associated with a Lam polynomial. In the region [0, K], the
normalization condition (1.7) must be satisfied at the origin. In the other regions
the matching coefficients are used to continue the asymptotic formulas from one
region to the next.

There are several methods available for checking certain aspects of the result.
These checks will be valid for all three cases. First of all the solution is continued
around the basic rectangle in an anticlockwise direction, so that one may check
that the Lam polynomial and its derivative have the correct value on returning to
the origin. The continuation of a Lam polynomial from (iK’, K+ iK’) to the
interval [0, iK’) is complicated by the existence of a singularity of the Lam
polynomial at z iK’. Stokes’ phenomenon occurs at this pole, the phase of the
Lam polynomial being discontinuous. In order to calculate the phase discon-
tinuity consider a typical Lam polynomial at Z iK’+ e and at z2 iK’-ie,
where e is some small, real, positive number. The Lam polynomials will behave
as their term of highest power of sn2 z, so that

E2".+p(z,)’A sn zl cn Z1 dn" za sn2n Z1 2n+p,
8
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and

sn2nE2,,+p(z2) A sn z2 cn z2 dn" z2 z2

for some constants A and A’. Consequently,

(__ie)2"+P

(10. la) arg {E2mn +p(z2)} arg {E2%+p(z 1)} %- nTr + pq’/’,

and

(10.1b) [E’, +p(z2) lET,+p(z 1)[.
The asymptotic relations (10. la, b) are the required formulas for the connec-

tion of Lam6 polynomials on these two intervals.
A second check on our results is that the behavior of the Lam6 polynomials in

the neighborhood of z iK’ should be such that the dominant term is O((1/[iK’-
zl)2"+p) as z - iK’.

The normalization condition implies that a Lam6 polynomial is positive in
some deleted neighborhood of the origin. Thus it is possible to predict the sign of a
Lain6 polynomial in certain regions:

re(o-) m+o-(10.2a) sgn {E2n+,(K)} (-1)

(10.2b) arg {E’(_(K + iK’)} [1/2 O" o-)zr + nzr],

(10.2c) arg{E2+,(z)}=[-(z+o’)zr+nzr], z e(iK’,K+iK’)

(10.2d) arg {E2mn+p(z)} pzr, Z e (0, iK’).

When the multiplicative constants are being calculated, only the leading term
of the asymptotic series for the constants will be calculated. As error bounds are
available for the solutions, elementary error analysis shows that the relative error
in the constant, due to the neglected terms in the asymptotic series, is the same as
the relative error in the solution at the point at which the constant is evaluated. For
example, if w (x) is the solution with error e (x) and the multiplicative constantA is
to be calculated by the condition that Aw(Xo)= r, then if A has error ,
then

(A + g){W(Xo)+e(Xo)} n,

YW (Xo) +Ae (xo) O and
(xo)
W(Xo)

As all error terms calculated are satisfactorily small, the relative error being
O(1/X), all multiplicative constants will have the same order of accuracy.

For the region [0, K], Lam6 polynomials are described by expression (6.9).
The parabolic cylinder functions occurring in this expression have a first argument
which may be large and negative or which tends to zero as Ul 0. In both cases
there exists a finite interval of the real line extending to z =K on which
U( /’/1 ’1%/) is exponentially decreasing and (-XVl, ’X) is exponen-
tially increasing. Furthermore neither these functions nor their derivatives may
have a zero when z K. Therefore to satisfy the boundary condition at z K
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(( ) the factors A 11 Wll and A W must be of the same order of magnitude
at z K. Thus away from this point, it follows from the behavior of the parabolic
cylinder functions mentioned above that A WI dominates A1W.

In order to satisfy the boundary condition we must have

AI1-f(-XP, lVX)q-AI20(-1/2Xp, ’lx//)--O if r= 1

or

Thus replacing the parabolic cylinder functions by the leading term of their
asymptotic expansions [11] and combining the two cases, we obtain

2\--A 12 A 11(-- 1)2-x-1/e1/e{F(+gXp 1)
(10.3)

At the origin, the first term of (6.9) dominates so that A may be evaluated
by matching the value of the Lam6 polynomial with the normalization condition.
However, this condition involves a sine or cosine function with an argument

2+Xu. It is possible to evaluate this quantity by recalling the result (3.12) and
simultaneously verify that the eigenvalue of the Lam6 polynomial satisfies the
boundary condition at the origin.

The parameter u is defined by the equation (6.3),

u 4k o (a-sn t)/ dt.

Thus from (3.12),

Xu [m +p +] 4m + 2p + 1.

The leading term of the asymptotic representation at the origin yields the
following results’

/2

(u) 2+o/2F(+p +m)U2n+p(O)=Al
(10.4a)

[sin (m +p+)+O-a)]

and

,,, (akx]1’22,,+1+o/2F(1+1/2p+m)E2n+p(O) -A ll
\ q’gPl/

(10.4b)
[sin (m +1/2p + 1)7r + O(X-1)].

The presence of the term sin[(m +p+1/2)r] in (10.4a) indicates that the
Lam6 polynomial has m zeros in the interval (0, K). Note also that if p is equal to
zero the expression on the right hand side of (10.4b) is zero and if p is unity the
expression on the right hand side of (10.4a) is zero. Thus the boundary condition
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at the origin is satisfied by the leading term of the Lam6 polynomial. The matching
coefficient at the origin is also determined from the expressions (10.4a, b).

If p =0,

Ezn+p(O),All 2"F(m + 1/2)(-1),
and if p 1,

E2,,+,(O)A 2"+s/F(m +-)(- 1)’.
\ q]’l ]

Thus in order to satisfy the normalization condition
re(o) [13 1

it is necessary that
1/2 0-1/2

(10.5)
r(m +0

The behavior of the leading term of a Lam6 polynomial on the real line has
now been completely determined. The value of the Lam6 polynomial or its
derivative at z K is required for matching purposes. These terms are

and

E2,.,+p(K) A 23/4-xi’/4Xx’/4-1/4e-X’/4b’u’/2k-1/2( 1 -02)-1/4

exp -X (r2-/2) 1/2 d’r if o" 0

m’ 123/4-x"ff4)(xv/4+3/4k x/2(1 a vE2,,+p(K)"-’-A1 2)l/4e-X,/4 x,/2

/-X (z2- u)1/2 d" if o" 1.exp

On combining these expressions and substituting for All, ,’p and g, one
obtains

(10.6a)

where

E",()tw +o-k o’--1/2( 2)o’/2-- 1/4,/o’j[.,{, 1,2n+p,.,]"(--1) 1--a

1.1,1 77-1/2(bl/kO)O-1/221/2-2m-2o)(m (p/e)m+o/2+1/4
(10.6b)

exp ,-, : d: r(m +0 + 1/2).
0

Comparison of equations (10.6) and (10.2a) indicates that the sign of the
above expression is correct.

Sufficient information concerning the behavior of Lam polynomials on the
real line has been obtained, and it is now possible to investigate the behavior of
Lam polynomials in [K, K+ iK’], matching the solutions at z K. The Liouville-
Green approximation is uniformly valid in this region, the form of a Lam
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polynomial being

(10.7)

At z =K,

and

A21W21(z) +A22 W22(z).

W21(K) W22(K) k-1/2(1- ff2)-1/4

W.I(K) W2(K) xk 1/2(1 2)1/4.
The above relations imply that

(10.8) A22 (- 1)rA21

in order that the Lam6 polynomial may satisfy the boundary condition at z K.
Thus (10.7) may be expressed as

E2mn+p(z) 2A21{k2(sn2 z- 2)}-1/4
(10.9a) [{fK: } ]cos -ixk (sn2

_
a2)1/2 d + O(x-1) if g 0

or

(10.9b)
E2mn+p(z) 2iA21{k2(sn2 Z --a2)}-1/4

[sin {-ixk f (sn2 s-a2)1/2 ds}+ O(x-1)] ifr 1.

Thus on comparing the expressions (10.9a) if o-= 0 or the corresponding
expr.ession for the derivative in (10.9b) if r 1, evaluated at z K with (10.6a, b)
it follows that

(10.10) n21 (- 1)m+/.t 1.

The computation of the multiplicative constants A21, A22 determines the
form of the leading term of a Lam6 polynomial on [K, K+ iK’]. It is necessary to
evaluate the Lam6 polynomial and its derivative atK+ iK’ for matching purposes,
and simultaneously verify that the boundary condition is satisfied at this point.
The expressions for the leading term of a Lam6 polynomial (10.9a, b) may be
conveniently combined into one formula as

E2",+p(z) 2iA21{k2(sn2 z- a2)}-1/4

[sin {-ixk f2 (sn2 __2)1/2 d:+1/2 rr(1-0")} + O(,’-1)].
At z K+ iK’, Lam6 polynomials have the following behavior"

E2%+v(g + ig’) 2iA21(1 k2a2)-/

(10.11a) [ { fK+iK’ }]sin -ixk (sn2 2)1/2 d+(11 g) + O-1)
aK
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and

E2n+.(K + iK’) 2i-A2(1 k20 2) 1/4/’

cos -ixk (sn2 :-a dsC+1/2vr(1-o") +O(x -1)
dK

since the argument of the trigonometric function is increasing as z increases in the
positive imaginary direction. Thus for the case - 0, the boundary condition will
be satisfied if

(10.12a)
K+iK’

}cos {-ixk (sn2 -02)1/2 d:+1/27r(1-r) O(X-1)
OK

and if -= 1, it will be satisfied if

,(10.12b) sin -ixk (sn2sc-a dsc+1/27r(1-r) O(x-1).
dK

The conditions (10.12a, b) may be combined into the single condition,

(10.13) sin -ixk (sn2 sc-a dsC+1/2vr(1-o’)+1/2vr(1--) O(X-).
.K

The integral appearing in (10.13) occurred in 3 and its value is given by
(3.8), i.e.,

-ikx (sn2 s ce d: [(n m)Tr + (g+ r)] + O

This immediately verifies that the boundary condition at z- K+ iK’ is
satisfied by the leading term of the Lam6 polynomial. The presence of the
(n- m)vr term in the integral of (10.13) indicates that the Lam6 polynomial has
(n rn) zeros in the interval (K, K + iK’). The value of the Lam6 polynomial and
its derivative at z K + iK’ are therefore given by

(10.14a) Ez"+p(K + iK’). 2iCAza{1 k2a2}-l/4(-1) if - 0

and

(10.14b) Ez,,+,(K + iK’),- 2i-1A21{1 k2ce:z}-’/4X(-1)"-’+l if - 1.

Hence on combining (10.14a, b) and substituting for A21 from (10.10), one
obtains

(10.15) E’,,(S(K + iK’)-- 2i-’( 1)"++1X(1 k20 2)’r/2-- 1/4.

The argument of the right hand side of (10.15) may be compared with (10.2b)
and be seen to have the correct form.

In the region [iK’, K+ iK’], a Lam6 polynomial is described by (8.4). As
neither of the functions W3, W3 may be zero or have a vanishing derivative at
z K + iK’, the boundary condition determines a relation between A3 and A32.
As z moves away fromK+ iK’ towards iK’, W3a is exponentially increasing whilst
W3 is exponentially decreasing. Obviously, away from z K+ iK’ in this region
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the term A32 W32 will dominate the term A31W31. At z =K+ iK’,

W31(K + iK’).-. W32(K+ iK’)’(1-k2a2)-1/4,(10.16a)

and

(10.16b)

Thus

Wt31(K + iK’) W’32(K + iK’) X(1 a2k2)1/4.

m31 (- 1)A32,

to satisfy the boundary condition at z K+ iK’, and

E’_)p(K + iK’) 2A32x(1 k 202)r/2-1/4(-1)r.
Hence on comparing the above expression and (10.15)

A32 (- 1)"i-(+)1(10.17)

and

(10.18)
E2%+p(Z (- 1)"i-(+)tx l{k 2(sn2 z 02)}-1/4

exp -xk
+iK’

(Sn2 --02)1/2 d

It has been shown in 8 that the error term in the Liouville-Green approxi-
mation is uniformly of O(1/X) multiplied by the leading term, so that (10.18) will
describe the behavior of a Lam6 polynomial in the neighborhood of z iK’.
Equation (10.18) shows that the order of magnitude in the neighborhood of the
pole and the phase of the Lam6 polynomial agree with the value predicted by the
form (1.2).

The remaining region on which the Lam6 polynomials are to be identified is
[0, iK’]. The general form of the solution on this interval is given by (9.12). The
parabolic cylinder functions occurring in this expression have nonnegative first
argument so that neither W41 or W42 may be zero and both functions are
monotonic. In order to satisfy the boundary condition at the origin one of the
following relations must hold.

A41 "A42 if p 0,

or

A41 A42 if p 1.

Hence

(10.19) A41-..-.(-1)PA42

As Im (z) increases along the line Re (z)= 0, "4 increases so that W41 is
exponentially decreasing whilst W42 is exponentially increasing. Thus away from
the origin the second term of (9.12) will dominate the first term, i.e.

(10.20) -E2mn+p(z A42
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in this region. Replacing the parabolic cylinder function by the leading term of its
asymptotic expansion, one finds that

2"’-12-xu/4-1/4Xxu/4-1/4(27r) 1/2{r(1/2 +Xv

eX,/4(2+v)-l/41.,1.x4/2 exp X 0"2+v)1/2 d"

Replacing (dz/d(4) and substituting for ,gVl
2 and (4, one obtains

E’,,+p(z)-- iA42(2zr)’/Z{F(2m +p + 1)}-’
(10.21) 2-m--o/2-1/ZXm+O/Ze-m--o/Z-1/4Vm+O+1/2

Io{k2(sn2 z-a2)}-1/4 exp -xk (sn2 (-a2)/2 d(

On account of the double pole at z iK’, Lam6 polynomials are affected by
Stokes’ phenomenon in the neighborhood of this point. The relationship between
solutions on [0, iK’) and (iK’,K+iK’] is given by (10.1a, b), namely

E2+,(iK’- ie)E2+p(iK’+ e)exp ( i(2n +p)},

for small e.
Thus on matching expressions (10.18) and (10.21), using the above relation,

one obtains, after some reduction,

i-lF(2m +p +1)+p +) (Vl)p-1/2 { Iz
K

2)1/2Aaz2+3o/z+/zXo/ZF(m exp -xk
o

(sn2-a d

iK’--ie
(10.22)

f
iK,+e

2)1/2 fO 2)1/2 }-xk (sn2 a d +xk (sn2 a d
aK+iK’

Recalling (3.10), we see that the exponential term in the above disappears.
Furthermore

22z-1
r(Zz)= /: r(z)r(z +),

so that

and

F(2m +0 + 1) F(m + 1)22m+
F(m +p + "/T

1/2

2,,,-i/2ei.,w/2-i.,,-/4F(m + l) ( v1)o-1/2(10.23) A42 (2X)o/2,rr1/2
The behavior of the leading term of the Lam6 polynomial for z e [0, iK’] is

now completely described by (10.19), (10.21) and (10.23). One may observe from
these relations that the leading term of the Lam6 polynomial does in fact satisfy
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the normalization condition

ra(o) (A 12n+pk

which serves as a check on the results presented in this section.

11. Identification of Lam polynomials tor Case (b). The determination of
the constants for this case follows the same pattern as in the previous section. The
remarks made in that Section concerning the arguments of Lam6 polynomials and
the behavior near the pole will hold also in this case.

For the region [0, K], the behavior of Lam6 polynomials is described by the
expression (6.17). The parabolic cylinder functions occurring in this expression
have nonnegative first argument, so that they are oscillatory in [0, K). The second
argument is zero when z K, so in order to satisfy the boundary condition at this
point, it is necessary that

(11.1) A 13 (--1)A4l(1/2

As st2 0, the two components of (6.17) are of the same order of magnitude.
In the neighborhood of this point the solution W13 is exponentially decreasing
whilst the solution W14 is exponentially increasing as (2 increases. However as

v2 + 0, the measure of the interval on which this type of behavior takes place is
tending to zero. Thus for certain small values of v2, the behavior of the leading
term of Lam6 polynomials will be governed solely by the solution W14, whilst for
other small values both terms will be significant.

Away from z K, asymptotic expansions may be used to represent the
parabolic cylinder functions as the second argument of these functions is large.
Thus

(ll.2a)

1/2

A 14 [,(,22 p22)]1/4

[cos y((2)l(xu)(-1) +sin y ((2) q" O(,-1)],

where

2 2(11.2b) y((z) ,’ (7.2 p)1/2 dg...(,p)jv_,P2_1/4/)(p In

The latter term inside the square brackets will be dominant if Xv is large,
since

l(a) exp {-ra} for large a.

However if ,t’u is of o(1) the two terms will be of the same order of
magnitude. In order to express (11.2a) more concisely we introduce

n(a) tan- l(a),

such that n (a) e [0, 1/47r], Va.
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Now one may use the asymptotic representation (11.2a) to deduce that

(ll.3a)

and

(11.3b)

iml4 21/4l-1/2(1/2,1222)
E2",/,(O) (ka)l/2 ,1/4 COS

sin [y ((") + (- 1)’n (1/2 Xv2) + 0(X-1)]

E2n+p(O)
iA 14(ka)l/221/4X3/4

ll/2(1/2Xl cos/./(1. X/,, 2)2
cos [y()+ (-1)r/(1/2’u)+ O(X-1)].

Thus the boundary condition at the origin may be satisfied if

(11.4) sin [y (() + (- 1)r/(1/2 Xu2) + 7r (1 p)] 0(X- 1).

This condition enables us to obtain a relation for the eigenvalue h of Lam6’s
equation, when the turning point is such that a => 1/2. As the Lam6 polynomial has
m zeros in (0, K), (11.4) may be written as

y(("2)+(-1)"rt(1/2Xu)+1/2(1-p)=(m + 1)r + O(X-1).
Using (6.12b), one obtains

(11.5)

z
_sn2 q_ (1/2 //y22) 2 2xk (02 )1/2 d: q-X/y2--X/y2 In 1/2gu22

(5X’2) (m + 1/2p + 1/2)Tr + 0(,’-1).+(_l)n =
The relation (11.5) is the eigenvalue condition which must be satisfied by the

eigenvalue h of Lam6’s equation.
As the argument of the sine function in (11.4) has an error term O(1/), the

value of h obtained from (i 1.5) will have an error term of the same order. For
particular cases depending on the size of 2

_,’/Y2 it is possible to simplify (11.5) a
little.

z
-sn2 :) (m + 1/2p + 1/4)or + o(1) if 1/2,g,2 >> 1,(11.6) ’k (0 2 1/2

Z

(11.7) xk (o2-sn2)l/2d=[m-k-1/2pW1/4-(-1)o],rr+o(1) if1/2x,22<< 1.

Equations (11.6), (11.7) follow either from the asymptotic expansions for &
and rt or from the limiting values as their arguments tend to zero, i.e.,

(o) n(o)

These relations do not have the same order of accuracy as all other asympto-
tic formulas for Lam6 polynomials. However, they are a little simpler than (11.5)
and indicate the value of the eigenvalue h in two particular cases. One may also
confirm that (11.6) agrees with (3.12).
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The normalization condition implies that

(11.8) A4"
cos

(ka)-1/221/4,/0-1/4
The matching coefficient at z K may be obtained from the value of the

parabolic cylinder function and its derivative at the origin and (11.8).
One finds that

(11.9)

ea (- 1)’+%0./220.Uz/Z-x0./2+ 1/4-0

2,,+p,,-, (ka)O-1/2[k(1 o 2) 1/2]1/2_o..
2 o--1/2

/1/2(/’P22)COS ?’/ (21- ,’P22) F(1/4.}./,/)2)1.2

The sign of the formula for this matching coefficient may be seen to be in
agreement with the value predicted by (10.2a). The behavior of Lam6 polyno-
mials on the line [0, K] has now been determined and we can now attempt to
continue the solution into the interval [K, K+ iK’]. In this region expression (7.4)
describes the behavior of Lam6 polynomials. The parabolic cylinder functions
occurring in this expression are nonzero when (3.= 0, so that the boundary
condition at (3 0 determines a relation between A23 and A24 as follows"

(11.10) A24 (- 1)0.A23.

In order to evaluate A23, the value of the matching coefficient at z K is
required. From the value of the parabolic cylinder function at the origin one
obtains the following value for the matching coefficient:

(11.11)

0.--1/2
]-,m (0.) [K’ 20.+1/4 "--.2n +Pk’r’x (k(1 0(2) 1/2)

0.-1/2

r(41_ 1. 2/,’/22)

e ir/4+i0.r/2x0./2m 23

The multiplicative constant may be evaluated by matching the two expres-
sions (11.9) and (11.11). This leads to

(11.12)
A23 2-1/4(-1)’+o.ll/2(}Xuz) cos r/(}_Xu

e-(i,/4+i0.,/)X1/4-O(koe)l/2-o"

Both of the solutions W23 and W24 are oscillatory for real sr3.and of the same
order of magnitude. Hence the leading term of a Lam6 polynomial will be
dependent on both of the terms in (7.4). The leading term of a Lam6 polynomial
away from z K may be expressed as

(11.13)
E2mn +v(z)

1/2 221/4l (-Xv2)ei/4A23(_1)
X1/4kl/2(sn2 z -02)1/4 cos

{sin [v((3) + (-1)%t(-1/2Xv)] + O(/’-1)},



LAMt POLYNOMIALS 835

where

2 2 2/-)((3) X (,/,,2 + u)l/2 dr + $(-1/2Xu22) + Xlt2 In

The boundary condition at z

2,+ , +iK’)=0.

Thus the form of (11.13) implies that this condition may be satisfied provided
that

(11.14) sin[v(#)+(-1)%(-1/2%v)+rr(1-r)]=O(%-a).
As the Lam6 polynomial has (n- m) zeros in the interval (K, K+ iK’), the

above condition may be expressed as

(.as) v(#)+(-)%(-x)+(-)=(.-m+)+o(x-1).
Substituting for v((), the above equation becomes

K+iK’.. (2 she )/2 d+( 2 2 _pXk
(.16)

+{-)%{-x) ={.-m ++)=+o-1).
In order to show that this relation is consistent to our order of approximation

with the eigenvahe condition (11.5), one may add the two equations together and
recall that (3.11) implies that

K+iK’

k (a

The sum of (11.5) and (11.16) is thus
2 2 2 2(+)+(11.17)

In + 1 + (o + r)] + O(x-1).
Now

and
m(1/2x) + m (-1/2x) 1/2,,,

1/2x In + =’-(, + + )+1/4]
so that (11.17) will be true provided that

(_l)[r/ 2 2(x.=)+n(-

since is either zero or unity. Thus the equations will be consistent if

-xv=) =.
Now for any value of a, one easily finds that

n(a)+n(-a)
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Thus, as (11.5) and (11.16) are consistent, the eigenvalue condition imposed
on h to enable Lam6’s equation to admit a solution satisfying the boundary
conditions on the real line is sufficient to ensure that the solution also satisfies the
boundary condition at z K+ iK’.

In order to continue the asymptotic expansions around the fundamental
rectangle the value of the matching coefficient at z K+ iK’ is required. From the
formulas (11.12), (11.13) and (11.15) one sees that

E’,(S)(K + iK’)
(11.18) 1/2’1 2\(-1)n(kot)l/2-i’-X’r-(1-k2ot2)r/2-1/41 I,-XV2) cos /

11/2( 1/2/,.) COS ’0( /"/,/2)12

The argument of the right hand side of (11.18) agrees with the value
predicted by (10.2b).

The form of a Lam6 polynomial on [iK’, K+ iK’] is described by (8.5).
Neither of the solutions occurring in this expression may vanish or possess a
vanishing derivative at z K+ iK’ so that the boundary condition will be satisfied
if

A33 (-1)A34.

Hence the value of the matching coefficient is given by

E’_(K+ iK’) 2(- 1)’A 34(1 k22)r/2--1/r,
and comparison of this expression with (11.18) implies that

(_1),i-,-(k)1/2-o1/2, 2, 2

(11.19) A34 2X11/2( 2 2v2) cos n Xv2)

As z moves from K+ iK’ in the direction of iK’ the solution W32(z) is
exponentially increasing whilst W31(z) is exponentially decreasing. Consequently
for z (iK’, K+ iK’), with z away from K+ iK’,

(11.20) E+(z) A4k-/(sn z _)-/4 exp -k (sn -)/d
+iK’

Equation (11.20) shows that the order of magnitude in the neighborhood of
the pole and the argument of the Lam polynomial agree with the value predicted
by the form (1.2).

On the interval [0, iK’], Liouville-Green approximations of the form (9.14)
are available to describe the behavior of Lam polynomials. The solutions Wg(Z)
and W44(z) are neither zero nor possess vanishing derivatives at the origin so that
the boundary condition determines a relation betweenA4 and A44. This relation
is given by

(.1 3 (-4.

As Wg4(z) is exponentially increasing and W4(z) is exponentially decreasing
the general form of the solution on [0, iK’] away from the origin is given by

(11.22) +p(z)A44k-/(-snz)-/4exp -ik (ff;--sn)/d .
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In order to compute the value of A43, the asymptotic representations on
[0, iK’) and (iK’, K+iK’] are matched using the relations (10.1), which result
from the discontinuity due to Stokes’ phenomenon. Hence from (11.20) and
(11.21)

(ce2--sn2 {iK’--ie2}ll/4 { fiK-i :)1/2m44"A34-rff/-+t}_c 1/4 exp iXk,o (a2-sn2 d:
(11.23)

iK’+e

-2’k (2_sn2 :)1/2 d: exp {inrr +
K+iK’

for z e [0, K]

and

uE2(z + 2rK)= uE2m,(z)

and some integer r.
The results may also be extended to any line of the lattice L defined by

L {z: Re (z) 0(mod K)} U {z: Im (z) =- 0(mod K’)}.

In practice one is not usually concerned with Lam6 polynomials whose
argument lies outside the fundamental rectangle. However, values of the argu-
ment lying outside the fundamental rectangle occur in the final extension of the

for small values of e.
Thus (cf. 10)

/1/2(1/2Xp22 COS ,?(1/2Xv)i eXV/4(11.24) A44"-" 2ll/2, 2,
t--2 X122) cos "rl (-1/2 )(p) ko)- /2x

Now, for all values of a,

ll12(a) cos 7(a) -a/2--el/2(-a) cos r/(-a)

Thus (11.23) may be simplified to

(11.25) A44 2(ka)-1/2,,0
On substituting this value for A44 and the corresponding value of A43

m(o) taa is equal todetermined by (11.21), the value of the matching coefficient 2n/p-,J
unity at the origin. This is in fact the required value on account of the normaliza-
tion condition and serves as a check on the results of this section.

12. Extension of results. The simplest extension of the results presented in
6 to 11 is the continuation of the asymptotic representations of Lam6 poly-

nomials along the lines Re (z) 0, K and Im (z) 0, K’. That is, one may continue
the expansions defined on the perimeter of the fundamental rectangle. Periodicity
and parity considerations enable one to extend the results along the entire length
of these lines, e.g.

sErn+l(Z) =-sEn+l(-Z) for z I-K, 0],

scE’,,+2(K + iK’ + ix) scE,,+2(K + iK’- ix) for x e [0, K’],
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results. We have on several occasions referred to the possibility of deriving results,
for the case in which Lam6 polynomials have a turning point on the line
Re (z) K, by an application of the Jacobi imaginary transformation. Thus we list
in full the relation between Lain6 polynomials, which is described schematically
by (1.Sb). Suppose that

(12.1) z =K+iK’-i;

then
uE2 AuE’2"(, k’),

cE2+ z k) AcE’.-+" sc, k
sdE2+2(z, k)= AsdE’.-+m(sc, k’),

cdE.+(z, k) AscdE3(, k’),
(12.2a-h)

sE2+(z, k) AdE.%(, k’),

dE.+l(Z, k)= AsE22(, k’),

scE.+(z, k) AcdE($, k’),

cdE2%+2(z, k) AscE.(, k’),

where A denotes a generic constant.
The following regions correspond under this transformation:

(i) z e [0, K], : e[K’- iK, K’],

(ii) z e[K,K+iK’], sce[0, K’],

(iii) z e [iK’, g+ ig’], e [-iK, 0],

(iv) z e[0, iK], e[-iK’,g’- iK].

Thus if the original Lam6 polynomial, on the left hand side of equations
(12.2), has a turning point in [K, K+ iK’], the corresponding Lam6 polynomial
with complementary modulus will have a turning point in the interval [0, K’].
Each turning point in [K, K+ iK’] will correspond to one of the Cases (a) or (b) of

6. For a Lnm6 polynomial with turning point in [K, K+ iK’] the corresponding
Lam6 polynomial on the right of (12.2) will be Case (a) or (b) according as,

(a) if 1/2(l+k-1)<=a<=k -1,
(b) if 1 -< ce =< 1/2 (1 + k-).

The remaining problem for a Lam6 polynomial having a turning point in
[K, K+ iK’] is the determination of the constant A. On account of the relation
between z and in (12.1), it is clear that

(12.3) A (-i)/E"-’’(’)tz’2n+p t,,., -iK, k’).

With this condition each type of polynomial will satisfy the normalization
condition

Era(o) (. 12n +pk
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121, (’r lrThe correct form for 2,+p - iK, k will be found by determining which
case either (a) or (b) applies and by substituting n-m for rn and k’ for k in the
relevant formula for E’,,(p(K + iK’, k) and observing that

E’p)(K’- iK, k’) v,.z’,-,,o)tv, ,).- 2,,+p ,,,, + iK, k

13. Spedal cases. When two turning points of Lam6’s equation are very close
to the origin, it is possible to simplify some of the expressions occurring in 10.
The turning points must be sufficiently close to the origin to ensure that X/’ is
O(1). One may then use the asymptotic formulas of [13] to approximate the
parabolic cylinder functions, the error being O(1/X). The results which are
obtained by this method correspond to those calculated by Ince [7]. The advan-
tage of the approach used here is that the results are uniformly valid on the
interval [0, K], whilst those of [7] were based on the Liouville-Green method and
consequently were not valid in the neighborhood of the turning point.

Similarly the second special case mentioned in 2 has also been covered by
the results given here. In this case Lam6’s equation has a turning point close to
z K+ iK’, and the corresponding Lam6 polynomial may be evaluated from the
results of 10 and 12. Once again the asymptotic formulas of [13] may be used
and the results reduced to those which are obtained by the Liouville-Green
approach.

The other special case mentioned in 2 is that of a Lam6 polynomial with a
turning point at Zo very close to z K. Such Lam6 polynomials were discussed in
11, where an eigenvalue condition and asymptotic solutions were given. In that

section a simplified form of the eigenvalue condition was given for the case in
which X/’2 << 1. This condition (11.7) is

(13.1) 2"k Io (a2_ sn2 ()1/2 d(=[m +1/2p +1/4--(-1)]r + o(1).

For the special case, rn n/2, k= 1/2, p the parameter /’2 is given by
(6.11).

2"/’2 cn2 ds:
"rr 4X2

since ce 2k 22’2 h k 2(2"2 1/4).
Now Zo is such that

so that K- z0 O(1/2").

1
cn2 Zo --/4-2"2’

As the integrand is O(1/2") one may deduce that 2"/’2 is in fact o(1) and that
(13.1) holds. The integral on the left hand side is for large values of 2" given by

2"k (a2- sn2 ’)/2 d" X cn ’d" +o(1)

sin-1 k 1/42"7r
1/2(n +-}(p + ’) + 1/2o" + 1/4)r.
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Now as p r, and 21-tr 1/4(- 1)’ + 1/4 for tr 0 or 1, it follows that
z -sne +1/2p +(-1) +1/417r,xk (a2 )1/2 d [m

as predicted by the condition (11.7).
For certain values of a, z0 will actually be located at z K and the parameter

u2 will vanish. In this case the parabolic cylinder functions will have first argument
equal to zero, which means that the Lam6 polynomial may be expressed in terms
of Bessel functions of order 1/4 [13].

One would expect that such Lam6 polynomials could be approximated by
Bessel functions of order 1/4 as Lam6’s equation has a double turning point at z K
in this case.

There is a difference between the coalescing cases at the origin or z K+ iK’
and z K in that Ul can never be equal to zero for Lam6 polynomials as

2
Xu 4m + 20 + 1 + O(X-),

whilst /2 may well be zero. Thus, although the turning points at Zo may be
arbitrarily close together for large X they cannot coalesce to form a double turning
point, whilst those at Zo, 2K-Zo may coalesce to form such a turning point.

14. Conclusions. Asymptotic approximations which take the form of an
approximating standard function and an error term, for which realistic bounds
have been obtained, have been constructed for the solution of Lam6’s equation.
On certain occasions the approximating functions were the Liouville-Green
functions, i.e., exponential functions or trigonometric functions, whilst on other
occasions the approximating functions were parabolic cylinder functions. In the
latter case we have achieved a uniform reduction from the three free variables h, n
and z to the two variables of the parabolic cylinder function. These asymptotic
approximations are uniformly valid on the fundamental rectangle, provided that
the moduli of the Jacobian elliptic functions occurring are neither close to zero nor
close to unity. If either of these latter conditions were to hold a different approach
would be preferable. It would probably be most useful to consider the equation as
a perturbation of the appropriate degenerate form of Lam6’s equation.

In 10 and 11, it was possible to construct the leading term of the uniform
asymptotic approximation of Lam6 polynomials based on the results obtained
earlier for the solutions of Lam6’s equation. In all cases we were able to conclude
that the error term was uniformly small, O(1/’), with respect to the leading term,
except possibly in the neighborhood of the zeros of Lam6 polynomials. The
asymptotic representations are uniformly valid on the fundamental rectangle and
may be extended to the lattice L defined in 12, based on the elliptic integrals K,
K’, by parity and periodicity arguments.

In several formulas functions occur which are not doubly periodic. However
as the solutions on L are constructed by parity and periodicity arguments, all
asymptotic representations on any line of L are periodic on that line. Thus the
asymptotic representations of Lam6 polynomials, which are matched solutions at
the intersections of the lines of L, are doubly periodic.
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It may appear that something has been lost from Ince’s approach [7], since he
was able to eliminate all singly periodic terms. However the functions occurring
when m O(1) could be integrated analytically, whilst here this is not always the
case. Thus the periodic and nonperiodic terms cannot be treated in a simpler
manner, and we must rely on the interpretation mentioned above to ensure that
these functions are doubly periodic. As we have not appealed to the periodic
nature of the solutions when constructing Lam6 polynomials on the fundamental
rectangle, the method used here is applicable to more general problems.

Formulas for the determination of eigenvalues have been established for all
cases and a simple numerical algorithm may be used to compute the eigenvalues
which are required.

Except for the special cases of 2, all the results mentioned above are new.
Even in the special cases we have been able to improve on existing results.

Several points, which merit further attention, have arisen in the develop-
ment. Simpler differential equations such as Mathieu’s equation and the
spheroidal wave equation require similar analysis involving a uniform reduction
of free variables. In the case of the former equation it is also a degenerate case of
Lam6’s equation and the study of the solutions of Lam6’s equation as it degener-
ates into Mathieu’s equation would be of interest, particularly if the solutions of
Lam6’s equation are the eigenfunctions occurring in the delta wing problem [6].
The solutions in this case would correspond to the eigenfunctions for a slender
wing. Using similar methods tO those used here, it should also be possible to obtain
asymptotic representations for the eigenfunctions of this problem.

If only eigenvalues of the problem are required methods based on the
modified Priifer transformation appear to be of interest in the case in which the
differential equation possesses turning points. Here we were able to overcome the
problem either by restricting attention to the interval which was free from turning
points or by obtaining an eigenvalue condition from the solution of the differential
equation. However there are sufficiently well developed methods for treating
asymptotic integrals with a pole in the integrand, e.g. [3], and these may form a
useful approach to this problem.
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A TRANSVERSELY ISOTROPIC ELLIPTIC EQUATION:
AN ARR ANALOGY APPROACH*

LIM CHEE-SENGf

Abstract. A "specially" elliptic equation is posed for a singular point source within a transversely
isotropic medium. This occupies an infinite space with an odd number of dimensions equaling or
exceeding three. By appropriately transforming the given equation, one can deduce an implicit
solution anywhere off a source plane. This is done through an analogy with the time-dependent ARR
problem [4] involving an even number of spatial dimensions. Explicit results can be established, as well
as eigenfunction behavior near the symmetry axis. Principles are illustrated with an application to an
elastodynamic problem for a propagating concentrated force.

1. Introduction. Let position x (Xl, X2, Xn) E R,,, the infinite n-
dimensional space. Consider the differential equation

O(a/Ox , =F(O/OXl,

where 6 (x) denotes the Dirac delta(point source) function in R,. Being dependent
on O/Ox and the (n-1)-dimensional Laplacian 72=02/0X+ "-1"02/tgx2n, both
F- and G-(polynomial) operators are said to be transversely isotropic. Suppose
they correspond to a real, originally homogeneous medium which is nondispersive
either permanently or during an eventual steady state, i.e., they possess real
constant coefficients and are homogeneous in O/Ox, O/Ox2," , O/Ox,. So, gener-
ally,

(1/2)(m--p)

(1.2) F(O/Ox, 7)= 2 AtzV(O/OXl)m-l-2,

(1/2)(m-q)

G(o/ox , E
=0

all A,’s and B,’s being real constants and 1 _-< l_-< m. Also, assuming that m is
even, while n(1/2)(m-p)0 and B(1/2)(m-q)0, the Laplacian indices p and q
(necessarily even integers), together with l, must satisfy _-< p _-< m, 0 -< q < m. The
case q m is trivial. Throughout this paper, we restrict n to be odd and _->3, and G
to be elliptic in a special sense. In particular, (1.1) may have evolved from a matrix
differential equation. Actual nondispersive, transversely isotropic systems are
encountered in magnetogasdynamics, magnetoelasticity, elasticity of certain crys-
talline media, uniaxial crystal optics, compressible flow theory, source propaga-
tion within an elastic medium.

Physically, (1.1) may be envisaged as the steady state development, either
after some large positive time t, or ultimately as t co, of the following radiation
problem:
(1.4) Q(O/Ot, O/Ox, V)th P(O/Ot, O/OXl, V)6(x)H(t),
(1.5) 4 0 during t < 0,
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where H(t) denotes the Heaviside unit function, whilst P and O are homogeneous
in O/Ot, O/Oxa," ", O/Ox,, and possess real constant coefficients. Postulating O as
being "hyperbolic cum elliptic" (i.e., originally hyperbolic, but eventually elliptic
during the steady state), the present author has studied such a problem for n odd
and ->3 [3], as well as n even and ->2 [4]; but solutions hold only for axial radiation
reception (ARR), i.e., with observer’s position x constrained along the xa-axis,
which is one of symmetry.

However, the ARR technique for the even n radiation problem comprising
(1.4) and (1.5) can be adapted to the present odd n configuration governed by
(1.1) and moreover for any x position noncoincident with the delta source point at
0. This is largely because (1.1) does not involve O/Ot. An obvious relationship
between F, G, P and O is

(1.6) F(O/Ox, V12) P(O, O/Oxa, V), o(o, o/ox,,

2. Inversion formalities. Suppose, within R,_a, the typical position r=
(x2,""", x,). Then Fourier inversion of (1.1) yields

(2.1) F(,/(2) exp (iaxa) da,
(2zr)n

exp (i. r) de
G(a,/(

where te Rn-1 and/( lie I. We have incorporated the homogeneity effects of
(1.2) and (1.3), viz., that for any real or complex fl:
(2.2) f(/3a, 2/(2) m-’F(cr,/(2), G(Jcr, ]2/(2)= mG(ff,/(2).

Ellipticity of the G-operator normally requires the nonvanishing of (see, e.g.,
[6])

V --(1, 2,""", ) -n, the unit sphere (circle if n 2) in R,. (Note: we may
take sea a( 2 +/(2)(-1/2).) However, it is easily seen from (1.3) that, unless q 0,
vanishing does occur along every -direction orthogonal to (1, 0,..., 0), i.e.,
when s1 0. Instead, we impose a special ellipticity on G, viz., (cf. [3], [4])

(2.3)

which obviously holds at sea 0 since then the left side takes the nonzero value
B(a/Z)(m-q). At sea +/-1, (2.3) implies B0 # 0.

In the ARR problem, the additional partial zero condition (1.5) plus the
hyperbolic-cum-elliptic condition on the Q-operator are accommodated by
contour integration during inversion of the Fourier transform with respect to time.
The corresponding situation never arises with (2.1), for which no contour integra-
tion need be performed.

Regarding the integrand in (2.1), its factor

F(ff,/(2)/O(cG/(2)_ op-q-,[ot-PF(oG /(2)]/[o-qO(oG /(2)].
From (1.2), al-PF(a, /(2) is a polynomial of degree m-p in/( and of degree less
than or equal to m-p in cr. From (1.3),

a--G(,/(2) (2 -t-"/(2)(1/2)(m-q)-qG(l, 1 21)
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a polynomial of degree m-q in both c and K which clearly never vanishes
whenever a (-oo, oo), K (0, oo), : fl,. Then for

(2.4) p>=q+l,

the infinite integral in (2.1) is nonsingular and convergent. In contrast, Chee-
Seng’s ([3], [4]) Fourier integral representations of the dependent b to (1.4) are,
in a sense, singular but convergent.

Concerning (2.1), the -integral over R,_I can be expressed as the combina-
tion of a line integral over 0 < < oo and a spherical integral over ,-1. The latter
can be reduced by the method of spherical means [6]. The former can then be
converted into a line integral over (-oo, oo); whereupon, we arrive at

i-lo’)n-2 2)(1/2)n-24,
(2.5)

iv I_ F(ce, 2)
(sgn ) exp (i:r)K n-2 d

G(a, 2) exp (iCeXl) dc,

where o, 2r(1/z)’/F(1/2n), the surface area of lI,. Observe an axisymmetry about
the xl-axis. Hereafter, we confine our attention off the plane xl 0. By substitut-
ing the a-integration variable and appealing to (2.2), we find

I_ F(ox-1 1)
exp (- itcc) da.dc -(-1)/l/l 1Kl-/(sgn K)

a(oxl 1’ 1)

Consequently, noting that by the one-dimensional Fourier transformation-
inversion

I_ I F(ox-l 1)
exp (iKr) dK

G(olx 1, 1)
exp (- iKa) da 2

with X rxl we obtain

F(tjX, 1)
G(:X, 1)

(2.6) ch
’-(- 1)l+lo)n-2() n-l-l KO()

ifn >l+1
2(2r)"-2 Ixll

(0)/+l-n (- 1)/+1w,,,_2 K(X)
ifn=<l+l(2.7) 6:2(2r),-2 IXli

where

(2.8) K(X)=( 1)/2.- f_l (l_2)(l/2),,-2F(x, 1)
--T- d:.2r : G(:X, 1)

3. Application of the analogy. Following Chee-Seng [4], we transform the
:-integration variable in (2.8)"

(3.1) " -1(1-- 2)1/2.
Then via (2.2), (2.8) becomes

(3.2) K(X)
(- 1)1/2)"-3) .,-3 F(X, 1 + r2)

dr.2r G(X, 1 + 2)
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Now, the even n solution to (1.4) and (1.5) is first related to a similar integral, viz.,
([4], (3.4))

(--1)(1/2)n--1 I-- .n--2 P(-Xl/t, 1, r2)
2r O(-x a/t, ]-, U5 a(,

precisely, an extension of the form (3.2) with n replacing n-1 and -xl/t
replacing ,t’. Its derivation and subsequent evaluation develop from certain
concepts put forward by Weitzner [8], Burridge [2], Bazer and Yen 1] and Payton
[7]. It is convergent under a certain inequality relating n to the Laplacian indices
of both P- and O-operators in (1.4), and is evaluated in the sense of a principal
value (see [4], (3.14), (3.15), (3.19)).

The similarity provides an analogy with the ARR result. By virtue of this
analogy, we can now deduce under the convergence inequality

(3.3) p>-q+n-1,

that

(3.4) K(X) 2 ,(X) + 2 ,(g),
O<arg G. <(1/2)-rr arg G. =(1/2)7r

where ( G(X) denotes a typical (-root to

(3.5) G(X, 1 + (2) O,

0<arg G,<(1/2)-tr and 2arg G, =(1/2)l’n" range over, respectively, every complex (-root in
the first quadrant 0 < arg ( < 57r and every purely imaginary (-root in the upper
half-plane Im r > 0. Furthermore, corresponding to a first quadrant root (, of
order m wehave

"(3.6)

[(_ (v(/))m,.n_3 F(X, 1 + (2) ] },
whilst corresponding to a purely imaginary root st. of order m. in Im sr > O, we
have

-1
lim [O]m"-l[ F(X, 1_’(2)]

Our solution is now complete.
Remarks. On the ARR theory, (3.5) should not possess any real repeated

(-root; furthermore, in case simple real roots occur, their contributions cancel
out. We shall later see that such roots actually never arise.

If n-> + 1, as for (2.6), then postulation of (3.3) automatically implies the
satisfaction of (2.4); alternatively, if n-<l + 1, as for (2.7), then we need only
impose (2.4), from which (3.3) automatically follows.
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4. Explicit dependences. The forms (3.6) and (3.7) are implicitly dependent
on X. Before any explicit dependence can be established, that of (y(X) must first be
found. Now, defining

(4.1) g(sr) --= a(1, sr2),
then via (2.2), we find

(4.2) G((, 1 2) :mg((2)
under the mapping of (3.1). The infinite real (-range (-oo, oo) is the image of the
combined s-interval of [- 1, 0) U (0, 1], over which G(:, 1 :2) never vanishes by
virtue of the ellipticity condition (2.3). Hence g((2) has no real zeros. Also, from
(1.3), it is a polynomial of degree 1/2(m q) in sr2 and can thereby be represented by

(1/2)(m--q)

(4.3) g((2) B(1/2)(m-q) H (2 . ,
y=l

a, -A (v= 1,..., m-q) being its (m-q) pairs of symmetrical zeros, all
essentially lying off the Re ( axis. The A’s from more than one pair may coincide.
From (2.2) and (4.3), we have

(1+2) (1/2’(m--q’2 2a2
mB(1/2)(m_q - + 1

(4.4) (X, l+#2)xg
X = X

2

also,

(4.5)

wherein

(4.6)

F(X, l +2)=--Xm-l f( 1+2’

/((2) F(1, ().
Evidently, the g-roots to (3.5) can now be explicitly identified as satisfying

(4.7) sr2 y- ,(m-q).

Suppose is a purely imaginary zero, with order my, of g(.2). Whence,
expression (4.3), and likewise (4.4), contains exactly m identical factors involving
this specific ,. Consequently, (3.5) has a pair of symmetrical, purely imaginary
g-roots, each of order m, at

(4.8) ilr(x)[, -ilg’(x)l with [sry(X,)l--(X21A]2/ 1) 1/2.

Only the upper root il&(x)l contributes a y(X) term represented by (3.7).
Since the coefficients of the polynomial g(g,.2) are all real, then if ay is a

complex (-zero of order my, so is its complex conjugate at- (this being just ay if
ay is purely imaginary). Correspondingly, if Re )t # 0, there is a quartet of four
complex g-roots, each of order m, to (3.5) at

(4.9)

with (y(X) (X2 2_ 1)/2. Suppose 0 < arg sr (,g) < 21-rr. Then among this quartet,
only ((X) imparts a (’) contribution of the type (3.6).
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Clearly, there are no real st-roots to (3.5). So, unlike the more general ARR
theory itself, it is, primarily, unnecessary to resort to a principal value interpreta-
tion of (3.2).

To formulate ,(X) explicitly, we expand F(X, 1 + (2) and G(X, 1 + (2) about
x-z(1 .}. (2)__/ 2, (Re A 0), to provide us with two expansions about tb.e point
__

(v (/2/2__), 1)/2 within 0<arg (<-. Thus from (4.4) and (4.5), we have

(4 10) F(X, 1 +(2)x -t[f()+x-z((z-()f )+" ],
-a (2 -((2O(x, 1 + () x[x (. ()’() +x ()ag"(Z )

(4.il)
+x-6((a- ()g"’() +... ],

g’( ), g"(Z ), g’"(i ) denoting first, second and third (2-derivatives taken at
(a=Z2

Case (i) a is of order m 1. By (4.3),

(1

(4.12) g’(A 2) B(1/z)(m-q) I-I A 2_ A 2 # O,

with the product ranging over 1/2(m-q-2) /x-factors, avoiding /x v. It then
follows from (3.6), (4.10) and (4.11) that

(4.13) ,,(X) (- 1)(1/2)(n-1)X2-t Im {(xzA 2._ 1)(1/2)n-zf(A 2,,)/g,(A 2)}.

Case (ii) A, is of order m, 2. Here g’(A )= 0, while

(1/2)(m--q)(4.14)
g"(a )=- 2B(a/2)(,-q) 1-I A2-A2O"

tx=l:u v

the product ranges over 1/2)(m q 4)/z-factors. We can now go on to show that

(4.15)

(I:),, (X) (-- 1)(1/2)(n-1)(n --4)X4-t Im {(X2 2_ 1)(1/2)n-3f(A 2)/g,,(A )}
q- 2(-- 1)(1/2)(n-1)X2-1

Im (X2A 2_ 1)(1/2,-2f’(I )g"(A )-1/2f(A 2, ,,,,.

[,,(; =.)]

One can thus proceed to generate more elaborate q-forms for higher m-orders.
All such forms, including (4.13) and (4.15), are explicit in X.

If A is substituted by i1[ so that ((X)-- (X2A 2- 1) 1/2 becomes
i(x21l2 / l) /2, then after a transformation of the dummy (-variable in (3.6) to i(,
it is seen by comparison with (3.7) that ,(X) becomes 2(X) with the m-order
preserved. We can therefore deduce from (4.13) and (4.15), the following
-forms for a purely imaginary A,.

Case (iii) is of order m 1.

(4.16) %(x) 1/2x=-’(x=la.l = +
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(4.17)

Case (iv) A is of order m 2.

(X) =1-(4- n)x4-’(x2la12 + 1)(/a>"-f(-lala)/g"(-lal)

f’(- lh. l:)g"(-IA, l:)- f(-lz. ]:)g"’(-lz. l:)
[g,,(_ lz.[=)]=

5. Near-axial behaviors. Near the axis of symmetry, r, hence X, is small"

(5.1) Ixl< min IA.1-1,
,=l,...,(1/2)m--(1/2)q

say. We shall show that corresponding approximations for @(X) and (X) are
significant within the context of residue calculus.

By taking the binomial expansion of (X2A- 1)(1/2)n-2, and remembering that
(2.4) and (3.3) now hold, we derive from (4.13) in the case m, 1,

(1/2)(p--q--2)

(5.2) (I).(X) Z 2C2/’2-/+2> Re
a "f(a ) -/+2),. =o 2g’(a =.) + O

where

(5.3) c2, (- 1)" r(1/2n- 1)//x !r(1/2n- 1-/x).
Similarly, from (4.15), it can be shown that for m 2,

(1/2)(p--q--2)

(v(X) 2 2C2txX2-I+2w

v)g ,A 2) 2ix-2(5.4) Re a 2.f’(a )g"(a 2.)_ 31_f(3. 2, f(a 2.) .],
[g,,(a 2,.)]a +/xa, g,--)j

-[- O(,P--q--l+2).
Each trailing O(Xp-q-l+2) quantity, being small, will henceforth be discarded.
Regarding each curly bracketed factor, an even function of A,"

(5.5) { } in (5.2)= [ffg--g(-/c=+.’

(5.6) { }in(5"4)=2{ d(2u+lf((2)/d( (2tx+If((2)d3g(;2)/d31

The right sides in (5.5) and (5.6) are residues of the meromorphic function

(5.7) r2-+,f(.2)/g((2)

at the pole sr +A of respective orders one and two. From arguments in 4, all
complex poles o__ver Re sr 0 must group into u-quartets of the type (cf. (4.9))
{u} {A,-A, A, -A,}, wherein every member has the same order m and is
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allocated to a separate quadrant of the (-plane. Accordingly then, regardless of
whether my 1 or 2,

(1/2)(p--q--2)

(5,81 (I)v(/’) Z 1/2C2I/2-/+2" Y’. residue [.2+lje(.2)/g(.21]
=0 r={v}

with Yc={} ranging over the associated v-quartet.
Corresponding approximations for (4.16) and (4.17) may be deduced from

(5.2) and (5.4), respectively, by substituting the upper purely imaginary pole
for X, and halving each result. Now, all purely imaginary poles arise in symmetric
u-pairs of the type [u] [ilXvl, -ilXl]. We can go on to show that, for an order
m 1 or 2 of the poles ilXl,

(1/2)(p--q--2)

(5.9t xItv (X) 2--/+2 [.2+C2," residue 1f((2)/g((2)].

Unless 1 or 2, the expressions (5.8) and (5.9) involve terms that are
singular at ’ 0. As we shall see next, when the (’)’s and xIt (X’)’s combine near

X 0 in the sense of (3.4), their near-singular terms can mutually cancel out.
Suppose the zeros (all nonreal) of g((2) are, at most, of order two. Then (3.4),

(5.8) and (5.9) imply, via Cauchy’s residue theorem, the following corollary:

(1/2)(p--q--2)

(5.10) K(X) E
t=O

(4rri)-lczwx2-I+2u" 2+1f((2)/g((2)d(

with performed over the closed circle ( R exp (iO) enclosing all such zeros and
of arbitrarily large radius R >max=a....,(1/z)(m-q)IAvl. Now, via (1.2) and (1.3),
if p<m,

(2t+lf((2)/g((21 d(- (2+l+q-PA(1/2)(m_p)/B(1/2)(m_q) d([
(2t+l+q_pn(1/2)(m-p) 1_1+’" "+( Ao/A(1/2)(m-p)]

-77----o" d(
B(1/z)(m-q) 1 "b" + ( Bo/B(1/z)(m-q)J

2rr{[al/z)m_,,)](lBa/2)m__z)]R -2 +... + ]Bo]R-m)
+ IB<I/Z)<,.-,>I([A<I/Z><m-,-z)IR- +"" + IaolR-)}

RP-q-2-2U’lB t,/2)t,_q)]{lB(1/2)(m_q)] (]B(l/2)(m_q_2)lR --2

_ ._ ]BolRq-m)}
(5.11)
for a sufficiently large R; but if p m,

(2t,+lje(.2)/g(.2)d(-(2+l+q-Pno/B(l/2)(m_q)d(I
2rr]ao[([B(l/z){m_q_z)lR -2 +... + ]Bo]Rq-m)

--Rp-q-2-2U,lB (1/2)(m-q)l{lB (1/2)(m-q)] (]B (1/2)(m-q-2)]R-2+"" -]- [BoIRq-"*)}"
(5.12)
When > =0,..., 21-(p-q-2), both expressions (5.11) and (5.12) approach zero
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as R - o, in which event,

lim (2,+1f((Z)/g((2) d(
R-+oo

+oolim (A(l/2)(m-p)/B(ll2){m-q)) .2++-p d(

lim iR2tX-(P-q-2)(A fO
2r

R
(l/2)(m-p)/B (1/2)(m--q)) exp [-i (p q 2 2lx )O ] dO

_{o
2zriA/2)(m-p)/B(1/2)(m-q)

if O--<p, < 21-(p-q- 2),

if/x 21-(p q 2),

valid for p -< m. So (5.10) reduces to

1, p--q--l.., a -p)/B(1/2)(m-qK(X) 2 -.-21/2){., ),

which is, in view of (2.4), nonsingular at X 0. Obviously, possible singularly
inclined terms encountered in the (,t’)’s and (X)’s have combined, via the
residue theorem, into zero converging contour integrals along an indefinitely
expanding circuit.

6. Moving concentrated force in an elastic medium. We shall next
illustrate a simple application to the Eason, Fulton and Sneddon [5] elas-
todynamic problem concerning a force X (per unit mass), moving with uniform
speed v along an Xl-direction and within an infinite medium. The three authors
cited also started with a Fourier transformation; immediately after, however, their
subsequent interpretation followed a different route.

With reference to a moving x=(xl, x2, x3) R3-frame, fixed relative to the
force, the equation of motion governing the elastic displacement u is, in the steady
state,

(6.1) (v-v)V(V. u) + vVZu+X vZOZu/Ox,

Va and/)2 being, respectively, the speeds of compressional and shear waves, while
denotes the gradient operator. Now, (6.1) can be vectorially manipulated into

(6.2)

where

(6.3) 2 2G(O/OX 1, V) [(/) --/) 2)02/0X -[-/) 21V][(/) V 2)2/0X 21 -["/) 2Vl],

and is precisely of the form (1.3) with rn 4 and q 0.
Suppose the force is point concentrated and acts only along its path direction,

viz., X (1, 0, 0)(x). Let u a, Ur and Uo denote, respectively, the axial, radial and
azimuthal components of u relative to a (xa, r, 0) cylindrical polar frame: x2
r cos 0, x3 r sin 0. Thus it follows from (6.2) that Uo =-0; but

(6.4) G(O/Ox1,
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also if

(6.5) G(O/OX l, V)J
then

(6.6) Ur O4,/Or.

Applying (4.1) to (6.3), we have

(6.7) g(.2) _= G(1, (2) viv(1

with /z1= vv-1, tz2=vva. Normally, va>v2. To achieve ellipticity of the G-
operator, we assume a slow passage of the force: 1 >/,t, 2 (>, 1). Whence, g(sr2) has
four purely imaginary (-zeros, each of order one, at

(6.8) sr =i/1-/z, -i/1-/z, i/1-/x22, -i/1-/z22,
of which i/1 t*

, i/1 tz impart two q*-contributions, each representable by
(4.16); no O-term participates.

Equation (6.4) comes under (1.1) if
2 2(6.9) F(O/Ox1, V) (v 2 v)O2/Ox-VlVl,

which is of the type (1.2) with 2 p. Since q 0, the convergence criteria (2.4)
and (3.3) are satisfied. So, via (2.6), (3.4) and (4.16), we eventually arrive at

(6.10) u -(2,1r]xI[)-IK(x),
(6.11) (4"ffV2)-x[(K2--1d,r2)-l/2--(1--1.1,22)(X2--1d,222r2)-l/2].

Equation (6.5) is also covered by (1.1), with the same G-operator of (6.3), but
involving a different

(6.12) F(O/OXl, V)=-(vi-v)O/OXl.
This excludes 712 and represents a highly elementary subform of (1.2) with 3
andp 4. Again (2.4) and (3.3) hold. Hence, as above, but starting from (2.7), and
incorporating (6.12) instead, via (4.6), into (4.16), we finally establish

(6.13) Ur 04/Or (2"/rlxll)-lK(R’)
(6.14) (4-rv2)-x[(x2-1r2)-/2-(x2-zr2)-a/2].
Our solution for u is now complete; it agrees with that found in [5].

Suppose v 0. Then it can be deduced from (6.11) and (6.14) that

(6.15) R1-" (STI’DO)-l[I’2[X[-3(1)--O)"b 2V[X[-I]-[-O(o2),
(6.16) u (8’/T/) 12V22)-I(v 12--/)22)1"X1[X[ -3 %" O(V2).
Consider the limit when v 0. Expression (6.3) reveals that

(6.17) (VxV2)-2G(O/OXx, 7) 74,
the biharmonic operator. Correspondingly, both upper contributing zeros in the
set of (6.8) now coincide at " i, a purely imaginary r-zero of order two.
Thereupon, it can be verified that if the above procedures for deriving Ul and u
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are repeated with (4.17) instead of (4.16), the respective results obtained are the
two dominant (or limit) terms in (6.15) and (6.16).
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ON THE DISTRIBUTION OF THE EIGENVALUES OF A
TWO-PARAMETER SYSTEM OF ORDINARY DIFFERENTIAL

EQUATIONS OF THE SECOND ORDER*

M. FAIERMAN-

Abstract. In this paper two simultaneous Sturm-Liouville systems are considered, the first defined
for the interval 0-<xl -< 1, the second for the interval 0_-<x2_-< 1, and each containing the parameters A
and/.t. Denoting the eigenvalues and eigenfunctions of the simultaneous systems by (Aj,k,/Zj,k) and
Itj,k(X1, X2) respectively, ], k =0,1,. , the principle of the argument and asymptotic methods are
employed to derive asymptotic formulas for these expressions, as ]2 + k2 , when (/’, k) is restricted
to lie in each of several sectors of the (x, y)-plane. These results partially resolve a problem posed by
Atkinson concerning the behavior of the eigenvalues and eigenfunctions of multiparameter Sturm-
Liouville systems and constitute a further stage in the development of the theory related to these
questions.

1. Introduction. The multiparameter analogue of the classical Sturm-
Liouville problem arises naturally when we seek to solve boundary value prob-
lems associated with the potential or wave equation by use of the method of
separation of variables. For, depending upon the coordinate system concerned, it
may not always be possible to separate the spectral parameters when going from
the partial differential equation to a set of ordinary differential equations (we refer
to Sleeman [14] for a detailed discussion). In spite of the importance of such
multiparameter problems in mathematical physics, it has been pointed out by
Atkinson [2, Introd.], [3, 4] that this field has been relatively neglected in recent
years, and in particular he states that as opposed to the single parameter case, the
detailed behavior of the eigenvalues and eigenfunctions of multiparameter
Sturm-Liouville systems is still far from clear. Since the appearance of Atkinsons’
papers, the author [7], [8] has obtained some results pertaining to the behavior of
the eigenvalues of a two-parameter system, and in this paper we shall continue
with our investigation of the two-parameter case and further results concerning
the behavior of the eigenvalues, as well as results concerning the eigenfunctions,
will be established.

We shall be concerned here with the simultaneous two-parameter systems

(1.1) y+(AAl(Xl)-p,Bl(Xl)+q(x))yl=O, O_<-Xl_-< 1, ’=d/dxl,

y(O) COS eel-- y(O) sin O "--0, 0--<01
(1.2)

y (1) cos/3- y(1) sin/3 O, 0
and

(1.3) y+(-AA2(x:z)+lB2(x2)+q2(x2))y2=O, 0_-<x2-_< 1, ’=d/dxa,

y2(O) COS a2-y(O) sin or2 O,
(1.4)

y2(1) cos/32 y(1) sin/3 O, 0 <

* Received by the editors April 23, 1975, and in final revised form September 13, 1976.
f Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, Israel.
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where it will be supposed that, for r 1, 2, At, Br, and q are real-valued,
continuous functions in 0 _-< x -< 1, with bothA andB having absolutely continu-
ous first derivatives in this interval, and that A (A1B2-A2B1) 0 in 12 (the
product of the intervals 0-<xl-< 1, 0-<x2=< 1). Furthermore, there is no loss of
generality in assuming henceforth that the A, B, and A are all positive for all
values of x and x2 in their respective intervals, since this can always be achieved, if
necessary, by introducing a nonsingular transformation in the parameters A and/x
(see Appendix A). In 2 we collect some known facts concerning the above
systems and these are used in 3 to establish results concerning the asymptotic
developments of the eigenvalues and eigenfunctions (see Theorem 3.4). In 4 we
extend the foregoing results for the case where A2/B2 is constant in 0 --X2 1.

2. Preliminary results.
2.0. Introduction. We shall now collect some known facts concerning the

systems (1.1)-(1.2) and (1.3)-(1.4) which we require for later use. Firstly we need
the following definitions. Let b and b. be the infimum and supremum, respec-
tively, of A (x l)/B (x l) in 0_-<Xl <_- 1 and al and as the infimum and supremum,
respectively, of Ae(x2)/B2(x2) in 0x2-<1 (hence O<a<-ae<blb2). For
r 1, 2, let th denote the solution of the differential equation (1.2r- 1) satisfying
b(0, A,/z) sin a, 4’(0, A, )= cos at. We note that b and 4; are entire func-
tions of A and/x for each fixed x, r 1, 2.

2.1. The system (1.1)-(1.2). We know from the Sturm theory that for each
real A, the totality of the values of/x for which (1.1) has a nontrivial solution
satisfying (1.2) forms a countably infinite set of real numbers which we shall
denote by/zn (A), n >- 0, where/Zo(A) >/x l(A) >" ,/x, (A) - as n az, and the
solution corresponding to/,(A) has precisely n zeros in 0 < x < 1. From [8, 2.1],
[ 13, 2] we also know that for each n, , (A) is analytic in -o< A <o and at each
point of this interval, bl-<d/x, (A)/dA <-_ be. Finally, we note for later use that if
(1.1), with A A* and /x =/x*, has a nontrivial solution satisfying (1.2), then
(A *,/.t *) is a zero of W1(A,/z) [tk 1(1, A,/) cos/31 t (1, A,/x) sin/31], and con-
versely. From [9, Lem. 4.1, p. 206] we also know that if W1(A *,/x*) 0, then

(2.1) OWI(A *, I.,,*)/al-,, -K fO B(x)6(x,, ;t *, *) dx,

where K equals (sin/31)/4l(1, A*, *) if 17’/" and equals -1/b(1, A*,/*)
otherwise.

2.2. The system (1.3)-(1.4). Definitions and results (with obvious modifica-
tions) completely analogous to the system (1.1)-(1.2) hold for the system (1.3)-
(1.4). Here the analogue of/xn (A) will be denoted by/x,*(A ), n >- 0, and that of W1
by W2. We might note that now a _-< d/z *(A)/dA <--_ as for-<A < and n _->0.

2.3. The system (1.1)-(1.4). By an eigenvalue of the system (1.1)-(1.4) we
mean a pair of numbers, (A *,/x*), such that for A A * and =/x*, (1.1) and (1.3)
have nontrivial solutions satisfying (1.2) and (1.4), respectively. If y (x 1, A *,/z*)
and y2(x2, A*,/x*) denote these solutions, respectively, then the product,
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*)lyr(x,h*, tz is called an eigenfunction of the system (1.1)-(1.4) corre-

sponding to (h *,/z*).
It is clear that the eigenvalues of the system (1.1)-(1.4) are precisely the zeros

of the simultaneous equations W1 =0, W. =0. Now let J(A,/z) denote the
Jacobian of W1 and W2 at the point (A,/z). Then from [4, Prob. 16, p. 551, and pp.
160-168], [9, Lem. 4.1, p. 206], and [12, pp. 248-251] we know that the
eigenvalues of the system (1.1)-(1.4) (and hence the zeros of the simultaneous
equations W1 0, W2 0) form a countably infinite subset of E (real Euclidean
2-space) such that at each eigenvalue J # 0 and with eigenfunctions corresponding
to distinct eigenvalues being orthogonal in L A (the Hilbert space constructed from
those functions which are absolutely square-integrable in 12 and with inner
product (g, h)= tzAgdxi dx2). Furthermore, if Pl and P2 are any nonnegative
integers, then there is precisely one eigenvalue of the system (1.1)-(1.4), say
(A *, Ix*), such that Ck,.(Xr, A *, IX*) has exactly pr zeros in 0 < Xr < 1, r 1, 2. From
these results it follows that the eigenvalues of the system (1.1)-(1.4) may be
denoted by {(A,k, tX,k)} =0, where 4 (x , A,k,/Z,k) has preciselyj zeros in 0 < x <
1 and )2(X2, lj,k, [J’j,k) has precisely k zeros in 0<x2 < 1; and it is this notation for
the eigenvalues of the system (1.1)-(1.4) which will be used in the sequel.
Henceforth we shall also put ffYj,k(X 1, X2)/111/15[ I, where *,,(x, x2)=
1-I2= 14(x, ,, m,) and I1" denotes the norm in L 2A constructed from the scalar
product (., ).

Finally, to see the connection between the results of this subsection and those
of 2.1 and 2.2, we note that as runs from -oo to oo, the/x,(h) determine a
countably infinite number of disjoint analytic curves in E2, which we shall denote
by C,. A similar result also holds for the/z,*(h) and we shall denote the curves
which they determine by C,*. Then from the foregoing results, it follows that the
eigenvalues of the system (1.1)-(1.4) and the points of intersection of the curves
C, with C* are identical. Indeed, if
intersects C* in precisely one point, namely at the eigenvalue of the system
(1.1)-(1.4), (a,, m,).

3. Main results.
3.0. Introduction. In this section we shall use the results of 2 to derive

asymptotic formulas for Aj,k,/zj,k, and , as when (j, k) belongs to a certain
sector 12 of the (x, y)-plane which will be defined below.

Notation. For the remainder of this paper we let:
1. PI(Xl, A, t)=AAI(X1)-IJ,BI(X1) and P2(x2, A, tz)---AA2(x2)+B2(x2);
2. hm(t)-- [.lo(al(Xl)-tel(Xl)) 1/2 dxl for -oo<t <-_bl and h2(t)

.10(-A2(x2) + tB2(x2))/2 dx2 for a2 <- < oo (here positive square roots are taken);
3. g(t)=h2(t)/hl(t) for a2<-t<bl, g(bl)=h2(bl)/hl(bl) if hl(b)#O, and

g(b) oo otherwise (observe that g(t) is nonnegative, continuous, strictly increas-
ing in [a2, bl), and tends to g(b) as

4. 0* tan-1 g(a2), 02* tan-1 g(bl) if g(bl) # o0, 02* 7r/2 otherwise, where
the principal branch of the inverse tangent is taken;

5. 0, 02 be any two numbers satisfying 0* < 01 < 02 < 0;
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6. tj denote the solution of the equation g(t) tan 0j for j 1, 2 (observe that
a2<ta

7. 6 min {(h- a2), (bl- t2)};
8. f denote the sector in the (x, y)-plane defined by the inequalities

02, where 0 denotes the angle which a ray emanating from the origin makes with
the positive x-axis;

9. B*=max{B,B*2}, B*=min{B*l,B}, where B and B denote the
supremum and infimum, respectively, of B(x) in 0 <_-x -<- 1 for j 1, 2.

3.1. Some estimates. We are now going to derive some estimates for ,i,k and
tzj,k for (j, k) 6 1. Our main result here, given in Theorem 3.3, will then be used in
subsection 3.2 to establish asymptotic formulae for these expressions as j c.

Notation. 1. Let Pl, P2 be any positive integers satisfying tan 01 <=p2/pl
tan 02 such that for r 1, 2, (i) p is odd if a z 0 and/r 9T or if a 0 and/3r ’,

(ii) p is even if ar 0 and fir " or if ar 0 and/3 r (see (1.2) and (1.4) for the
definitions of the a and/3,).

2. Let t* denote the solution of the equation g(t)=p2/pl (observe that
tl _-<. t* _-<=

3. Let P3 be the smallest odd integer greater than r (=plhl(O)/hl(t*)) if
a 0 and fl zr or if a 0 and/31 zr, and the smallest even integer greater
than cr if a 0 and fl zr or if a 0 and/31

4. Let t* denote the solution of the equation h(t)=p3h(t*)/pl. Observe
that t* < 0, and a simple calculation involving the definition of hi(t) shows that if
t=-c is the solution of the equation hl(t)=hl(O)+2(B*b2) 1/2, then
Observe also that P3 >Pl and

(3.1) hl(t*)/pl h2(t*)/p2 hl(t*)/p3.
5. Let no be the smallest integer exceeding [3+(2dZ/zr)(B*b2)l/2], where d

denotes a number exceeding 4 chosen large enough so that (4/d)logd<
min {1, B*6/B*(1 +[B*(b2 -b )]1/4)}.

6. Let n be an odd integer exceeding no.
7. Let a3=al, /33=/31, and N.=(np-rj)/2 for/’= 1,2,3, where ri= 1 if

aj # 0 and/3 # 7r, ri 2 if a 0 and/3j 7r or if ai 0 and/3. 7r, and ri 3 if

ai 0 and i
8. Let h, (plnr/2hl(t*))2.
Let F denote the closed curve lying in the plane of the complex variable

defined by

tz tx(s) [t* + is]hn, O--<s=<l,

[((2 s)t* + (s 1)t*) + i]h,, l<s_-<2,

(3.2) It* + i(5- 2s)]hn, 2 <s =< 3,

[((4- s)t* + (s 3)t*)- 3<s_-<4,

=[t*-i(5-s)]A,, 4<s=<5.

Observing that t*h, < 0 < alan _-< a2An < t*h, < blAn <= b2An, it follows from the
definition of the P. above that P1 (x 1, h,,/x) cannot vanish within and on F for any
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X in [0, 1], while if X2 is any point of [0, 1], then P2(x2, An, IX) has precisely one
(simple) zero, which lies within F, and in particular, in the interval a
a2A,, Im Ix =0. Turning next to the zeros of the W/(An, Ix) within and on F and
referring to the definitions given in 2, we have

THEOREM 3.1. There exists the integer n (> no), depending on the Or, but not
on the Pr, r 1, 2, such that W(An, Ix) cannot vanish on F for n > n 1, j 1, 2.
Furthermore, if n > n 1, then W1(An, Ix) and WZ(An, Ix) have exactly (N3 N1) and
(N2 + 1) zeros, respectively, within F (a zero oforderp being counted p times); these
zeros are all simple, with the zeros of Wl(hn, Ix) occurring at precisely the points
Ixj(An), ] (N1 + 1),- ., N3, and those of Wz(An, Ix) atprecisely the points Ix ,’(A,),
k =0, 1,. ",N2.

In order to prove the theorem, we shall need to adopt a convention for
dealing with powers of the P. Hence let (A, Ix) be any tuple of complex numbers
for which P. (x., A, IX) 0 in 0 _<- x _-< 1, and for convenience of notation write P. (x.)
for Pj(xi, A, IX). Then we shall agree for the remainder of this paper, unless
otherwise stated, to assign to arg P.(0) its principal value, determine arg Pi(xj) in

0-<x -<_ 1 by continuity, and in this interval interpret the expression P(xi) ( real)
in accordance with the rule

(3.3) P(x) IP(x)l exp {iu arg Pj(xj)}.
We now observe from (3.1) and the definition of An that

Io1P]/2(xj, An, t’An) dxj pjnr/2, j 1, 2,

(3.4)
An, t+An) dxl pnr/2.Pl/2(xl,

Proof of Theorem 3.1. We shall only prove the theorem for W2 and only
under the assumption that a2 0,/32 r; the other cases can be treated in a
similar manner (we remark that in proving the theorem for W1, we argue with
each of the closed curves bounding the rectangles t’An-<Re IX-<(a +b2)An,
IIm Ix -< An, and t’An -<Re Ix --<(al+b2)An, IImIxl=<An, respectively, instead of
with F). Then with Ix a point of F, and writing P(x2) for P2(x2, An, Ix), t(X2) for
42(x2, An, Ix), we see from the variation-of-constants formula that

I0(3.5) 4*(x2) sin (R)(x2, 0)- sin (R)(x2, ’)P-a/2(’)O(’)ch*(r) dr,

where 4*(’r) P/4(O)p/4(’r)(’r), i(’r’2, ’1) IPa/2(z) dr, and O(r)
{q2(’r)+P/4(’)[d2p-/4(’)/d’2]}. Arguing with the Gronwall lemma, it then
follows that

(3.6) (x2) P-1/4(O)p-1/4(x2)[sin ((x2, 0) + O(n -1 exp (R)*(x2, 0))]

for 0 _-< x2 --< 1, where (R)*(’2, za) I,,lIm P/2(r)l dr. It is important to observe here
that the constant implied in the O symbol does not depend upon x2, Ix, n, pl, or p2,
but depends upon 6, and hence upon 01 and 02. By noting that Im Pa/2(x2) is of one
sign in 0 <_- x2 -< 1 and by arguing with the results of [ 1, p. 3] and the definition of no,
we may now show that" (i) when Re Ix t’An and Jim Ix IAln/2 logan, then
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IRe p1/2(X2)--P/2(X2, An, t’An)l< 7r/4 in 0---X2. 1, and hence it follows from
(3.4) that ]sin (1, 0)1>8-’/2 exp O*(1, 0); (ii) when Re/x =t*A, and, nl/2 logA,, or when IXm IX] =A,, then IImP1/2(Xz)l>d*logA,>d* in O<x2= < 1
(here d* B*/25/4[B*(1 + c + 2b2)] 1/2, where c is defined in the notation above),
and hence ]sin 19(1, 0)l_->sinh 19"(1, 0)>[(1-e-Zd*)/2]exp(R)*(1, 0); and (iii)
when Re/z t*A,, ]Im P1/Z(x2)]> d*A ,1/2> d* in 0 <= x2 < 1 (d* (B*a 1)1/2), and
hence Isin 19(1, 0)1 > [(1 e-2d)/2] exp 19"(1, 0). Denoting by C the constant
implied in the O symbol in (3.6), choose n* (> no) large enough so that 81/2C/n *,
2C/(1 e -2a*) *, -2a,) ,

n and 2C/(1 e n are all less than 1/2, and sufficiently large
so as to ensure that analogous results also hold for W1. Then it follows from (3.6)
than when n > n*,

(3.7) Wz(,n, IX) -b (1) -P-1/4(O)p-1/4(1) sin 19(1, 0){1 + O(1/n)} O.

We wish next to examine the behavior of Wz(A,, Ix) in the interval X:
Re IX -< tAn, Im IX 0. Indeed, if we employ the same notation as above with tx
now being a point ofX, then it is not difficult to verify that b (x2) may be expressed
in the form (3.6), with the constant implied in the O symbol, which we shall denote
by C*, being independent of xz, Ix, n, and of the pj and 0j for j 1, 2. Since
Imp1/Z(x2)>d* in 0=<x2=<l (where d* is defined in the above paragraph), it
follows that ]sin 19(1, 0)] > [(1 e-Za*)/2] exp t0*(1, 0). Now choose n (> no) large
enough so that 2C*/(1-e-Za)n* < 1/2 and sufficiently large so as to ensure that
an analogous result holds for W1 (An,/x) in the interval Re Ix _-> (a + bz)An, Im Ix
0. Then for n > n*, Wz(An, Ix) (= -b(1)) cannot vanish in X.

Putting n max {n*, n*}, we shall henceforth assume that n > n 1. We note
from (3.7) and the above discussion that I1 -H(Ix)] < 1/2 for Ix 6 F, where

(3.8) H= W/p-1/4(O)P-/4(1) sin t0(1, 0)

and W W(Ix) Wz(An, Ix). Then to complete the proof of our theorem we wish
to apply the principle of the argument to the function W with respect to the closed
curve F. To this end we shall abandon for the remainder of this proof the
convention adopted above to define P(x2) and instead redefine this expression in
the following way. Describing F by means of the parameter s (see (3.2)), putting

(3.9) P(x2, s)= P2(x2, An, Ix(s))

for (x,s)D, where D is the rectangle defined by the inequalities
0 -< s =< 5, and observing that P(0, 0) > 0, we shall then agree to take arg P(0, 0)
0. This convention, together with the continuity of the function concerned,
determines arg P(x2, s) in D, and the expression P" (x2, s) (u real) is unambiguous
provided that it is interpreted according to (3.3). It then follows that P-1/4(0, s),
P-1/4(1, s) are continuous in 0<-s _-<5 and both their arguments are equal to 0
when s 0 and to -rr/2 when s 5. Moreover, if we put

(3.10) z(s) P/(x, s) dx,

then we can show that as s runs from 0 to 5, z (s) traces out a piecewise smooth
simple arc in the z-plane, which we shall denote by F1, such that z(0)=-z(5)
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p2nrr/2 and Im z(s)>0 in 0<s <5. It is also clear from (3.8) that

(3.11) H*(s) H(l(s))= W*(s)/p-a/4(O, s)P-a/4(1, s) sin z(s)

for 0_-<s _-<5, where W*(s) W(l(s)). Hence from this fact and the foregoing
results, we are led to assign to both arg {sin z (0)} and arg W*(0) the value 0 or r
according to whether (p2n-1)/2 is even or odd, and then determining
arg {sin z(s)} and arg W*(s) for 0 _-<s _-< 5 by continuity, to define arg H*(s) in this
interval by means of the equation

(3.12) arg W*(s) argP-a/4(0, s)+argP-a/4(1, s)+arg {sin z(s)}+argH*(s).

In light of our above results it is easy to see from (3.11) that H*(5) is real, and
hence we conclude from (3.12) that arg H*(0) arg H*(5) 0 and the variation of
arg W around the contour F is equal to [-r + arg {sin z (5)}- arg {sin z (0)}], which
clearly is just [-zr- rCt z dz].

Now let F2 denote the path traced out by z as /z traces out F twice in
succession. That is to say, if we extend the definition of tz(s) given in (3.2) to the
interval 0 -<_ s -< 10 by putting (s) (s 5) for 5 < s _-< 10, if in the rectangle
0-<x2 <_- 1, 0<_-s _-< 10, we define P(x2, s) by means of (3.9), and with arg P(0, 0)
0, determine arg P(x2, s) by continuity and defineP(x2, s) according to (3.3), and
if we define z(s) by means of (3.10), then we denote by F2 the path traced out by
z(s) as s runs from 0 to 10. It is easy to show that F2 is a piecewise smooth Jordan
curve and that r2COt z dz 2 vcot z dz. Hence it follows that the variation of
arg W around F is just (p:n- 1)r The proof of the theorem (for W2) is then
completed by applying the principle of the argument, by utilizing the fact that
t*h, < t *o(h, ), and by appealing to the analogue ef (2.1) for the system (1.3)-(1.4).

Recalling again the terminology of 2, we have next
THEOREM 3.2. If n > (n + 2), then h,_ 2 < lj,k ( in+2, /*)"n--2 < ],/ < t’An+2,

and It*--m,k/lj,k[< 60bz/n for (Nl-pa)<] N(NI+ Pl), (Ne-p2)<k <=
(N2 +P2).

Proof. From Theorem 3.1 we have

:g :g (ln+2)<,jig, 0*(In +2) <’’" < [d, Nz+pz(ln+2) < t*hn+2 < la, N2*pz+,

/.,0(I/1+2) )" ) j[Nl+pl(I/-i +2) ) t*In+2 > Nl+pl+l(I/+2) )

* (a.-2)<"/x (I._2) <"" </x rv2_v(1._2) < t’I.-2 < tx rv=-,+a

/x0(I.-2) >’’" >/xv,_p(1._2) > t’I._2 > txrv,-,+l(1.-2) >’’’.

Hence in light of the results of 2 and the definition of 1., our theorem follows
immediately.

We shall henceforth assume that n is fixed at a value exceeding max {(n +
2), 120B’b2(1 + tan 02)/B’6}.

Referring to Theorem 3.2, we now note that 60bz/n <6/2. Hence if we
choose the positive integer p to have the same parity as p, and to satisfy

2n/p <min {(1 +tan 02)-1 tan 01, (tan 02--tan 0)},
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and if we again recall the definitions of the ri (see statement 7 of the notation given
at the beginning of this subsection), then we have

TI-IEOREM 3.3. Let j, k be any positive integers for which (j, k) f and
j >=(np-rl)/2. Then (,n’j/2)Z/Btb2 <Aj,k < (37rj)2/B*6 and a2 +6/2 < tJl,j,k/lj,k <
b1-/2.

Proof. Let be a positive integer and put p/* p + 2(i 1). For each positive
integer m let P P -- 2(m 1), where p* is 1 or 2 according to whether P2 is odd
or even, and denote by (mi- 1) the largest value of m for which P,,/Pi < tan 01
and by (M/+ I) the smallest value of m for which pff,/p > tan 02. In light of the
definitions of n and p above, it is clear that 9-<m <M =<[1 +(p* tan 02- 1)/2],

<...<p.<p*tanO2 Putting2n < min {p*, p/* tan 01}, and p* tan 01 =< P,,, ,=

Nl(i)=(np’-rl)/2, N2(i, m)=(np -r2)/2 m =m, M, denote by G,,(i)
m <= m <=Mi, the set of tuples (Nl(i) + s l, N2(i, m + s2), where s O, (n 1),
and (a) S2 -2n, (-2n + 1),. ., (n 1) if m m, (b) s2 0,. ., (n 1) if mi <
m <M, and (c) s2 0,. , p, if m M. It is important to observe that the Gm (i)
are all disjoint and

[N2(i, m)-2n]<Nl(i) tan 01 < [NI(i) + n] tan 02 < [N2(i, M/) +p,]
(these inequalities follow easily from the definitions of n and p). Finally, we shall
denote by G(i) the union of the G,, (i), m mi, , Mi, and by G the union of the
disjoint sets G(i), with running from 1 to .

It is clear from the assumptions made in our theorem that (j, k) G. Hence
(j, k) Gm (i) for some and m. The assertion of the theorem now follows easily
from Theorem 3.2 if we take Pl =p*, pz=P NI=NI(i), and Nz=N2(i, m).

3.2. Asymptotic ormulas. Throughout this subsection we shall suppose that
j, k are any positive integersfor which (j, k) 12 andj >= (np- rl)/2 (we refer to the
statements preceding Theorem 3.3 for definitions and assumptions). Then as a
consequence of Theorem 3.3 we are now in a position to establish asymptotic
formulas for &j,k,/xj,k, and i, as j . Accordingly, let us return again to the
function g(t) defined in 3.0 and observe that when a2 <t <bl,

where ’=d/dt and f(t, xl, x2) =P/2(x2, 1, t)/P/Z(xl, 1, t). Thus g’(t)>=
B*h-2(t) >B*/B*b2 for a2 <t <bl. By utilizing this fact and taking into account
the assumptions concerning n and p made in the statements preceding Theorem
3.3, it is not difficult to verify that if we put

,=0 ifaOand

(3.13) 1/2 if c 0 and/3 r or if a 0 and/3 r,

=1 ifa=Oand/3=r,

for r 1, 2 (see (1.2) and (1.4)), then there is precisely one value of in [az, b] for
which

(3.14) g(t) (k + ’2)/(j + ’1),
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and if we henceforth agree to denote this value of by t,g, then

ta 6/4 < ti, < t2 + 6/4
(we refer to 3.0 for terminology).

Notation. For r= 1,2, 0-<x-< 1, 0<yr <zr, and az<t<ba, let

X.(x t) /"r z, , t) z, Xf(x. t)= B(z)P;/(z, , t)

t) [ 1/ +;(x. t)/4/(x. , t)], ’= /x,X (x. , (x. 1, t) cot

X(x. t)=-2- 0(, t)P2/(, 1, t) d,

where 0(, t) q() +p/4(, 1, t)[dP2/4(. 1, t)/d],

d*r(t)=tdr(t)+(-1)’-lh,(t), D(t)= A(x,,x2) I-[P/2(Xr, 1, t) dx, dx2,

Y* (x. t) [c(t)d(t) / c(t)d(t)]X(x, t)

+(-1)-[c(t)h(t)-c2(t)hl(t)]X* (x. t),

Y(x.t)=[-2 Y*r(X. t)+X(O, a, t)+X(x, t)] if a 0,

[2-1 *Yr (Xr, t)--X(Xr, t)] if r 0,

Y(x.],) ,7 Y(x. t,), Z(Xr, ], )= N,X(xr, t,),

where., [(] + vm)/h (t],k )],

and finally, writing Em for E(x,x2,],k), m 1,..., 4, let: (a) EA 1, E2
Y2(x2, ], k),E3 Y(xm, ], k), and E4= O if a # O and a2 # O, (b) E Y2(x2, ], k),
E2 1, E3=0, and E4 Y(Xl,],k) if al#0 and a2=0, (c) E1 Y(x, f, k),
E2=0, E3=1, and E4 Y2(x2,],k) if aa=0 and 2#0, (d) Ea=0, E2
Yl(Xi,],k),E3 Y2(x2,],k), andE4 1 if

THEOREM 3.4. It is the case that

(3.15) A],k =[(j + Vl)/h(t],&)]2[i +(ha(t],k)/(] + Vl))2(Cl(t],&)d2(t],&)
+c(t,)d(t, )) + o(1/)],

(3.16) ],k [(] + Pi)/hx(t],k)]2[tj,k +(hi(tj,k)/(] + Pl))2(Cl(tj,k)d(tj,k)
+c2(ti,)d(t, )) + o(1/]2)],
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2

Oj,k(Xl X2)-- 2D-1/zz,,’j,k) I-I P-l/4(Xr, 1 tj,k)
r=l

cosZ(xr,],k){E(x,x,],k)+o(1/])}

(3.17) +cos Z(x,], k)sinZ(x,], k){(x,x,], k)+o(1/])}
+sin Z(x, ], k) cos Z(x, ], k){E3(x, x, ], k)+ o(1/])}

+ sinZ(x,j, k){U4(xI, x2, j,
r=l

as j , (j, k) O. is last result hoMs uniformly for 0 x 1, r 1, 2.
Proof. We shall only prove the theorem for the case r 0, r for

r 1, 2; the other cases can be similarly treated. Then putting

’,k (X2) P2(x2, Aj,k, j,k) and i,k (X2) 62(X2, Aj,k, j,k),

we may argue with (3.5), the Gronwall lemma, and the results of Theorem 3.3 to
verify that for 0 x2 1,

,k (X2) P;/4(O)P/a(xz)[sin @,k (X2) + O(1/k)],
where

0, (x) Pe(’r) dr,

and similarly we can also verify that

6,(x) Pi2/4(o)p4(x)[cos 0, (x) + 0( /k )],

(’= d/dx2), with these results holding uniformly in 0 x2 1. A standard argu-
ment now shows that as k ,
(.a /(x, ,, m,lx ( + +o(/,

and by repeating the same argument for , we may also show that

01(3.19) PI/(Xl, a,,,)dx=(]+ 1) + 0(1/])

and

(.0 g(m,/a, (( + /(] + + o(/]

as j -. By appealing to the inverse function theorem, it is not difficult to deduce
from (3.20) that

(3.21) IXj,k/’,k t,k + O(1/j2)

as ] c, and hence it follows from (3.19) that

(3.22)
as --> oo, where

a,=,( +o(/))

N,k =[(j + 1)r/h,(t,)]=[(k + 1)Tr/h2(t,)].



864 M. FAIERMAN

Turning again to (3.5), we may now appeal to the method of Horn 11] (see
also [12, p. 272]), to arguments similar to those used in the proof of the
Riemann-Lebesgue lemma, and to (3.21), (3.22) to establish that

(j,k (X2) P,/4(O)P,/4(Xz)[Sin Oj,k (X2){ 1 + o(1/k)}
(3.23)

-cos Ok(X){Nj,kX2 (x2, t,k)+O(1/k)}]
as k - o, uniformly in 0-<x-< 1, where we refer to the statements immediately
preceding this theorem for terminology. Hence if we now argue in a manner
similar to the way in which we argued in arriving at (3.18), then we can also show
that as k

Io -1p/(x, t,, m,) dx. (k + +Ni.,c (t;,)+ o(/);

and similarly, we can also show that

(3.24) Pl/(x,,k, t.,k) dx=(] + 1)r+N[,c*(t,k)+o(1/])

as/" oo. From these results is now follows that as ]

g(m,/a,l (( + /(] +

-[1/(] + 1)r]{c(t,)h(t,)-c*(t,k)h(t,k))+o(1/]),
and hence we conclude that

(3.25) x,k/Aj,k t,k -N[f(c(t,k)h(t,k)-ca(t,k)h(tj,k)}+o(1/])
as ] oo. The assertion of our theorem concerning 1,k and x,k now follows
immediately from (3.24), (3.25), and the relation 2h (t)g’(t)
(d(t)h(t) + d(t)h (t)).

To prove the assertion concerning 0,k, we first observe from (3.21) and (3.22)
that (3.23) remains valid if the expression ,/4(O)P/4(x2) in the right-hand side
of this equation is replaced by

N,2P/4(O, 1, tLk)P/4(X2, 1, ty,k).

Furthermore, from (3.25) and the estimate for A,k which we have just established
it is easy to see that

)j,k (X2) Z2(x2, j, k) + (1/(2N-,k)) Y*2(x2, tj,k) + o(1/k)

as k - oo, uniformly in 0_-<x2 <- 1. Hence it follows from (3.23) that

62(x2, Aj,k,/2,j,k) N,P’/4(O, 1, tj,k)Pm/4(x2, 1, tj,k)

[sin Z2(x2, j, k){1 + o(1/k)}

+cos Z2(x2, j, k)(E3(xl, x2, j, k)+o(1/k)}]
as k oo, uniformly in 0_-<x2 _-< 1. Arguing in the same way with 41, we may easily
establish that (see 2.3 for terminology)

)j,k(Xl, X2)= 1-I P-1/4(0, 1, tj,k)e-l/4(Xr, 1, t,,) F(Xl, x2, j, k)
\r=l
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as j --> oo, uniformly in 0=<Xr __--< 1, r 1, 2, where F(x 1, X2, j, k) denotes the expres-
sion within the square brackets on the right-hand side of (3.17). From this result it
is not difficult to verify that

2
--1/2[ r2II4,  11-’ 2D W,k,’’’,k H prl/4(0, 1, tj,k){1 +o(1/j)}

r=l

as j-->oo, and hence the assertion of our theorem concerning 4% follows
immediately.

As a consequence of Theorem 3.4 and the definition of fl, we have
THFOREM 3.5. There exists the positive number K, depending upon 01 and 02,

such that IOj,k (X 1, X2)I Ngfor (x 1, X2) 12 and (j, k)
Remark. We note that the formulas given in Theorem 3.4 have been

obtained to an accuracy determined by the conditions which we have imposed
upon the coefficients of the differential equations (1.1) and (1.3). It is clear that by
proceeding as above and using the method of Horn, we may further develop these
formulas if the coefficients in our differential equations are suitably defined.

4. Some extensions.
4.0. Introduction. Throughout this section we shall again employ the notation

given in 3.0 and denote by 1 and fl2 the sectors in the (x, y)-plane defined by the
inequalities 0 <: 0 < 01 and 02 < 0 <= r/2, respectively. Then the methods of the
foregoing section do not generally suffice in establishing the analogue of Theorem
3.4 for each of the cases: (i) (j, k) ill, j --> , (ii) (j, k)612, k --> . Indeed, the
treatment of these cases may become somewhat intricate (see [7], [8]) and will,
with certain exceptions that will be discussed below, be left for later papers.
However, we might remark that as a consequence of the results of 2, as well as
from standard arguments, we do have some information at our disposal. For we
know that C., j=>0, has a continuously turning tangent whose slope is a mean
among the values of A1/B and that C passes through the point (0,/(0)), where
>/0(0) > 1(0) >" ", and

/zj(0) (j+Pl) B dXl (1+0(1/j2)) asj-c

(we refer to (3.13) for the definitions of the lYr). We also know that C*, k _-> 0, has a
continuously turning tangent whose slope is a mean among the values of A2/B2
and that C* passes through the point (0, Ix *(0)), where -oo</xo*(0) </x *(0) <. .,
and

(4.1) /x*(O)= (k+p2) B dx2 (1+0(1/k2)) askm.

Hence a simple calculation now shows that when (j, k) "1 and j is sufficiently
large,

(4.2)

1 Aj,k 8B* sec2 0

4B*(bz-al) < (jr)2 < (bl-az)(B*)2’

4Bt(b2-al)llX *o(O)l t-q, 8B*(b2-al) tan2 01
al- (j,rr)2 A, B*

with similar results also holding in fz for all large k.
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Assumptions. 1. We shall henceforth suppose that A2(X2)/B2(x2) is constant
in 0_-<x2_-< 1 and puta al a2 (see 2.0). We now note that the C are precisely
the straight lines

(4.3) -ha +/x =/x k*(0), k _-> 0.

We also note from the definitions given in 3.0 that now 0* 0.
2. We shall henceforth suppose that

O<O<tan- { yB*(b-a) }
where y =min {1, (b2-a)/2} and the principal branch of the inverse tangent is
taken.

3. We shall henceforth suppose that (, k)
It now follows from (4.2) that

(4.4) [.lq,k/l],k < (a + b)/2
for all large f.

Notation. Throughout this section we let:
1. * and f* denote the subsets of "1 composed of points (x, y) satisfying

y4->x tan 01 and y4 <x tan 01, respectively;
2. ’r, r 1, 2, denote those expressions defined in (3.13).
In light of the above results we are now in a position to derive asymptotic

formulas for ALk and/Xi,k as ] c; and to this end we shall investigate separately
the behavior of these expressions in each of the sets * and

4.1. Asymptotic tormulas in 1)*. In this subsection we shall suppose that
(j, k)612" andputri,k (k + u2)/(] + Ul). Then in order to obtain estimates for hi,k
and/Z,k as ] - c, we may utilize (4.2)-(4.4) and arguments similar to those used in
the proof of Theorem 3.4 to show that

(4.5) g(tzj,g/,j,k rj,g + O(1/jk

as ]. To deal with (4.5) we must turn to the inverse function theorem.
Accordingly, let us firstly extend h(t) to an analytic function (of the complex
variable t) in the half-plane Re <b by putting here h(t)=IoPl/Z(xl, 1, t)dXl
(recall from (3.3) the convention for dealing with fractional powers of the Pr).
Then it is clear that in Re < b the function G(t)= gZ(t) is analytic and may be
expanded about the point t=a in the form G(t)=.,=lb*..(t-a)’, It-a[<
(bl-a), where b*=[(oB/2 dx2)/h(a)]2 and b*>0 for m _->1. Putting M-
B*/B * and R =(bl-a)/2, we may argue with the inverse function theorem to
show that when [w[ < R1 (Rb*I)2/(6M), the equation G(t) w has precisely one
solution in It- al < R* 3R 1/(2b 1") (<_- R/8) and this solution may be expressed in
the form

(4.6) t-a=H(w)= Z b* W
m=l

Iwl < R1, where the b*,. are real, b*l 1/b*, and [b*m[<R*/R’= for m > 1. Observ-
ing that 0 < O’i,k < 2 tan 01 and 4 tan2 01 <R 1/4, we therefore conclude that there
is precisely one value of in the disc It-a[<R* satisfying G(t) 2

O’,k. It is not
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difficult to verify that this value of is also a point of the interval [a, b 1], and hence
it follows that (3.14) has precisely one solution in this interval.

We shall henceforth denote the solution of (3.14) (for a <-t <-b l) by ti,k
We observe from (4.6) that

(4.7) ti, a H(o-,),
while if we put

(4.8) H(w) wH*(w),

then a simple calculation shows that

b’1/2 < n*(tYi,k) < 3b*/2,(4.9)

and hence it follows that

(4 10)
B*(tan 01) 1/2 1

8B’j3/2 < tj,k a

bl-a 64"

In light of the foregoing results, it is now a simple matter to argue with (4.5)
and the series H((Wl / w2)2) to show that

]d,j,k/tj,k ty,k / 0(1/j2) as j -Arguments similar to those used in the proof of Theorem 3.4 suffice at this
point to establish our main results which will be given in Theorem 4.1 below.

Notation. 1. For [wl<2tan01,= let H*(w)==12mb*row2’’-2. It is not
difficult to verify that

(4.11) 2b’1/9 < IH*l (W)l < 4b.
2. For 0-_< x2-< 1, 0< 3’2 < or, anda <t < g-’(2 tan 01) where g-1 denotes the

inverse of g, let"

X2(x2, t)- B/2(T) dT, h *2 X2(1, t),

(here is introduced in order to conform with the notation of Theorem 3.4),

X*2(x2, yz, t)=[Bl/2(Xz)COt yz+B(xz)/4B/2(x2)], ’=d/dx2,

X(x2, t)=-2-’ Q2(’r)BI/2(") dz,

where Q2(z) q2(z) +B/4(z)[d2Bl/4()/dz2],

X:(x2, t), d2(t), d*z(t), and c(t) be defined as in the notation immediately
preceding Theorem 3.4, except that in defining this latter expression we are now
to use our new definitions of X*2 and X,

c(t)
h * H*l (g(t))c *2 (t)

h(t) D(t)
|Pl/2(x 1, 1, )-/2(x2) HX1 HX2’

Y’(x2, t) [2c*(t)/h 2*]X2(x2, t),
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Y*z(X, t) be defined as in the notation immediately preceding Theorem 3.4 (using
now our new definitions of Y2*, X2*, and X),

Y2(x2, j, k) N;1Y(x)_, t,k), Z2(x2, j, k) NkX2(x2, t,k),
where Nk [(k + 2)r/h 2*],

and finally, writing em for era(i, k), m l, , 4, let (i) e e2 1/k, e3 e4 1/]
if al 0, (ii) el---ee- 1/], e3=e4 ilk if a-- 0.

3. Let Cl, all, d*, Z1, and E,,, m 1,..., 4, be defined as in the notation
immediately preceding Theorem 3.4, except now we are to use our new definition
of Y2 in defining the E,,, (note also that in defining YI* and hence Y1, we are to use
our new definition of c).).

THEOREM 4.1. IfA2(x2)/B2(x2) is constantin 0X2 1, then hi,k and pti,k are
given by the right-hand sides of (3.15) and (3.16), respectively, and

Oi,k(X,, X2)= 2D-/2r’,,k)PT 1/4(xl, 1, ti,k)Bl/’(X2)

H cosZ(x,j,k){El(Xl, X2,j,k)+O(el(j,k))}
rl

+cos Zl(X 1, ], k) sin Z2(x2, ], k ){E).(x , x2, ], k) + o(e2(], k ))}

+sin Z(Xl, ], k) cos Z2(x2, ], k){E(Xl, x)., ], k)/ o(e(], k))}

+ -I sinZr(xr, j, k){E4(xl, x2, j, k)+o(e4(j, k))}]
_l

as j --> o0, (j, k) 12". This last result holds uniformly for 0 <-_ xr <= 1, r 1, 2.
* for c (ti,)d(ti,g), we observeRemark. Writing S,k for Cl(tj,k)dz(tj,k) and sj,k

that each of the formulas given in Theorem 4.1 contains the expression si or sift.
And although d2(ti,) and d*2(t,) contain the factor (t, -a)-1/2, it is important io
observe that Cl(ti,k) contains the factor 1/g’(t,k) which is easily shown to be just
r,kH(r,k). Hence it follows from (4.7)-(4.8) and the definitions of the terms
involved (see the statements preceding Theorem 3.4) that si,g L,kC*l(t,k), S,k-
* *(t,), whereLj,kC

h 2H (r,
Li, h (tj,k )[H*(o’,k)]/2

and Lj,* aLj,k. In light of (4.9)-(4.11) we therefore conclude that the absolute
values of S,k and Sj,k* remain less than some bound independent of ] and k.

4.2. Asymptotic tormulas in 1+. In this subsection we suppose that (j, k)
1+. Then to deal with this case, we shall have to modify the definitions given in the
statements preceding Theorem 3.4. Hence referring to these definitions, we
observe that the expressions c 1", dl, and dl* have only been defined for the interval
a < < b l. We now extend the definitions of these expressions to the interval
[a, bl) by continuity.

Let Pj,k(Xl) Pl(xl, hi,k, ]Jj,k) and N (j + ,)r/ha(a). Then from (4.1)-
(4.4) and arguments similar to those used in the proof of Theorem 3.4, it
is not difficult to verify that tZk/Aik=a+O(1/J3/2), J0"0OI/2(Xj,k 1) dXl--
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(j+vl)vr+O(1/j), and hence As,,=N[I+O(1/j3/2)] as j-oo. From this last
result and an argument involving the method of Horn, we may next verify that

/ r3/2Ixs,,/,i,,= a +,,k/,, +O(1/j3),

fo’ P]’2(x 1) dx (] + v)w + c(a)/. + o(1/j)

as j o0, where Os,k=lxd(O)/N]/2 (observe from (4.1) that Ps, O(1)). Hence
putting p*, &,dl(a)/hl(a), P,*k &,d*l (a)/hl(a), and c(a) 2c* (a)/hl(a), it
follows that

THEOREM 4.2. If A2(x2)/B2(x2) is constant in 0_-<x2_-< 1, then

/X’S,<= [(_+_l,,1)’r(,l[ h__l(a_) ,si2 hi(a) ,) 1
hi(a) J a+((j+/,’l)’rr/ Ps’*+((j--li’rr 2ac(a)+ ()-5)]

as j oo, (j, k) f*.
4.3. The eigenIunctions. It is clear from (4.3) that we are unable to obtain

estimates for the i,k, (j,k)f*, in the form given in Theorems 3.4 and 4.1.
However we do have

THEOREM 4.3. IfA2(x2)/B2(x2) is constant in 0 <----x2 <= 1, then there exists the
positive number K such that [, (x l, x2)l <-Kfor (x l, x2) 612 and (j, k) .

Proof. Let Us,k(X,)6,(X,,,tSk, lXsk)lJ,!jk), VS,k(X2)=dJ2(X2, As,kla.s,k)I
J2(j, k), where Ji (j, k) (I0 b 2(xi, AS,k’,/XS,k’ dx) for 1, 2. Then by appealing
to (4.2), (4.4), [10, Thm. 3.1], and arguing in a manner similar to that in [6, pp.
334-335], it is not difficult to verify that the absolute values of the US,k (Xl) for
0_--<x1_--< 1 remain less than some bound independent of Xl, j, and k. In light of
(4.3), it is also clear that a similar result holds for VS,k (X2). The proof of the theorem
now follows from these results.

4.4. Final remarks. To conclude our discussion for "1 we wish to state that
the formulas given in Theorems 4.1 and 4.2 may be further developed for suitable
coefficients in the differential equations (1.1) and (1.3) (we refer to the remark
made at the end of 3 for further details). Also it is not difficult to verify that
analogous results hold in 2 if we assume that A/B1 is constant in 0_-< x --< 1.

Appendix A. In the introduction to this paper we made the hypothesis that
the coefficients of the differential equations (1.1) and (1.3) satisfied the condition
A (A1B2-A2B1)# 0 in 12. We then asserted that under this hypothesis it was
possible to arrange matters, by means of a nonsingular transformation in the
parameters A and p,, so that the At, Br, and A are positive for all values of x and x2
in 12 We now prove this assertion.

Let S denote the unit circle in E2 with center at the origin and u (ul, u2)
the points of S 1. Recalling the definition of the P(x, A,/x) given in the introduc-
tion to 3, let us define the mapping f(u)= (fl(u), f2(u)) of S into E2 in the
following way: for each u in S and for r 1, 2, (a) let j:; (u) denote the infi,Tum of
P,(x, u, u2) in 0_--<x, _--< 1 if P(x, ul, u2) >0 at every point of this interval, (b) let
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f(u) 0 if Pr(xr, Ul, U2) has at least one zero in Ox 1, and (c) let f(u) denote
the supremum of Pr (Xr, U 1, U2) in 0 --_< Xr --_< 1 if P(x, u 1, u2) < 0 at every point of this
interval. It is not difficult to verify that f(u) is a continuous mapping of S into E2,
f(u)# 0 (since A # 0), and f(-u)=-f(u). From a result of Borsuk [5] it follows
that the image of S under ]c meets every ray emanating from the origin in E2. Thus
there exists the point u*= (u*, u z*) of S and the positive number d such that
u2* # u*, ]’l(U*) > d, and fz(U*) <-d. Let v -u* + e for r 1, 2, where e (# 0)
denotes a number chosen so that: (a) the supremum of ([A(xr)l+lBr(xr)[)in
0_-<x _-< 1 does not exceed d/2[e[ for r 1, 2, and (b) e(U*l-U*2) has the same sign
as A. Hence if in (1.1) and (1.3) we put h u*h#+Vl/X # and/z Uz*h#+Vz/X #,
then the expressions hA (x l) lxB (x l) and -IAz(xz)+IJ,Bz(x2) become
h #A (Xa)-tx#B(xa) and -h #A ’(x2) +/x #Bz#(X2), respectively, where the A,
Br#,andA# (A # #B 2 A’B) satisfy the conditions asserted.
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MAXIMUM PRINCIPLES AND BOUNDS IN SOME
INHOMOGENEOUS ELLIPTIC BOUNDARY VALUE

PROBLEMS*

P. W. SCHAEFER" AND R. P. SPERB$

Abstraeto A class of inhomogeneous nonlinear elliptic boundary value problems is considered.
The Hopf maximum principles are used to deduce that certain functionals defined for solutions of the
problem attain a maximum at a critical point of the solution. These maximum principles are then used
to determine bounds for quantities of interest in some physical problems.

1. Introduetiono In a recent paper, C. Bandle [1] established isoperimetric
bounds for the solution of the Poisson problem. These results extend some earlier
work of P61ya and Szeg6 [ 10]. In addition, C. Bandle developed estimates for the
critical value Acr, the largest value of A for which nonlinear boundary value
problems for equations of the form Au +Ap(x)f(u)= 0 have a positive solution.
We will call the problem homogeneous if p is constant and inhomogeneous
otherwise. We will consider similar problems as C. Bandle but utilize the Hopf
maximum principles 11] to establish maximum principles for certain functionals
which are defined on solutions of the particular problem. These results then lead
to bounds on the solution and/or the gradient of the solution in various linear and
nonlinear problems. Furthermore, for the Poisson problem our bounds are
applicable in some cases where C. Bandle’s technique is inapplicable.

Several authors [6], [7], [8], [9], 12] have recently used the Hopf maximum
principles to establish bounds in certain homogeneous boundary value problems.
In 2 we extend this technique to inhomogeneous equations. The resulting
principles will then be used to deduce bounds under mixed or Dirichlet boundary
conditions in 3.

Specifically, we let D be a domain in the plane bounded by a sufficiently
smooth curve OD and assume u is a solution of

(1.1) Au +Ap(x)f(u)=O inD,

where A is the Laplace operator, A is a positive parameter, p(x) is a positive C
density function in D, and f(u) is a positive C function for u _-> 0. We shall be
primarily interested in positive solutions u which satisfy the mixed conditions

Ou
(1.2) u=0 onF, =0 onF2, FUF2=0D, F1,

On

where Ou/On denotes the outward normal derivative. In fact, F2 may be empty. We
then determine bounds for the maximum value of the solution in the Poisson
problem of an inhomogeneous nuclear reactor operating at critical conditions. In
the case of Dirichlet boundary conditions, we also indicate how our results can be
extended to the case of more than two dimensions.

* Received by the editors January 28, 1976, and in revised form June 5, 1976.
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916.
Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235.
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2. Maximum principles. We consider the functional

(2.1) Ivu[z g(u)+h(u),
P

where u is a solution of (1.1) and g and h are arbitrary functions to be determined.
We shall choose g and h so that satisfies an elliptic differential equation.

We use the comma notation for partial differentiation and the summation
convention on repeated indices in our computations. Thus, we have

gP,k ’U(2.2) k
2gu,,U,k lgul2g U,k [VU a

------5t-h ,,,
P p p

2gu,ikU,ik 2gu,ibl,ikk 4U,iU,ig’U,k 4U,iU,ikgp,k
(I),kk q- q-

2
P P P P

(2.3) + ]7u]4g’’
-" 2 2

P P P P

/2lVul2glvp[2

, - h"]Vul + h’u,kk.
P

Here the prime denotes differentiation with respect to the argument which has
been suppressed.

From (1.1) and (2.2) we determine U,xx, u,y, and u,x so that by the identity

(2.4) U,iU,ik (AU)e + 2(U 2
,xy U,xxl,yy

we can substitute for the first term in (2.3). We then use (2.2) in the third and
fourth terms of (2.3). After a lengthy computation, we obtain

(2.5)

where

([}kk"-’[Vlgl2--, P g"--7_1+ IVlg 12 (h-2afg)’-Afg’ gA(lnp p)

+P-(h’-afg)(h’-2afg),
g

More simply, we write

Lk --P-P-{,, + 2U,k[afg h’]}.
g

_LcD, 14 ,iVul2(2.6) Aq
[V/g 12 C2IV/X q" C q- CO,

where co, c l, c2 have the obvious interpretation. Consequently, we have
THEOREM 1. Let u be a solution of (I. 1). If p, g, and h are C2 functions with

p > 0 and g > 0 such that the quadratic form in (2.6) is nonnegative, then attains
a maximum either on OD or at a critical point of u.
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For simplicity here and later in the applications, we take

(2.7) g(u) =- 1, h(u) 2A f(q) drt, A(ln 0) _--<_0 in D.

Clearly, one could choose other functions g and h as indicated in [12].
We now consider O/On at an arbitrary point P OD. If P El, then

IOu/Onl so that

(2.8)
OcI 2u.u.__e. IeplVu + 2Afu.,an p

where we use the subscript notation for the normal derivative. On the boundary
we have

(2.9) AU u,, + Ku, -Apr.

Here K denotes the curvature of the boundary. Consequently,

(2.10) 0.0__ ]Vu 12 { 2K7+_5100}_n"
On the other hand, if P E F2 we again obtain (2.10) since on the, boundary

(2.11)

where us denotes the tangential derivative.
Let

(2.12) {10 }ng p-,/2 +_ nn(ln p)

represent the geodesic curvature of OD considered as a curve on the Riemann
surface with line element ds2=p(d2+drt2). Then if Kg-_>0 on OD, we conclude
that O/On <-0. Thus by Hopf’s maximum principle [2] we deduce

TIEOnEM 2. If U is a solution of (1.1), (1.2) where the geodesic curvature g of
OD is nonnegative and if g, h, O satisfy (2.7), then takes its maximum at a critical
point of u.

Remark 1. Theorems 1 and 2 can be extended to the case of n > 2 dimensions
as follows. We define by (2.1) but use the Schwarz inequality on the first term in
(2.3) (see [7]) as no identity of the form (2.4) is available. Proceeding as in the
derivation of (2.5), we obtain

[gk*k ,I,V,Ul4 3g’2] lvul2gjVpl=+
iVul e

0 g"- a +
2p p2

+ U’kP’k[h’-- 2afg] + [VU 12[ (h’- 2aN)’ + afg’
(2.13) P

+ph’ 2afg]

g’h’ g__p]
g 10

2 J
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where

Hk p-p- h’U,k ---rb,k + ]Vul2
g 0 g

By means of the arithmetic mean-geometric mean inequality on the third term, we
can write

A+gk(zk>lVUl4[g"--2g’2p g 3
+ U"kP"k[h’--2Afg]p

+Vul2 (h’-2Afg)’+Afg’
g’h’ gap] + [h’-2Afg].
g p2 j

Thus we see that if p, g, and h satisfy

Io(2.14) (g-)"N0, h21 ON0 inD,

we obtain the conclusion of eorem 1. Again for simplicity one could ask that
g 1, in which case O/N0 in D is sucient. Furthermore, under Dirichlet
boundary conditions for u, if one asks that

(2.15) p-/2 (n- 1)+ (ln p) 0

on OD, then the conclusion of Theorem 2 holds.
Remark 2. In the event that g0 on OD is not satisfied or that OD is

nonconvex, we add u to the functional in (2.1), where a is a positive
unspecified constant. The positivity of ensures that will satisfy the ellipticity
requirement. We then choose a so that

(2 16) 2 +(ln p)+ >0 on OD.

Thus in the case of Dirichlet boundary conditions, we are again led to the
conclusion of Theorem 2.

We now mention another result for solutions of the Poisson equation

(2.17) u -p in D.

The following is an extension of a result of Miranda [4] which was used by Payne in

[6] in the case p 2.
Tzoz 3. If u is any solution of (2.17), where p > 0 and p 0 in D, then

the function

+U
P

(2.18)
p O

takes its maximum on OD.
Pro@ We have
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In view of (2.17) and (2.18), we find

2
A,I, +-0,’I’ -IVu zX0

p - ,ikU,ik p-
From (2.4) it follows that

22u,iu,i (Au)2 (U,x u,yy ) + 4u,r,

which is clearly nonnegative. Thus our assumptions on p lead to the conclusion of
the theorem. We note that W could be a constant as in the case when p is constant,
D is a disk, and u vanishes on the boundary.

Finally, it is interesting to note that if u is the solution of (2.17) which satisfies
the boundary conditions (1.2), then from Theorem 2 it follows that

+2u

takes its maximum at a critical point of u, provided 0 on OD and (ln 0) N 0
in D.

3. iefis. Our first application is to problem (2.17), (1.2) where 0 > 0
and p N 0. Since takes its maximum at some point P on OD, we have

(3.1) (P) > 0.

If P e F, then by a calculation similar to that in [6], we find

[Vu[ 1
(3.2) tr--max /---7 < g->ro>0 onF.

oD p 2:o

We note that if Kg -> 0 on F2, then IYmax cannot occur there since on F2

On
-2p-/ZKg[VU[2 <0

which would contradict the strong maximum principle. Further, from Theorem 3
and (3.2), we conclude

(3.3) IVul 1+ u < in D,
p =4o2

and hence

1
(3.4) Umax--< 4r g"

As observed by Payne [6], the equality sign holds in (3.2), (3.3), and (3.4) when p is
constant and D is a circle.
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Although one could use (3.3) to deduce other inequalities, we will make use
of Theorem 2 instead. As an inequality it states that

]Vu 12 + 2pu <-_ 2pUmax.(3.5)

Let

M= ID p dx and L =OD pl/2 ds"

By integration over OD and some manipulation, we obtain (F2 )

M2

(3.6) Umax -’>

=2L 2"

The equality sign holds in (3.5) if D is an infinite strip and p is constant.
Clearly, other bounds for Uma follow from (3.5). We note that by a calcula-

tion analogous to [6], we can extend Payne’s result and obtain

1
(3.7) Umaxd2

where d is given as follows: if P denotes the (unknown) point where u attains its
maximum and O is an arbitrary boundary point, then

( i? r)(3.8) d max. min p l/2(r) d
PD \OcgD

where r measures the distance along the ray joining P and Q. Actually, one could
take any curve from P to Q. When O is a constant, (3.7) gives the result of Payne
[6]. Finally, if p and D have two axes of symmetry, one could show that P could be
taken at the center and Q as the nearest boundary point in the ordinary sense.

As a second application, we consider the inhomogeneous fixed membrane
problem

A4 +Ap4 0 inD,
(3.9)

4=0 onOD.

In a nuclear reactor context (see [7]), the "efficiency ratio" E defined by

(3.1 O) E ID Off) dx Io oi) dx

max" ID 0 dx maxM
plays an important role. Here 4 is the first eigenfunction of (3.9) with associated
eigenvalue A. From Theorem 2, we have

(3.11) 2

An easy calculation then results in

(3 12) E< L ds
M, 1/2, P

D

Thus (3.12) is an extension of the corresponding result of Payne and Stakgold [7].
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We note that if one were to consider an efficiency ratio/ defined by

2

then the integration of (3.11) and use of (3.9) results in

1
(3.14) E-<,
with equality if D shrinks to an interval.

Finally, we consider the following nonlinear eigenvalue problem (p > 0)

(3.15)
Au +Aup 0 in D,

u =0 on OD.

We have chosen p 1 for simplicity; the extension to nonconstant 0 is immediate.
It follows from the results of Levinson [3] that this problem has a positive solution
for any > 0.

By Theorem 2, we get

2)t 21
(3.16)

Let P be a point in D where u takes its maximum and O be the point on OD
nearest to P. Let r denote the distance along the ray from P to O. Then from (3.16)
we have

(3 17) du<_[Vul < 2a v+l up+l
dr "t- i’tumax-

Now integration of (3.17) from P to O and a short calculation results in

/
(3.18) (Urnax)(1-P)/2N(p) <-_d/p+l"
Here d is the radius of the largest inscribed circle in D with center at P and

1 / p+3 -1N(p)=vF(p+ l)[(p+ l’F2-fiT+7))]
We note that (3.18) gives an upper bound for Umax if 0 <p < 1 and a lower bound if
p > 1. When p 1, we get

2

(3 19) a>--4d2,

which is a lower bound for the first eigenvalue of the fixed membrane spanned
over D.

4. Concluding remarks. In the previous section we indicated how our results
may be used to obtain bounds for various important quantities in some physical
problems of interest. Other techniques are presented in [9].
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We note that extensions to problems with boundary conditions of the third
kind in n >-2 dimensions for the inhomogeneous problem and n > 2 dimensions
for the homogeneous problem remain to be done. Extensions to uniformly elliptic
operators will appear in a forthcoming paper.
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APPLICATIONS OF RIEMANN-STIELTJES INTEGRALS OF
ORDER k IN FUNCTIONAL ANALYSIS*

A. M. RUSSELLf

Abstract. in this paper we show that any bounded linear functional on C[a, b] has a representa-
tion as a kth order Riemann-Stieltjes integral. Conversely, a kth order Riemann-Stieltjes
integral formed with a fixed function of bounded kth variation defines a bounded linear functional on
C[a, b]. Finally, an interpretation of our integrals is made in the context of distribution theory.

Introduction. The important initial contribution in this field was made by F.
Riesz [2, 50-1 when he showed that a bounded linear functional defined on
C[a, b] could be represented as a Riemann-Stieltjes integral. Conversely, the
Riemann-Stieltjes integral formed with a fixed function g of bounded variation on
[a, b defines a bounded linear functional on C[a, b ], and its norm is equal to the
total variation of g on [a, b] We establish corresponding results for the kth order
Riemann-Stieltjes integral, i,, f (x)[dg(x)/dx-], the definition of which is given
in [5].

The theory of distributions has many important applications in mathematics
and physics. Several different approaches to the theory are given in the literature.
Distributions as defined by L. Schwartz [7] are linear functionals defined on test
functions having derivatives of all orders. Our kth order integrals will be inter-
preted as linear functionals possessing, in a completely rigorous way, the impor-
tant properties of Dirac’s delta function, but a knowledge of topological concepts
will not be required.

The simplest distribution is a Riemann-Stieltjes integral af(X)dg(x), and
physically this can be used to represent a mass distribution on a line. Higher order
integrals of the form baf(x)[d’g(x)/dx’-I are also necessary, the cases k =>2
representing dipole and multipole distributions.

The analysis given is constructive. We assume that k is an integer greater than
or equal to three; the case k 2 appears in unpublished form in [3], and can be
obtained from the general case by easy and obvious modifications.

Notation and preliminaries. Unless otherwise stated undefined terms and
notation can be found in [5] and [6].

DEviriaIor 1. Let k be any positive integer greater than 1. Then we will
denote by F(x_k/l,’’’ ,x,/,_) a subdivision of the closed interval [a, b] such
that

a’ X_k+ <" <X0 a <x <" <X b <. <Xn+k_ b’.

In this paper it will always be understood that a’ < a < b < b’. In addition we point
out at this stage that a F subdivision, as opposed to a 7r subdivision of [a, b (see
[5]), requires a fixed number 2k- 2 of points outside I-a, b ].

* Received by the editors September 12, 1975 and in revised form September 27, 1976.
? Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia.
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Throughout the paper we will make extensive use of the following function"
DEFINITION 2. Define

p(t) 0, t<-_x,

=1, t>x.

DEFINITION 3. If L is a bounded linear functional on C[a, b], then we define
a function g by

g(x) =-(k 1)!L[wx(t)], a’ <-x <-_b’,(1)

where

wx(t)
r (t-u)k-2

(k-2)!
px(u) du.

We now discuss the function

Z(k, t, xi, Xi+k-1)=--Z(t)

(2) (k 1)!Qk-l(wx(t); xi, ", X,+k-)
i+k-1 Wx(t)

(k )! Z 1T+-I, (x x;)’=i lj=i

where 1-I’ indicates that zero factors are omitted. (See Definition 1 (a) of [5].)
When t _-< xi,

Z(t) 0.
When X -- <-- X + 1,

(k-1)!w,(t) (t-xi)
z(t)

(x,-x,+l)..- (x,-x,+_,) (x,-x,+,) (x,-x,+_,)"

Generally, when xi+j -< =<xi+j+a, j 0, 1, , k 2,

(t--Xi+m)k-
Z(t)= Z H,+k-, (xi --x,)"=0 =i +m

Finally, when X+k- t,

(-1)-( ]) (by Lemma 2 of [5])
(-])

=(-1)-.
We now investigate w, (t) as a function of x, so put t to, a constant. Then

,o (to- u)--’ (_)
p(u)u.

Ifx Nto, then it is easy to show that w(to) (to-X)-/[(k 1)], whereas ifx > to,
(to) o.
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We now return to the function Z(t). Since k _-> 3, Z(t) is differentiable in
[a’, b’], and

(3) Z’(t) (k 1)!Ok-1 Wx(t); Xi, Xi+k-1

Now

d
dtwx(t) 0, t<-x,

(t-x)-2

(k-2)!
t-x,

and if we denote [(d/dt)wx (t)]t=to by w’(to), then it follows readily that

d -3

dxk_3[W’x(to)]= (--1)-l(to X), x--<to,

=0, x ---->to.
This function is 2-convex if k is odd, and 2-concave if k is even. It therefore
follows from repeated applications of Theorem 13 of [5] that w’(to) is (k- 1)-
convex when k is odd, and (k 1)-concave when k is even. Hence it follows from
(3) that for all in [a’, b’], Z’(t) is nonnegative when k is odd, and nonpositive
when k is even. Thus Z(t) is a nondecreasing function when k is odd, and a
nonincreasing function when k is even, and so the graphs in Figs. 1 and 2 are
obtained.

(0, 1)
k odd

l,, (0,-1)
Xi+k-

Xi Xi +k
t._

k even

FIG. FIG. 2

Considering a F(X-k+l, ", X+k-) subdivision of [a, b], we conclude that

(k 1)! E [Ok-l(Wx(t); Xi+l’’’’, Xi+k)--Ok-l(Wx(t); Xi,’’’, Xi+k-1)]
i=-k+l

(k- 1)![Ok_(Wx(t); X.,’’’, Xn+k-1)--Ok-(Wx(t); X-k+,’’’, XO)]
has the graph shown in Figs. 3 and 4.
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(0, -1)

X-k+l a --X0

k odd

b xn x,, +k-1

FIG. 3

(0, 1)
even

X-k+l a Xo b X Xn+k_

FIG. 4

By noting the constant sign property of

Ok-l(W(t); Xi+l, Xi+k)--Ok-l(W(t); Xi, Xi+k--1),

it follows readily that

(4)

sup (k-l)!
a’NtNb’

n-1

E I[O-,(Wx(t); Xi+l,’’’, Xi+k)
---k+l

--Qk-l(Wx(t); Xi, Xi+k-1)][ 1.

THEOREM 1. The function g defined by (1) belongs to BVk [a’, b’].
Proof. We consider any F(X-k+l,""" ,Xn+k-1) subdivision of [a, b]. Then,

using (1) we can write an approximating sum for Vk[g; a’, b’] in the form

n-1

=-k+l
[Ok-l(g; xi+,, Xi+k)--Qk-l(g; xi, Xi+k-,)]

X (k 1)!uiL[Qk_m(Wx(t); Xi+m,’", Xi+k)
i=-k+l

Qk-m(Wx(t); Xi, ", Xi+k-1)],

where ui + 1, the value of ui being chosen so that

uiL[Ok-l(wx(t); xi+a, Xi+k)--Ok-l(Wx(t); xi, Xi+k-1)]
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is nonnegative. Since L is a bounded linear functional on C[a, b] there exists a
constant M such that

for each f C[a, b ], where

sup
x

Consequently,

n--1

2 IQ-,(g; Xi+l’ Xi+k)--Qk-l(g’ Xi’ ’X+k-a)l
i=-k+l

n-I
_<-M sup (k- 1)! 2 lUll [Ok-l(Wx(t); Xi+l,’’’, Xi+k)

aNtNb i=-k+l

M (by using (4)).

It now follows that g BVk[a’, b’].

--Qk-l(Wx(t); Xi,

We conclude this section by stating two theorems that will be required at a
later stage.

THEOREM 2. Let f and all of its derivatives f(r), r 1, 2, , k 1, be con-
tinuous on [a, b ]. If g BVk[a, b ] and vanishes when x <-a and x >= b, then

exists, and

b dkg(x)
(k- 1)! f(x) dxk_

b

(k- 1)’ f(x)
dkg(x)
dx k--1

b

(--1)k-1 f(k-a)(X) dg(x).

Proof. We first observe that the conditions given guarantee the existence of
the RSk integral. We now consider any Fh(X-k+l,""" ,Xn+k-) subdivision of
[a, b ], so that each subinterval xi -xi-1 is of length h. If we write A instead of A,,
which is defined in [6,5], then the approximating sum S(Fh, f,g) for
bf(x)[dkg(x)/dxk-] can be rearranged in the form

(_1)k- nl Ak-lf(xi_k+2S(rh, f, g) --i Ag(x) +R,(k- 1). i=0

where

1 [Am-lf(Xn l-m) Ak-mg(xn)(--1)m-1 -- k.-m
R

(k-l)! m=l h h
A’n-f(X_k+2) Ak-’g(X_k+m)

Thus, using the result

ASf(x)=hkf(s)(,), wherex <se<x +sh,
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we obtain

S(rh, f, g)=
(--1)*-1 1 A-lf(xk+2)
(k- a)i ,--o h- Ag(x)+R

(-1)*-1 "-lf(,_l)(xY .)Ag(x)+R
(k- 1)!

(-1)- -, [f(k-1)(Oi)_f(k-1)(Xi)]&g(xi)
(k- 1)i i=o

where Xi_k+2 < "Oi <Xi+l, O, 1, , n 1.
It can now be readily seen that the limit of the right hand side of the last

equation as h approaches zero is

(-1)k-1 I,bf(k-l)(x) dg(x)
(k- 1)!

as required.
THEOREM 3. Iff is of bounded variation on [a’, b’], and g has a continuous

(k- 1)th derivative on [a’, b’], then

(k- 1) !(M,)

exists, and equals

dkg(x)
dx k --1

f,,’f(x) dg(’-l(x).

Proof. We consider a F(x_,+l, , x,+,-1) subdivision of [a, b], and write

(k 1)!O,-l(g; xi,’", xi+,-1)=

where xi < rh < Xi+k. Therefore,

g(k-1)(Xi) g(k-1)(,Oi)--g(k-1)(Xi)
Qk-l(g; Xi, ", Xi+k-1)--

(k- 1)! (k- 1)!

Hence, an approximating sum for the MIRSk integral can be written as

n--1

(k- 1)! Y f(Xi+l)[Qk-l(g; Xi+l, Xi+k)--Ok-l(g; Xi, Xi+k-1)]
i=-k+l

n-1

i=-k+l

n-1

i=--k+l
f(xi+ a)[{g (k-1)(hi +,) g(k-l)(xi+ 1)}-- {g(k-1)(qi) g(-’)(x)}]

n--1 --1

f(Xi+l)[g(k-1)(Xi+l)--g(k-1)(Xi)] q-
=0 =-k+l

f(xi + 1)[g (k --1)(X + 1) g(k-1)(Xi)

n-1

=-k+l
If(x,+ ,) -/’(x+9][g-’)(n+ ,) g(-’)(x+ ,)]

q-f(xn +1)[g (k 1)(Tin g (k -1)(X )] f(x_k +2)[g (k -,)(Tj_k + 1) g
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Letting ]IFII approach zero in the last equation, and using the uniform continuity of
g(k-) and the bounded variation of f, gives us the required result.

Representation theorem. We are now in a position to present a representa-
tion theorem for bounded linear functionals on C[a, b ]. We recall the definition of
the MRSk integralmsee Definition 5 of [6].

THEOREM 4. Let L be a bounded linear functional on C[a, b ]. Then, for any
natural number k, there exists a function g BVk[a’, b’] such that

L(f) (M) f(x)
dkg(x)
KXk-1

for all f C[a, b ].
Furthermore,

[ILII IDk+-g(a)-- Dk-g(a)l + Vk (g; a, b) + [Dk+-g(b)-Dk-lg(b)l.
Conversely,

b dkg(x)
(M) f(x) dx-----zT_

formed with a fixed function g BV[a’, b’] defines a bounded linearfunctional on
C[a, b].

Proof. Assume that k is odd. A similar analysis will be applicable if k is even.
We consider any F(X-k+l, , Xn+k-1) subdivision of [a, b], and define

and
i=O, 1,...,n-k,

n-k+l =,-1 b.

We now define an approximating function b for f.

th(t) -(k 1)! E f(i){Qk-(wx(t); Xi+l,’’’, Xi+k)
i=-k+l

--Qk-(Wx(t); Xi, Xi+k-1)}, a’<t<b

We now compare f and 4 on [a, b l; so assume that

Then, according to Fig. 1,

th(t)
(k-)

a <-x, <-_t<-_x,,+ <-_b.

--f(m)Qk-l(Wx(t); Xm, Xm+k-1)

+f(-){Qk-(Wx(t); Xm, Xm+k-1)
--Qk-l(Wx(t); Xm_l, Xm+k-2)}

+

--Qk-l(Wx(t); Xm-k+l, Xm)}.
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Therefore,

f(t) ck (t)
(k- 1)!

Qk-,(Wx(t); X..’’’, Xm+k-1){f(m-1)--f(.)}+’’"

q- Ok-l(Wx(t); Xm-k+2, ", Xm+l){f(m-k+l)--f(m-k+2)}

+ Qk-l(Wx(t); Xm--k+l,’’’, Xm){f(t)--f(m-k+l)},

since, when k is odd, Qk-l(Wx(t); Xm-k+a,’"" ,X,,) 1/(k-1)!, X,, <--__t <--Xm+a.
Since L is bounded there exists M such that [L(f)I_-<M supx I(x)l for all f in
C[a, b]. Because f is uniformly continuous on [a, hi, for each e > 0, there exists
8 (e) such that supat=b [b (t) -f(t)l < e/M whenever Ilrll < (. Hence, using g as
in Definition 3, we obtain

L(f)-
=-k+l

f(i){Qk-,(g; Xi+l, Xi+k)--Qk-l(g; Xi, Xi+k-1)}

Hence,

]L(f)-L(ck)] <-M sup
a<=t<=b

whenever

(6)

dkg(x)
L (f) (M) f(x)

dx k-’-------l.

We now obtain the stated value for IILII. Using the approximating sum of
(M) f(x)[dg(x)/dx-], and writing Ilfll sup=<x=< If(x) I, we obtain

f(a){Ok-,(g; Xo, Xk-1)--O_k-l(g; X-k+l, XO)}

q" f(i){Ok-l(g; Xi+l, Xi+k)--Ok-l(g; Xi, Xi+k--1)}
i=0

x.,..., x,+_,)-O_,(g; x._+,,...,+f(b){Ok-l(g;

--<ll/ll{IO-l(g; Xo, Xk-1)--Ok_l(g X_k+l, X0)
n-k

+ E IO-,(g; x+,,..., x+)-O_,(g; x,...,
i=0

Xn, Xn+k_l)--(k_l(g Xn-k+l,+lOk-l(g;
-< Ilfl/l[O-l(g; Xo, Xk-1)--(k--l(g; X-k+l, Xo)

+ Vk(g; a, b)+lOk_l(g; x,,,’’’, X,,+k-i)--Ok-l(g; X,,-k+,,’’’, X,,)I}.
Since g eBVk[a’, b’], g has right and left (k 1)th Riemann* derivatives at a and
b, and letting IIFII approach zero in (6) gives

’b

lg(a)-D_ (a)[+ Vk(g a, b)
dkg(x)

(M) f(x) dxk_ --<IIZII{ID%- k-lg

+ IDk+-Xg(b) Dk---g(b
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Consequently,

(7) IILl[<=[Dk+-lg(a)-Dk-ag(a)l+ Vk(g; a, b)+lDk+-ag(b)-Dk-lg(b)l.
Using (5), we have

]O(g; x+,..., Xo)-O_(; Xo,..-, x_)[

+ Y. {O_g; x+,..., x+)-O(g; x,...,
i=0

+ [O_,g; x,, x,+_)- O_,g; x,_+,,

n--1

i=-k+l

Thus,

[Dk+-lg(a)--Dk--lg(a)l+ Vk(g; a, b)+lDk+-lg(b)-Dk-lg(b)[<--_llLII,
and this result combined with (7) gives the stated value for

For the converse, we comment that (M) b f(x)[dkg(x)/dx k-a] is linear in f,
and its boundedness follows from the inequality

+ lg D_-lgdkg(x)
(M) f(x) dx kZ1 /IfllklD- (a) (a)[ + Vg (g" a, b)

+ Iok+-lg(b)--Dk-ag(b)[}.
Remarks. 1. The proof of Theorem 4 also serves to show that a bounded

linear functional on C[a, b can be represented as an RSk integral; and conversely
that an RSk integral formed with a fixed function g BVk[a’, b’] is a bounded
linear functional on C[a, b]. It is, however, more convenient to use the MRSk
integral when determining JILl[.

2. In [8], Webb shows that a bounded linear functional L defined on the
wider class Q0[a, b] of quasi-continuous functions anchored at a, has the
Hellinger-integral representation

c(I3
au(xl

where u is an increasing function on [a, hi, and g BV,[a, b], the definition of
which appears in [4, 1]. Using the notation of [4], if g2(a) and g2(b) exist, then
the Hellinger-type integral introduced by Webb can be expressed as a modified
RS integralsee [4, Thm. 5.2].

Repesefi eietefioi C [a ]. We now use the

Riesz representation theorem to obtain a representation for bounded linear

functionals on the space of functions having continuous nth derivatives on [a, b ].
Accordingly, let C[a, b] denote the space of functions having continuous nth
derivatives on [a, b ]; in particular, denote C[a, b by C[a, b ]. Furthermore, let

((x)l. Let L be aI10 denote sup (x)l and let 1 denote =0sup
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bounded linear functional on C"[a, b], L being bounded in the nth sense; that is,
there exists a constant M such that

IL(F)[ <=M[[flln for all f C’[a, b].

We now define a linear functional T on C[a, b] by

T(ck) L dp(Xo) dxo dx,_a

(8)

(n )!
4)(t) a n >- 1.

Then T is certainly linear, and since L is bounded in the nth sense,

[r(4)l is certainly bounded for all & C[a, b ].

Hence T is a bounded linear functional on C[a, b ], and so by the Riesz representa-
tion theorem, there exists g BV[a, b] such that

r(4) 4(x) ag(x), 4, C[a,

Therefore, using (8), Taylor’s theorem, integration-by-parts for Stieltjes inte-
grals, Theorem 3 and [6, 4], we have

L(f)-’ f(S)(a)L{(x-a)S}=L( :Q--
=o s (n- 1)

r(f(n)) f(n)(x) dg(x)

f("(b)g(b)-f("(a)g(a) g(x)

f(")(b)g(b)-f("(a)g(a)

Conversely, (M) I g(x)[dn+f(x)/dx"] is a bounded linear function on Cn[a, b]
since

N?,{g(b)+]g(a)l+ V(g; a, b)}.

We summarize the previous discussion in the following"
THeOReM 5. Let L be a bounded linear functional on C"[a, b], L being

bounded in the n-th sense. en there exists a [unction g of bounded variation on
[a, b such that

n@lL(f)
f(S)(a)

L{(x a)S}+f(")(b)g(b)-f(n(a)g(a)
=0 s[

a"+(x)
-n(M) g(x) ax
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Conversely, (M1) ba g(x)[d"+ lf(x)/dxn], formed with a fixed function g ofbounded
variation, is a linear functional on Cn[a, b], and is bounded in the n-th sense.

Generalized tunetions. Let H be defined on [a, b by

H(x) 0 when x > c,

=1 whenx>c, wherea<c<b.

Note that He BVg [a, b ], k -> 2. It is then not difficult to show, using [6, 4], that
when f(g-J) is continuous at c (a, b), (L H)eM3RS[a, b], and

dkH(x) (-1)k-
(M3) f(x)

(k 1)
f-l(c).

In view of this result, for example, it is not surprising that our generalized
Riemann-Stieltjes integrals should appear in the context of generalized functions.
We conclude with some brief observations.

As in [1, 1.2], let K be the set of all real functions b with continuous
derivatives of all orders, and with bounded support. We will further assume that
the support of each function is a closed interval.

Thus, if k 1, and g is a fixed function of bounded kth variation on [a’, b’],
then the RS integral &(x)[dg(x)/dx-], K, is a bounded linear functional
on K and can thus be interpreted as a generalized functionsee [1, 1.3]. We
develop this idea a little further and in particular discuss the derivative properties
of generalized functions, namely, that if T is a generalized function, and n is a
positive integer, then the nth derivative of T is given by

T()() (-1)T(6()), eK.

Let g be a fixed function belonging to BV[a, b ], and suppose further
that it vanishes when x a and x b. Then, according to [5, Thm. 20], g e
C()[a, b]. Consequently g e K. Now, according to Theorem 2, when k is any
positive integer,

Iab d k + g x fabk (x)
dx k -(-1)k (k(x) dg(x)

for all K, and so, if T()= 2 (x) dg(x), the kth derivative of T is given by the
(k + 1)th order Riemann-Stieltjes integral, kI2 (x)dk+lg(x)/dxk; that is,

d+g(x)r(()= (x) x
We summarize the previous discussion in
Toa 6. enever a distribution T can be represented in the orm

r( (x g(x,

where K, g BV[a, b ], and g vanishes when x a and x b, then

d+g(x)
k >0r(= (x x
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MONOTONE APPROXIMATION BY SPLINES*

RONALD A. DE VORE?

Abstract. We prove Jackson type estimates for the approximation of monotone nondecreasing
functions by monotone nondecreasing splines with equally spaced knots. Our results are of the same
order as the Jackson type estimates for unconstrained approximation by splines with equally spaced
knots.

1. Introduction. We are interested in how well we can approximate a
monotone nondecreasing function by monotone nondecreasing splines. For
r, n _-> 1, let (r, n) denote the space of splines of order r (degree r- 1) with knots
{i/n}g, i.e., S 9(r, n) if and only if Sr-2) is continuous on [0, 1] and on each
interval[i/n, (i + 1)/hi, =0, 1,..., n- 1, S is a polynomial of degree_-< r 1. Iff
is a monotone, nondecreasing function on [0, 1] (f ’), then we define the error of
monotone approximation by splines to be

E(f,r)=-inf I[f- SII,
S*(r, n)

where I1" is the supremum norm on [0, 1] and 6*(r, n) is the set of those splines S
in (r, n) with S ’. The question then is how fast does E,*(f, r)--> 0, n--> az, in
relation to the smoothness of f? Our main result is the following theorem.

THEOREM 1. There is a constant C>0, depending only on r, such that
whenever f and f(k is continuous, 0 <-- k <- r 1, then

(1.1) E*,(f, r)<= Cn-to(f, r/-1), n 1, 2, .
This is a Jackson type theorem for monotone approximation by splines. It is

exactly the same as the Jackson type theorem for unrestricted spline approxima-
tion.

Theorem 1 shows that monotone approximation by splines is as efficient as
the unrestricted approximation by splines, at least in the sense of Jackson type
estimates of the form (1.1). There is some deficiency in (1.1) however, in that it is
preferable to give the Jackson type estimates in terms of the rth order modulus of
smoothness, tot(f, t), rather than just the first order as in (1.1). The rth order
modulus of smoothness is needed to completely characterize the degree of
approximation by splines in the unrestricted case in terms of both direct and
inverse theorems (see K. Scherer [9]). We have more to say on this in the remarks
section ( 6).

Theorem 1 is already known in the case of approximation by step functions or
piecewise linear functions (r 1, 2) and also in the general case r _-> 1 if k 0 or 1.
Here, the variation diminishing splines of Schoenberg are monotone whenf is and
they also provide the estimate (1.1) in case k 0, 1 (see M. Marsden [7] and De
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Vore [3]). The variation diminishing splines can not give the result (1.1) for k _-> 2
because they are positive operators and hence saturated. This limitation exists not
only for variation diminishing splines but for any linear method of approximation
since any such method would have to preserve positivity (of the derivative of f)
and hence be restricted in its degree of approximation by the saturation
phenomena for positive linear operators. Thus, we must go to nonlinear techni-
ques to prove the general case of (1.1) and this makes the situation more difficult.
For example, there is no easy proof of (1.1) even for quadratic or cubic splines.

This situation is paralleled in monotone approximation by polynomials. For
this problem, G. G. Lorentz and K. Zeller [6] and G. G. Lorentz [5] have given
Jackson type theorems of the same form as (1.1), for k 0, 1 (here n is the degree
of the approximating polynomials), but these results have not been extended to
k _-> 2. It is possible to use the techniques and results of this paper to prove the
higher order Jackson theorems for monotone approximation by polynomials. This
is given in the next article of this journal [10].
Our proof of (1.1) is somewhat complicated by the presence of many constants

whose actual values are usually not important but they are sometimes used in the
definition of other constants. We will use the following conventions in labeling
constants. Constants that appear in inequalities for general splines, e.g. B-splines,
will be denoted by a, a2, etc. Constants that appear in the approximation of f or
its derivatives by splines will be denoted by C, C2, etc. Constants that appear in
upper estimates forf’ will be denoted byA 1, A2, etc., while constants appearing in
lower estimates for f’ will be denoted by B1, B2, .

2. B-$plines. We will on several occasions have to make local corrections of
splines. This is best done by using splines with small support, such as the B-splines.
Let tj=j/n, for j=O, 1,...,n, tj=O for j<O, and ti=l, for j>n. If
M(x;t) r(t-x)_-I then the B-splines of order r are given by

N.... (x) M(x t, t+,), -r+l<_i<=n-1,

where the notation means that for fixed x we take the rth divided difference of I
with respect to the variable at the points t,..., t+. We mention now some
properties of B-splines which can be found either in [1] or [2].

The B-splines have minimal support. For each i, N,,r vanishes outside of
(t, t+) and is strictly positive on (tg, t+). With our normalization we have

f Ni,n,r(X dx 1.

Actually, we will be more interested in the B-splines of order r- 1 (degree
r-2) since these will be used in the approximation of ’. Accordingly, let us
introduce the notation that Ni- Ni,,,,,-1 with the n and r-1 being understood.
There are constants c1 -< 1 and c2 -> 1, which depend only on r, such that

(2.1) Ni(x)olrt, ti +rt-x <=ti+r_-rl -,
(2.2) N(x) <-_a2n, -o<x <.
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The B-splines N form a basis for (r- 1, n). If S 0(r- 1, n), then there are
)-r+2, such that S Y. aiNu. Also, there is a constant O3 1,unique constants (ai n-1

which depends only on r, such that

(2.3) lail <-a3n- sup
tiXti

This last inequality follows from the C. deBoor-G. Fix formula for quasi-
interpolation [1] which gives a formula for ai in terms of derivatives of S on
(ti, ti+r-1). We use Markov’s inequality to replace derivatives of S by the
supremum of S over (ti, ti+r-1).

3. Interpolation techniques. There is a very useful idea in approximation that
to prove a result like (1.1), it is frequently enough to prove the result for only the
end point, which in our case is when f has a bounded rth derivative. This is
accomplished by using an interpolation argument to derive the general result from
the end point result. The argument relies on replacing the arbitrary function f by a
function which has a bounded rth derivative (controlled by the smoothness of f)
and approximates f well. More precisely, if e > O, f ck[o, 1], and k < r, then
there is a function g with the following properties:

(3.1) ][f <= cl ekto (f<k e ),

(3.2) IIg2r>l[ Cl k-r(,o (f(k ),

where C -> 1 is a constant depending only on r (see e.g. G Freud and V. Popov
[4]).

In the case of monotone approximation, in order to use this technique
directly, we would need to know that when f ’, then the functions g can also be
chosen to be nondecreasing. This does not follow from the Freud-Popov con-
struction and it is not known whether this is actually the case. However, it still will
be useful to use this interpolation technique in some of our proofs. We will also use
the fact that when k => 1, g can be chosen to satisfy

In fact, the g given by Freud-Popov already satisfies (3.3).
Let us point out how (3.1) and (3.2) can be used in the proof of the

unrestricted version of (1.1), since some of our later arguments are based on this
approach. The idea follows V. Popov and B1. Sendov [8]. We prove first that if g is
any function with Ilgr)ll _-< M, then there is a spline S 6 6(r, n), such that

(3.4) ]lg- Sl[ CMrl-r,

with C depending only on r. This is proved by establishing the more general
statement that for each j 1, 2,..., r, there is an S (/’, n), with s ll_-<
2JrJMn -j. For j 1, the function Sa can be taken as Sl(X)=gr-)(i/n), .x
[in -1, (i + 1)n -, 0, 1,. ., n 1.



894 RONALD A. DE VORE

Suppose then that we have shown the existence of a spline S 5(j, n) with

IIgr-J-Sjll<=2JrJMn -i. Let yi =rin -1, i=0, 1, ,, with A =[n/r]. Define

ai,j {g(r-i(t)- St(t)} dr,

We can take

Si+l(X) Si(t) + ai,iIVr,,,j(t) dt + g(r-j-1)(0).
i=0

The spline S + is in 6(/" + 1, n) and S + (Yi) g(r-j- 1)(yi), 0 -< A. Hence,

Ig(r--l)(x)-S+l(X)l-- (gr-(t)-Si(t)) dt

+IMn<= 2+riMn-lY+ y, <-- 2i+rj x [Yi, Yi + 1).

The same estimate holds on [yx, 1]. This shows (3.4).
Now, we take e n -1 and g as a function which satisfies (3.1) and (3.2). Let S

be the spline which satisfies (3.4) for g g. Then,

I- sll--< 1- [I / I1 sll <-- (c, / CC)n-,of , )
(3.)

<= Cn-o(f, n-)
with C2 >C a constant depending only on r. This is the unrestricted analogue of
(.).

Because of (3.3) and the way S is constructed, we also have the estimate

(3.6) I[f’- S’I[ <= C2n-+o(f, n-).

The spline S has a piecewise (r- 1)st derivative which is of course a step function.
The jumps in this step function are controlled because of (3.2) and the construc-
tion of S. Namely,

(3 7) jumpS(r-l)( ’ n -1)

for/" I, , n 1. In some sense, we have come full circle since the spline S can
be used as the function g when e n -1 except that S does not have a continuous
rth derivative, but instead we have (3.7). These results about the spline S in
unrestricted approximation will be used later.

4. Decomposition of monotone functions. As we have observed in the
Introduction, the estimate (1.1) is already known for k 0, 1 and so we will
assume from here on that k => 2 and r > 2. In particular, f’ is then continuous.

Note that if f’ is strictly positive on [0, 1] then the spline S introduced in the
previous section will be monotone nondecreasing when n is sufficiently large
because of (3.6). This spline also approximates with the correct order to give (1.1)
because of (3.5). Thus, we see that the real difficulty in proving Theorem 1 will be
when f’ has zeros. The idea then is to decomposef in such a way that we have good
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control over the derivative of f. This is done by isolating certain kinds of intervals
on which f’ is small, while on the remaining intervals, f’ is large at a suitable
number of places. We begin by introducing four types of intervals. The function f’
will be small on the intervals of type 1, 2, and 3, while on the type 4 intervals f’ will
be large at least some of the time.

Let A1 lOOrz2r4Cz-lce22, where C2>1 is the constant that appears in
(3.5)-(3.7) and c =< 1 and O2 I are the constants that appear in (2.1) and (2.2).

The constant A depends only on r. Let en n-kw(fk, n-l). An interval I is said
to be of type 1 if

(4.1)

(4.2)

(4.3)

I=[ian -, i2n-],withia, i2integers, i2-ia>r2, ,1],

f’(x) <=A ine,, x L
ifJ [jln -, jzn-], with jl, ]2 integers, I

_
Jandf’(x)Alne,, x J,

then J L

The condition (4.3) guarantees that I is a maximal interval on which (4.2) holds.
Let A2 c3A , where c3 is the constant of (2.3). Then A2 >A 1. If I [iln-i2n-l] is an interval of type 1, then let ] =< i be the smallest integer such that

(4.4) f’(x) <=Azne,, x [l’In -1 in-]

Similarly, let j2 i2 be the largest integer such that

(4.5) f’(x) <- A2ne,, x e [i2n-’ ]2n -]
We call the intervals /’ln -, iln -] and [i2n-, j2n-], intervals of type 2.

When we remove the intervals of type 1 and type 2 from [0, 1], then we are
left with a finite number of intervals. Such a left over interval is said to be of type 3
or type 4 according to whether the length of the interval is less than 2rZn -1 or
greater than or equal to 2rZn -a respectively. It turns out that f’ is also small on
intervals of type 3. This follows from our first lemma which shows that if f’ is small
on an interval it is also small on adjacent intervals.

LEMMA 1. Suppose 0 <-- a <= 1 n , and

(4.6) f’(x) <=M, x [a, a + n-].
Then, for any integer > 1, we have

(4.7) f’(X) <= 21t’2(m + x [a In -, a + (l + 1)n -] 71 [0, 1].

Proof. We derive the estimate for [a +n-, a +(1 + 1)n-] [0, 1]. The other
case is proved in the same way. Suppose first that x [a + n -, a + n -1 + k -n-].
We use standard notation A (g, x) to denote the kth difference of g with step size h
at the point x. Take h=k-(x-a). So, a+kh=x and a+(k-1)h<-a+n-.
Hence, with g f’, we have

(4.8)
g(x g(a + kh <= IA, (g, a )l + IA, (g, a) g(a + kh )l

_-< IA,(g, a)l + 2k 1)M,

where we used the fact that the second term in absolute values only involves values
of g on [a, a + n-], where (4.6) holds.
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Now for any y, we have A-(g, y) hk-g(k-(,) hk-lf(k)(), with y <: <
y + kh. Thus,

IA (g, a)l IA-l(g, a + h)- A-l(g, a )1 <---- h k-llf(k)(1)_f(k
with :1 and :2 in [a, a + n- + k-n-1]. Hence, because h k-in -1, we have

IA, (g, a) <_ k-k +lt/-k+lto (f(k) /1-1 nu k-l/,/- 1)
<_ 2k -k + n-k + loo (f(k n

Here we have used the fact that k _-> 2. If we use this inequality back in (4.8), we
find that

f’(x)=g(x)<_(2k--1)M+ne,<__2kM+ne,, x6[a,a+n-l+k-ln-1].
This extends our original inequality (4.6) to the larger interval [a, a
k-n-1]. Now, we repeat this procedure lk times to find

f’(x) <= 21k2M + (21k2- +’" "+2k + 1)ne, <-- 21k2(M+ ne,),

as desired.
As an immediate consequence of Lemma 1, we have the following lemma

which shows that f’ is small on intervals of type 3.
LEMMA 2. There is a constant A3 > O, which depends only on r, such that for

any interval I of type 3, we have

(4.9) f’(x) <=A3ne,, x L

Proof. Since I is an interval of type 3, it must be adjacent to either an interval
of type 1 or of.. type 2. Suppose that [a, b is this adjacent interval and assume that
[a, b] is to the right of/, so that a I. The other case is handled in the same way.
On the interval [a, a + n-l], we have

f’(x)<=A2ne,, x[a,a+n-1],
because of (4.2) if [a, b is of type 1 and because of (4.4) if [a, b is of type 2. We
know from Lemma 1 that this inequality can be extended to adjacent intervals.
Indeed, Lemma 1 gives

f’(x) <= 22rZk(Aznen + ne,) <= 22r4(A2 d-- 1)ne,,

because I has length <2r2n -1. This proves the lemma with A3 22r4(A2 h- 1).
While f’ is small on intervals of type 3, on intervals of type 4 there are always

places where f’ is suitably large as our next lemma shows.
LEMMA 3. LetB2 2-r4A2 Suppose I =[iln-l, i2n-l] is an interval of type 4.

Consider the intervals J =[(il + ur)n -1, (il +(U+ l)r)n-1], u=O, 1, r-1. If
il > O, then for some value of u, we have

(4.10) f’(x) >-Bzne,, x 6Jv.
Similarly, consider the intervals J’,. [(i2-(/ + 1)r)n -1,
O, 1, r- 1. If i2 < rl, then there is a value of u such that

(i2-ur)n-1], u

(4.11) f’(x >= B2ne,, x J.
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Proof. We will prove (4.10). The proof of 4.11) is the same. First observe that
we cannot have f’(x)<-_B2ne,,x 6J, for any u =0, 1,..., r-1. Otherwise, we
could use Lemma 1 to extend this inequality to the left and find

,.r2k 2[(4.12) f’(x) <- z t2ne,, + ne,,) <- 2 B2ne,, XeJo.
Here, we used the facts that B2 --> 1 and k _-< r- 1. Now, (4.12) and the fact that
2r4B2 A2 shows that f’(x)<=A2ne,, which means J0 should be contained in the
type 2 interval immediately to the left of J0 (here is where we need > 0). This is a
contradiction.

So, now we know that for each v, there are points s J for which f’(s)>_-
Bzne,,. On the other hand, suppose that for each v, there are points s’ J, with
f’(’,,) <Bzne,. Again, we must find a contradiction. This is done as follows. By the
continuity of ]", there is for each , a point x J such that [’(x,,) Bzne,,. Also on
Jo, there is a point XoJo with f’(Xo)=Azne,,. Otherwise we would have [’(x) <
A2ne,,, x Jo, which again would put J0 in the interval of type 2 immediately to the
left of Jo.

Now, we want to compute the divided difference of g f’ at the points x.
There exist points r/l, qz[iln -1, (il / rZ)n -1] with

g(k-1)(na) (k 1)!g[xo, x,..., Xk-a]
k--1

(k 1)!(A2-B2)ne, I1 (xo-x)-1,
i=1

and likewise

Hence,

(4.13)

g(k-l(r/2) (k 1)!g[xl, x2,’" ", Xk] O.

k-1

[A2-B2I<=((k -1)!ne.)-’lg(-’)Oq,)-g(k-)(q2)l 1-I (x-xo).
i=1

On the other hand,

and

<=oo(f(k), r2n-1) <_ r2to(f(t’, n-l) r2n e,

k-1

1-I (x -xo) <=(r)a-ln -+1.
i=1

Putting this back in (4.13) gives the estimate

(4.14) IAz-B21 <-((k 1)!)-lr2k -<rzr.
From the very definition of the constants A 1, A2 and B2, we find

(4.15) IAz BzI >= A1 >- rZU4 > r2r,
si.nce r-> 2. The estimate (4.14) and (4.15) contradict one another and therefore
we have proved the lemma.
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Besides guaranteeing that f’ is large on parts of intervals of type 4, we can also
show that f’ is large on parts of any interval that does not intersect a type 1 interval.

LEMMA 4. Let Ba 2-r4A 1. If J-- [/’n -1, (j" + r2)n -a] is any interval in [0, 1]
that does not intersect any interval of type 1, then for one of the intervals J
[(I" + ur)n-a, (1" + (u + 1)r)n-a], u 0, 1, r- 1, we have

(4.16) f’(x) >=Bane,, x eJ.
Proof. This proof is almost identical to that of Lemma 3. If 0 < u < r 1, then

we cannot have

f’(x) <-Bane,, x J,

since otherwise this inequality could be extended by using Lemma 1 to give
f’(x) <-A 1he,, x J, which means thatJ is already an interval of type 1, as is not the
case. Thus, for each u 0, 1, , r- 1 there is a point x J, and f (x) Bane,.
This means that with g -f’, there is an ra 6 J, with

g-’(n) g[Xo, x, x_] O.

Assume that (4.16) does not hold. Since J does not intersect any type 1
interval, there must be a point y J with f’(y)=Aane,. This means we can find
points Ya <y2<" "<y in J with f’(y)=Bane,, iio and f’(yo)=Alne,. So,
there is an *?2 J, with

k

g-(n)=g[y, Yk]=(k-1)!(A1-B1)nen 1-I (Yo-Y)-a.
i=1
iio

Arguing as in the proof of Lemma 3, we get

k

IA1-BII<--((k- 1)!ne,,)-alg(k-a)(nl)--g(k-1)(n2)l H (yi--Yio)-1
i=1
iio

r2k r 2r.

While on the other hand from the value of the constants, we have
2-r F2r.IA1-Ba[ >---A

This is the desired contradiction and the lemma is proved.
Now that we have given the important properties of intervals of types 1-4, we

can give our decomposition for f. Let In,’’’, I, be the intervals of type 4. For
each/" 1, , m, let I denote the closure of the union of/ with I and I}" where
I is the interval of type 2 adjacent and to the left of/. and I is the interval of type
2 adjacent and to the right of/.. The intervals I and I may be empty. If we delete
I*,..., I*m from [0, 1], then we are left with a finite number of open intervals
which we denote by Jo*,""", J*m where Jo* or J*m may be empty.

If I is one of the intervals I*, , I or Jo*, , J.,* then we define fl by

f,(x) f’(t)x,(t) dt,
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where X1 is the characteristic function of L Since the intervals are disjoint,

f(x) f(o) +Y +Y b (x)
o

which is our decomposition of f.
5. Proof of Theorem 1. We will prove Theorem 1 by showing the existence of

splines Ss,*., $I *(r, n) with the properties

(5.1) if J=(a,b),thenSs(x)=fs(x),forx[a-rn- b+rn-]
(5.2) 7-S Ce, with C depending only on r,

(5.3) ifI=[a,b],thenS(x)=h(x),forx[a-2rZn-, b+2rZn--a],
(5.4) -SI Ce, with C depending only on r.

Before proceeding to the proofs of (5.1)-(5.4), let’s first see how they give the
theorem. Recall first that each of the intervals I and J has lengthrZ/n.
Therefore, for a given x [0, 1], it follows from (5.1) and (5.3) that there are at
most five intervals I among I,. , I and J,. , J with Si(x) f(x). Hence,
if S f(0) +Z S+ZS then S and-S[ 5 max (sup i S,][, sup- Sj])

5Ce
which gives the estimate (1.1).

Proofof (5.1)-(5.2). This is the easier of the two. Let I (in -, izn -a) be one
of the intervals Jf and write iz A (r 1) +, where A and are integers with
A 1 and0 <r-1. Define x=(ia+u(r-1))n-, u=0, 1,... ,A+I, and

bu fi(xu)-fi(xu-1), P 1, 2,’’’, + 1.

Let N be the B-splines of order r-1 (degree r-2). Recall that N. is
normalized to have integral one. Define

Si(x): bv+lNl+u(r-1)(t) dt.

Since each B-spline is nonnegative and the numbers b 0, we have S . Since

f=0 for x not in I, we have Si(x)=O=f(x), for x Xo and Si(x): S1(x+)=
fi(x+a) =f1(x) for xx+a. This shows that property (5.1) is satisfied for S.

For the estimate (5.2), we need only observe that Si(x)=f(x), u=
0, 1, , A + 1. Thus, if x x x+a, then

because both fi and $I are nondecreasing. Now, the interval I is a union of
intervals of type 1, type 2, and type 3. On any such interval, we have the estimate

f’(t)Ane,,

where A is the maximum of the three constants A 1, A2, andA appearing in (4.2),
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(4.4), and (4.9), respectively. Integrating this last inequality gives

X+l

b+l =< f’(t) dt<=(r 1)n-lAne, <=(r- 1)Aen,

where we have used the fact that x+l-x (r- 1)n -1. Using this inequality back
in (5.5) gives (5.2) provided that C-> 2(r- 1)A.

Proof of (5.3)-(5.4). Now let I=[iln -, i2n-] be one of the intervals I,
j 1, 2, , m. The construction of the spline SI is more complicated in this case
and it may be beneficial to sketch the idea of the construction before actually
embarking on details.

We start with a spline $1 which approximatesf according to (3.5)-(3.7). Since
we want to approximate f1 andf vanishes outside of L we need to modify $1. We
do this by working with the B-spline representation of S and deleting all terms
that do not contribute to S on L In this way, we get a new spline S. which agrees
with S on I but vanishes once we get a little away from L Integrating S gives a
new spline $2. Fortunately, the intervals immediately to the right and left of I are
of type 1 and so [’ is small on these intervals according to (4.2). This means thatS
will be small on these intervals and so $2 is a good approximation to fi.

Unfortunately, the spline $2 is not necessarily monotone nondecreasing.
However, we do know that S is not too negative. On L S S which is controlled
by (3.6). Outside of/, S is small as mentioned above. What we do then is add a
spline to S to pull it up so it can not be negative. We then integrate to get a new
spline $3 which is monotone nondecreasing, sure enough, but we may have
introduced too much error to still have (5.4).

The final step is to make a correction on each interval of length rZn -1 to
prevent the error from building up. This is done by using the fact that I is of type 4
and hence j’ and so S will be big at suitable places because of Lemma 3. What we
do is pull down S however much is necessary but still keep a positive derivative.
The resulting spline when integrated will satisfy (5.3) and (5.4).

Now, to the actual details. We consider the case when I is strictly interior to
[0, 1] and so r2= and i2 = n- r2. When I contains one of the end points, the
proof is similar and in fact somewhat easier, so we do not repeat the details. Let
Sa e (r, n) be a spline which satisfies (3.5)-(3.7) and let S{ =aN be the
B-spline representation of S. We define

i2--1
(5.6t S2(x) E aN(t) dt.

ia--r+2

We want to see that S2 approximates f1 well and so we must show that S. is small
outside of/. The interval E1 =[(il-2r)n -1, iln -] is contained in an interval of
type 1 because each of the intervals I is the union of/ with the left and right
adjacent intervals of type 2. Also recall that intervals of type 1 have length->_
rZn -a > 2rn -.

From (4.2) and (3.6), we find that

(5.7) Is’(x)l<-I’(x)l+l’(x)-S’(x)l<-(A +C2)nen, x E1.
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Similarly, for E2 [i2, (i2 + 2r)n-a],

IS (x)l <- (A, + C2)ne,, x

These last two estimates can be used to estimate a when vF=
{/z’il-2r+4_-</z_-<il-r+l or i2_-</z-<i2+r-3}. For these values of v,
(t, t,+r-) E E2 and so from (5.7), (5.8), and (2.3), we find

(5.9) la,.l <__ a3(j + Cz)e,, v 6 F.

Now, we use (5.9) with (2.2) to get the following estimate on E3
[(i,-r+2)n -1, in-]t_J[in-, (iz+r-2)n-’]:

IS(x)-S(x)l=[ Z aN(x)l<-2ra.o3(Aa +C2)ne,, x 6E3,
ver

where we have used the fact that there are less than 2r integers v in F. This last
inequality together with (5.7) and (5.8) gives

Is )1 --< Is )1 + Is s  (x)l
(5.10)

_-< 3ra2a3(A + C2)ne,,, x .E3

where we have also used the facts that c2, c _-> 1.
The estimate (5.10) shows that S; is small when x eel. When x I, then

S;(x) S’(x) and for all othervalues of x, S’2(x) 0. Therefore, since [}= 0, x I
and fl f, x e I, we have

I[f,--S2[[=<Z[lf--Sl[[+ f ISi(x)l dx
(5.11)

-_<[2C2 + 6r2c2ce3(A
where we have used the fact that ]E3] _-< 2rn -1.

The estimate (5.11) shows that $2 is a good approximation to f. Unfortu-
nately, $2 is not necessarily nondecreasing and so we must make a correction. We
know that S is not too negative because of (3.6) and (5.10). Namely,

S;(x) S (x) >=f’(x)- IS (x)-f’(x)l >=f’(x)- Czne,
(5.12)

>=-Cznen, x L

(5.13) S;(x)>-_-3ra2a3(A +C2)ne,,, x 6E3.

Of course, S;(x)= 0, for all other values of x.
Let’s define

S3(x) (S;(t) + T2(t)) dt

where

T2 ’]/ (Nix-r+ ’[- Nil-r+2 -[- Ni2-1 -[- Ni2) -[- 2
i2--r+2

i--I

with ya 3rcz]-ce2cz3(A ---C2)e and ")t2--" ol-lC2en. Because of (5.12), (5.13) and
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(2.1), we see that S;(x) -> 0, x [0, 1 ]. Thus, $3 is nondecreasing but we may have
added too much error to still have a good approximation.

We want to modify $3 to prevent the error from building up. First, let’s see
how much $3 differs from $2. Since S; S; + T2, what we have added in T2 is the
cause of the error in $3 and we will have to subtract this at suitable places to
prevent a buildup of error.

We can write T2 T,a + T2,2, where T2, is the sum of the B-splines in T2
which have coefficients ,a (there are four of these) and T2,2 is the remaining sum,
which consists of all the B-splines with coefficients Y2.

Let’s first correct for T2,. By Lemma 3, (4.10), there is an interval
[lon -1, (lo+r)n-1], with 10 an integer, on which f’(x)>=B2n-k+aoo(fq’), n-l). This
interval is contained in [a, a + r2n -1] where [a, b] is the interval of type 4 that
makes up part of L Recall that intervals of type 4 necessarily have length >=2rZn 1.
We will subtract 4ylN/o as our correction for T2,1.

For the spline T2,2, we have no control over the number of terms that appear
and so we do not have the luxury of making just one correction. Instead, we will
have to make a correction on each interval of length rZn -1. This is done as follows.
Let i2=ia+Ar2+t,, with A >1 and 0=<tz <r2 and define x=(il+,rZ)n -1, =
-1, 0,...,A +2. From Lemma 4, it follows that for each u 1, 2,...,X-1,
there is an interval [ln -1, (l +r)n-1]c_[X_l,X], on which f’(x)>=Bane,. Our
correction on [x_l, x] will be the spline r2"YzNtv, when 1 =< u _-< A 2.

Now, Y2 appears a total of Atz+/z q-4-r times in the definition of T2,2. We
have already taken care of (X 1)r2 of these terms. So, we have yet to take care of
S r2 +/z r + 4 <- 2r2- r + 4 terms. We correct for these with the spline S’yzNl,_ 1.

This corrects for all the error from T2; however, we would also like our new
spline to agree with f when x >_-xx+2. To do this, let [lxn -1, (lx +r)n -1] be the
interval guaranteed by Lemma 3, (4.11). This interval is contained in
[(i2-rZ)n -1, iztl-a]. The spline 73N, with /3 S2(x +2)-fx(xa +2) is our correc-
tion in this case

Thus, our total correction will be the spline

So, we define

A--2

T3 4/aNlo+ r2T2 Nlv q- s’y2Nta_l -+- ]t3Nl,.

Si(x) S3(x)- T3(t) dt.

This is the spline that will satisfy (5.3) and (5.4).
The verification of (5.3) is quite easy. If x [x-a, x+2], then fXx)= 0 S’(x).

Also, in substracting T3, we have accomplished two things, taking away exactly
the error introduced by T2 and then forcing an interpolation at x+2. Thus, when
X<X_I, Sx(x)=O=fl(x), and when x XA+2, Si(x)=Si(XA+z)=ft(xx+z)=fi(x).
Therefore, (5.3) is satisfied.

In order to check (5.4), we must check that indeed we have prevented the
error from building up. Now, S,= S;+ T2-T3, and we already know by (5.11.)
that

f,(x)- S(t) d =11-$211<--__ C6,n,
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with C a constant depending only on r. Hence, we need only show that

(5.14) (Te(t)- T3(t)) dt <-_ Ce,, x e [X-l, XA+2],

again with C a constant depending only on r. Now, for x [x-1, xx/.], the two
integrals in (5.14) can differ by at most 43,1 + 2r23,e + 13,31, because any of the terms
involving 3,2 in T2 are taken care of by a corresponding term with coefficient 3". in
T3, within a length of 2ren -. Therefore,

(r(t)-r(t))dt 4+2r+ll Ce, xe[x_,x+],

where we have used the definitions of the constants and , and the fact that
s ll, which in turn is estimated by (5.11). Thus, we have shown (5.14)

and so property (5.4) is verified.
We have one last task and that is to show that S is nondecreasing or, what

amounts to the same thing, that S} 0. Now, S}= S-T and we already know
that S 0 and so we need only check where T is not zero, namely, the intervals
[ln- (l +r- 1)n -1] p 0, 1

First, when v 0, we have

S;(x) S;(x) f’(x)- Cne
(Be- Ce)ne,, x [lon -a, (lo + r-1)n-1],

where in the second inequality we used (5.12) and in the last inequality, we used
the fact that [lon -1, (lo + r)n -1] is the interval guaranteed by Lemma 3 to satisfy
(4.10). We know that on [lon-l(lo + r)n-1], we have a contribution in T3 from Nlo
but we may also have a contribution from some Nl., 1 _--< , _--< h 1. However, we
have at most two such contributions, and so

+ rZ3,z)azn
<=(Bz-Cz)ne, <=S’3(x), x [lon -1, (lo+r- 1)n-l],

where the first inequality uses (2.2), the second inequality uses the values of the
various constants, in particular that C2 <A 1, r => 3, a < 1, and ce2, o3 1, and the
last inequality uses (5.15). This shows that Sx)=S(x)-T3(x)>=O on
[Ion -1, (lo + r- 1)n-l].
When , --h, we argue as we did when , 0 to find that

T3(X)I < (13,31 + r23,2)ce2n < (B2- C2)I’I,En
_-< S(x), x e [lxn -1, (Ix + r 1)n-l],

because 13,3[--< [If-$2[[, which in turn is estimated by (5.11).
When u 1,..., h- 2, we argue in the same way. Now,

S(x)>-(B1-C2)ne,, [xeln-, (l,+r-1)n-1],

because of (5.12) and Lemma 4. Also, we need only check T3 on that part of
[l,n -1, (l, +r-1)n -1] which does not intersect either [/on -1, (lo+r-1)n -] or
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[ln -1, (l, + r-1)n -1] and on this part we have

Iz (x)l r2T2Nl(X) <- r2T2a2n <- (B- C2)ne.

=<S;(x),

again because of the values of the various constants. This shows that Sx) >= 0, for
x [l,n -1, (l + r 1)n-], when u 1,. ., A 2.

The proof that S’i(x)>=O, x e[l_ln -, (l_ +r-1)n -1] is exactly the same
except that we use the additional fact that s =< 3r2.. Remarks. We have mentioned in the Introduction that it is preferable to
get the Jackson estimates of the form

(6.1) E*(f, r) <= Co)r(f, n -1)

where to is the rth order modulus of smoothness of ]’. The reason (6.1) is
preferable is that then we would have the inverse theorem that if o is an rth order
modulus of smoothness and E*,(]’, r)= O(w(n-)), n -, then f ’ and toq’, t)=
O(to(t)). This is because of inverse theorems for approximation by splines with
equally spaced knots (see e.g.K. Scherer [9] for the case tot(t) t).

The reason that we do not get this result with our technique is that we
approximate [’ and then integrate to get our approximation to f. We could put our
estimates in the form

(6.2) E Cn-’oJ_,*(f, r)=< (f’, n -a

when f’ is continuous but even this does not reduce to (6.1) in this case.
In order to prove (6.1), it would be enough to show that whenever f ]’, and

e > 0, then there is a function g ’ with

and

The key is that the functions g be monotone nondecreasing, since otherwise the
existence of the functions g is already known as we have used in our proof. Once
the existence of the functions g are known then we would only need to use the fact
that we can approximate g with e n -1, by a spline S in 5*(r, n) with error

because of our Theorem 1. This would give

This in turn gives (6.1).
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MONOTONE APPROXIMATION BY POLYNOMIALS*

RONALD A. DE VORE]"

Abstract. We prove Jackson type estimates for the approximation of monotone functions by
monotone polynomials. The results are given in terms of the modulus of continuity of f(k), for any
k => 0. The estimates are of the same order as for the unconstrained approximation by polynomials.

1. Introduction. In the preceding paper [2], we have developed Jackson
type theorems for monotone approximation by splines. Here, we want to give
similar results for monotone approximation by algebraic polynomials.

Let 17, denote the space of algebraic polynomials of degree <-n and II*, the
set of those polynomials in Hn which are monotone nondecreasing on [0, 1]. If

f C[0, 1] is monotone nondecreasing on [0, 1] (f ), then we define the error of
monotone approximation of f by polynomials of degree _<-n by

E* (f) inf []f--
PHn

with I1 the supremeum norm on [0, 1].
Our main result is the following theorem which gives an estimate for E*(f) in

terms of the smoothness of f.
THEOREM 1. If k >= 0 and f(k) C[0, 1], f , then for n k + 1

(1.1) E*([) Cn-’to(f’, n-’),

where C is a constant that depends only on k.
Thus (1.1) is the same as the classical Jackson theorem for unconstrained

approximation by polynomials, and shows that at least in this sense there is no
loss in the degree of approximation caused by the monotone constraint. We
should remark that there are known examples with a loss in the degree of
monotone approximation given by G. G. Lorentz and K. Zeller [6], and the
author 1 ].

The cases k 0, and k 1 of Theorem 1 have been obtained previously by G.
G. Lorentz and K. Zeller [5] and G. G. Lorentz [4], respectively. They have used
linear methods of approximation in their cases. This is not possible in the general
case since such a sequence of linear operators would have to preserve the
positivity of f’ and hence be restricted in their effectiveness of approximation by
the saturation phenomena for positive operators.

The proof of Theorem 1 relies heavily on the results and techniques of [2]. In
fact, the proof is developed in much the same way with the major exception being
the fact that there is no direct analogue of B-splines. Instead, we have to construct
polynomials which are large on a given interval and fall off fast outside of this
interval. These polynomials are constructed in 2.

* Received by the editors April 25, 1975, and in revised form April 14, 1976.
? Department of Mathematics, Oakland University, Rochester, Michigan. This work was sup-

ported by the National Science Foundation under Grant GP 19620.

906



MONOTONE APPROXIMATION BY POLYNOMIALS 907

Using the results of [2] on the degree of monotone approximation by splines,
we can simplify the kind of functions for which we need to prove Theorem 1. In
fact, it will be enough to show the following simpler case of Theorem 1.

THEOREM 2. If k 2 andfk) is absolutely continuous with Illk + 1)[[L[0,1] 1,
then

(1.2) E* (f) <- Cn -k- n >N,

where C and N are constants that depend only on k.
Let us observe why it is enough to prove Theorem 2. Assuming that we have

proved Theorem 2 and f is an arbitrary function in C(k)[0, 1], then by Theorem 1
of [2], there is a spline S 6 (k + 2, n) (following the notation of [2]), with S and

(1.3) IIf Sll Ctn-ko)(f(k), n-l),
where C’ depends only on k. From (1.3), it follows that when Itl _-<n -1
(1.4) IAt +I(s, X)l IAtk +l(f, x) _]_ 2k +lC,n-%o(f(k) n-l) <__ C,,n-kw(f(k), n-l).
Now, S is a spline of degree k + 1, and so S(k+) is a step function. If IIS(k+l)l[ %
then there is an interval [a, b of length n -1 on which S(k+l) either equals y or -3’.
If it equals y and (k + 1)-in -, then

(1.5) A,/;(S, a) S*;3(x) dx dx; dx t*.
"Xk

This together with (1.4) shows that

+1)1[-

with D a constant depending only on k. This same result holds for
Now, by Theorem 2, there is a polynomial P II*, such that

and thus

Ils PII CDn-kw (f(k), n-l)

Ilf -PII <-Ill- sll+]]s -PII <= (c’+ CD)n-ko(f(k), n-l),

which gives Theorem 1 for those values of n => N.
We need also to check the values of n with k + 1 _-< n < N. For this, let Q be a

polynomial of degree -<n with

Ill’-Oil_-< C(n- 1)-k+loo(f(k), (n- 1)-1) _-< C’l-kto(f(k), If-l).
The existence of such polynomials 0 follows from the usual unconstrained
Jackson theorems. The polynomial

P(x)=f(O)+ (O(t)+C’n-kw(f(k), n-1))dt

is monotone nondecreasing and we have

Ill- 011-<11- o11+ C’n-kw(fCk), n-l)
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Thus, we have (1.2) also for the values of n with k + 1 _-< n < N. This then shows
that Theorem 2 implies Theorem 1. Thus in the sequel, it will be enough to prove
Theorem 2 and so we can restrict ourselves to functions f with I[f(k+lloo --< 1.

There were certain constants that played an important role in the statement
and results of [2]. In this paper, we will sometimes have to redefine these constants
to fit the needs of polynomial approximation. We will use the same symbolization
for these constants. This is allowable because the constants that are redefined all
had only the restriction on them that certain inequalities hold. In the case that the
constants are -> 1, these inequalities will still hold if we redefine the constants to be
larger, which we do. When the constants are _-<1, these inequalities will still hold if
we redefine the constants to be smaller, which we do.

2. Some special polynomials. We need to construct some polynomials which
mimic the B-splines. These polynomials will be used for corrections in the same
way that the B-splines were used in [2]. Let T"(x)=cos m(arc cos x) be the
Chebyshev polynomials of degree m. If m is odd, then T,, (0) 0. Near the end of
this section, we will prescribe an even positive integer r, which will depend only on
k and will be larger than 4k + 2. Thus any constants that appear and depend only
on r will in turn depend only on k. Let rn be the largest odd integer such that
mr <-_ n, and define

Qm,r(X) Cm,r(m -1 t-iT" (t)) dt,

with c",r a normalizing constant chosen so that Qm,r(1)= 1.
We want first to estimate Cm, If [tl<=m -1 then Im-lt-lT"(t)l > 27r-1> 2-1

and so

(m-lt-lTm(t)) dt --> 2-r+lm

Also, since [T.,(t)l < , -1 _-<t_-< 1, we have

--1

I I1(m-lt-lT"(t))rdt<=2m-1 t-rdt<=2m -1

tlm

since r _->4. Now, Im-lt-lT"(t)l <- 1, -1 _-<t_-< 1, and so

(m-lt-lTm (t)f dt <- 2m -1.
i<

These last three inequalities show that

m
< Cm 2r-am.

This last inequality for c,,,, together with the fact that IT,, (t) -<_ 1, -1 -<_ -<_ 1,
shows that

--r+lmx
(2.2) IO,,,,(x)l <- -- -1 <-x <-0,
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--r+lmx
(2.3) [1--Om’(X)l<---- T 0-<-x--< 1"

If I [a, b] is an interval contained in [0, 1] with length >-rn -, then denote
by III, the length of I and define

hi(x) cI(Om,r(X a’)- O,,,(x b’)) + n-llI-,
with a’= a-8rn -1, b’= b + 8rn -, and c a normalizing constant chosen so that

0
h(t) dt 1.

hi is then a polynomial of degree -<n- 1, which as we shall see is large on I and
falls off fast outside of L First, we want to show that ci III-.

When n -> 3r, then rn => 2 and 8rn- >- 4m-. We will only consider values of n
larger than 3r throughout but this is permissible since r depends only on k. If we
use (2.2) and (2.3), we find

Q,(x-a’)-Q.(x-b’)>= 1-2-+1-2-+ =>1/2, x I.

Also, since [Q,,,,(x)[ _-< 1, -1 -<x _-< 1, we have

(2.4) 1/2 _-< Q,,, (x a’) Q,,, (x b’) _-< 2, x I.

We can also estimate outside of I. If x [0, 1] and ’ dist (x, [a’, b’])_-> n -a,
then dist (x, I) <-_ 9r6’. Thus,

(2.5)

IQ,,,r(x -a’)-Q,,,r(x -b’)]

_< < mdist(x,I -r+l

18r
when dist (x, I) > 9rn-1,

because of (2.2) and (2.3). Since 111 >=rn -1, we have

(2.6) II[ fo ,)<- (O,,(x a Om,(X b’)) dx < (38 + 9(4r))[I[

where the left side was estimated using (2.4) and the right side was estimated by
considering the integral over two sets. The first set is where dist (x, I) <- 9rn -, on
which we used the facts that [O,,,(x)[-< 1,x [-1, 1], and that this set has measure
=< 19[I[. The integral over the second set S was estimated by using (2.5), to see that

(Q r(x a’) Q,,(x b’)) dx <- 2 -r+ dt
\ rn /

_< 9(4r)-lm- <_ 9(4r)rlI[,
where we have used the fact that III >-rn- and n <= 2rm.

The estimate (2.6) shows that there are constants a, a2 > 0, such that

(2.7) a,]I[-’ <-c, <-a2lzl-.
so c,--III as we have previously stated.
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If J is any interval we define

d, (x, J) max (1, n dist (x, J)).

Now, because of (2.5) and (2.7), it follows that if we choose a2 of equation (2.2) of
[2] large enough, then

(2.8) A(x)<=a2lll-l(d,(x,I))-+, forx [0, 1].

Note that this inequality automatically holds when dist (x, I)<-_ 9rn -, because
IOm,,(x)l<-__l,x[-1, x].

We will also need an estimate for At(x) from below. Namely the constant a
of equation (2.1) of [2] can be chosen small enough that

(2.9) llIl-a(d, (x, I)) =<Xi(x), x 6[0, 1].

This estimate holds for x e I, because of (2.4). In the same way that we have
proved (2.4), we can show that (2.9) holds when dist (x, I)<-_rn -a. Also, (2.9)
automatically holds when dist (x, I) _-> 41-, because of the term III-an that appears
in the definition of AI.

To see that (2.9) holds when rn-1 dist (x, I)_-< 1/4, let se’
cos ((3v+ 1)/3)rm -a and se=cos ((3u- 1)/3)rm -1. Then, Irm(x)l>-_&, for x
[se’, se], and Is’ :[ => m -1 whenever [se’, :]

__
[-1/2, 1/2]. Suppose that x < a and

8=dist(x,I)=lx-a I. Then the interval [8,8+8rn -1] contains a set S, which
consists of the parts of the intervals [se’, :] which intersect [8, 8 + 8rn -a] and the
set S has measure IS[--> m -a. Therefore,

--a’ 6 +8rn

fx-b’ c,#(m-lt-ar,(t)f dt >- fa c,,(m-at-ar,(t)) dt

>= Is c.,.(2mt)-" dt >-_ (2m)-’(8 +

> C(l8)-r

where C is a constant that depends only on r. Here, we have used our estimate for
Cm, in (2.1), the definition of m, and the fact that >=rn -.

This last estimate and our estimate for c in (2.7) show that when x < a and
--1dist (x, I) >= rn

A)(X) => C c,,r(m-at-lrm(t))rdt>=ozallI-a(d,(x,I))

The same estimate holds when x > b and dist (x, I) >- rn-a, and so we have proved
(2.9).

The polynomials AI will be used to correct the derivatives of our approximat-
ing polynomials. The primitive

A,(x) Ai(t) dt

will therefore be the correction to the approximating polynomials themselves.
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Because of our normalization, AI(1)= 1. It follows from (2.8) that

(2.10) IA,(/)]-<c2[II- (dn(t,I))-r+l dt<=2zlll-n-a(d,(x,I))-r+2, x<-a.

Similarly,

(2.11) I1-AI(X)l <=2OzlI}-ln-X(d,(x, I))-r+2, x >=b.

On I, we have ],,(t)[ O2[I1-1, and so

(2.12) I&(x)-A(y)[_-< A(t) dt <-[II-lx-yl whenx, y I.

We will need one other correcting polynomial. Let k be the integer in
Theorem 1, k -> 2, and now let m be chosen so that it is the largest odd integer with
m (2k + 2) _-< n 2. Consider,

4,, (x) (r(2n)- x)(m-x-T, (x))+4

which is a polynomial of degree _-<n 1 that is positive on [-r(2n)-, r(2n)-l], and
negative outside of this interval. We first want an estimate for the integral of
over [- 1, 1].

When Ixl<-kn- <-_m -, then Irn-x-r.(x)l>1/2.= Also, since r =>4k, we have
(r(2n)-a-x)>-_8-rn -, when Ixl-</n -. Hence,

r(2n)-

(2.13) dm r(x) dx >-8-rn-2--4(2kn-) 2--%kn-.
,/_r(2n)-

We can also estimate the integral over the set $-[-1,1]-
[-r(2n )-1, r(2n )-11. Now, T, (x)1--< 1, x [- 1, 1 ], and b,, is negative on S, and so

IS Ir 2(mx)-2k-4Chm,r(X) dx <= 2 x dx
(2n)

< 2m-2,-4(2nr a)2,+1 < 2(2r) 2+1() --3

Since k is fixed and n <-_ 4ink, we can choose r sufficiently large, depending only on
k, so that r 4k + 2, and

Is 1 Ir(2n)-*< 4,,,,r(x) dx.(2.14) dpm,,.(x) dx
a_(2.,,)_1

We fix this value of r for the rest of the paper.
If I is an interval contained in [0, 1] of length rn- and midpoint a, then define

I)I (X) diem, (X a ), d(x) dx 1.

Because of (2.13) and (2.14), it follows that there are constants a, a >0, such
that

a’n <_d <_a’n .
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We can also require that (l 2 is chosen large enough that when dist (x, I)-_>
2rn -1 then

(2.15) [,(x)l _--< Clr(2n)--(x a)2l(m dist (x, I))-2g-4n <= a2n (d,, (x, I))-2g-2,

where we have used the facts that d, (x, I) => 1, for all x and Ir2(2n)-2- (x a)21 -<
2(dist (x, i))2, when dist (x, I)>-2rn -. If 2 is large enough then this inequality
will also hold when dist (x, I)<-2rn -1, because in this case Ii(x)[ =< Cn, with C
depending only on k. Therefore,

(2.16) [i(x) <- o2n (d,, (x, i))-2k-2, X el0, 1].

Define the primitive

i0i(x) i(t) dr,

which is a polynomial of degree _-<n. From (2.16), it follows that a2 can be chosen
so large that

(2.17) [cPI (x)l --< a2(d, (x, i))-2k-,, x _-< a,

(2.18) [1-dpi(x)l <-_a2(d,(x, I))-2k-, x >--_a,

where as before, a is the midpoint of L

3. A decomposition oil. In [2], we have given a decomposition for monotone
functions which we will also use here. We decompose [0, 1] into a union of certain
pairwise disjoint intervals I, ] 1, 2, , m and J, ] 0, 1,. , m, with I to
the right of J_ and to the left of J. For any of these intervals/, we define

[i(x) [’(t)Xi(t) dt,

where XI is the characteristic function of the interval L Then our decomposition
for f is

(3.1) f(x)=f(O)+ fj’Av fl"f.
1=o i=1

Each of the functions fi is monotone nondecreasing and our proof of Theorem 2
will be to approximate each fi by monotone polynomials to get our approximation
to f.

The intervals J and I have special properties that we summarize. Recall
that to prove Theorem 2, we need only consider functions with II]’k+ )llLoo[0,,] 1.
Each interval J has length >-rn- and

(.2) if I is any of the intervals J, then f’(x)=if(x)<=An-, x I, with A a
constant depending only on k.

On the other hand, each interval I has length >-2rn- and

(.) if I is any of the intervals I, then there is an interval [lon-, (lo+ r)n-],
contained in I on which fx) f’(x) >= B2n -k.
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Also, if we denote I=[iln-l, i2n-1], i2-il Ar2+/x, with A > 1 and 0=< <r2,
and x (il + urZ)n -1, then

(3.4) if I is any of the intervals I, then for each 1 <= u <= A, there is an interval
[ln -1, (l + r)n -] contained in [x_, x] on which f’(x) f’(x) >-Bin -k.

We should remark that the actual statements of the results (3.3) and (3.4) in [2]
(these are Lemmas 3 and 4 in [2]) are stated with n
However, the proof goes over exactly the same with n

-a22, where AThe constant B1 of (3.14) is equal to 2-r"A 100r2C2al
100r22r4C2a -1 .a As we have remarked earlier, the constants al, a2, C2 were
introduced in [2] so that certain inequalities hold. We have redefined a and a2 in

2, preserving the original inequalities, and requiring that some new inequalities
hold. In a similar vein, we will redefine C2 in 5, so that a new inequality holds
while retaining the old inequalities that involved C2. The constant B1 2-r4o3A 2
where we will use the same value of a3 as in [2]. The only importance in the value
of a3 for this paper is that it is bigger than 1.

If I is one of the intervals I[, then we have a control overf’ immediately to the
right and left of/, because of (3.2). This estimate was actually given in a more
precise way in [2] and we will need this more precise version"

(3.5) if I=[a,b] is one of the intervals I,
([a-rn -, a] U[b, b +rn-]) f3 [0, 1].

then f’(x <- A n -k, x

The intervals [a-rn-, a] f-I [0, 1] and [b, b +rn-1] f-) [0, 1] are contained in what
we called intervals of type 1 in [2].

4. Approximation of the functions [j 7. We can approximate the functions
using the technique of G. G. Lorentz and K. Zeller [5]. Let I be one of the
intervals J. The function f is in Lip 1, in fact

(4.1) ]f’(x)] =< An -k, a.e. in [0, 1 ],

because of (3.2). Thus, the Lorentz-Zeller theorem gives that there is a polyno-
mial P e 1-I,*, such that

(4.2) Ifl(X)-P(x)] <- Cn -k-, x [0, 1],

with C an absolute constant. We want to observe more, namely that P is a better
approximation away from the interval L due to the fact that f’(x) 0, outside of L

LEMMA 1. If I is one of the intervals J[, ] O, 1,..., m, then there is a
polynomial P II*, such that

(4.3) If(x)-P(x)l<=CAn--(d,(x,I))-, x [0, 1],

with C depending only on k.
Proof. The basic idea is to go to the trigonometric case via the substitution

x cos 0, and then use the Jackson operators. Let r be the integer defined in 2,
and K, the Jackson kernel

(sin (n’t/2)] 2r+2

(4.4) K, (t) c, (t--)) ]
K, (t) dt 1,
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where n’ is chosen as the largest integer such that (2r +2)n’_-<n. So, Kn is a
trigonometric polynomial of degree =<n, and we have the following estimates for
the moments of K (see G. G. Lorentz [3, p. 57])"

(4.5) ItlK, (t) dt <-_ C,n -, j 0, 1,..., 2r,

with C a constant that depends only on k.
If h is a 2r periodic function, we define

Ln(h,O) h(O+t)K,(t)dt.

It will be notationally more convenient to work on [-1/2, 1/2], then on [0, 1] and so we
introduce (x)=f(x +1/2). Let g(0) =(cos 0), and define

vr(n’)-<-O<-_(v+l)r(n’)- u=0,.., n’-i
g.(0)

g, (-0), for 0 < 0.

Since the function gn is even, we have that L, (g,, 0) is an even trigonometric
polynomial of degree _-<n. Hence, i(x) L, (g,, arc cos x) is an algebraic polyno-
mial of degree _-<n. Lorentz and Zeller have.only used the operators L, when r 1,
but the proof of the monotonicity of Pf and the verification of (4.2) with
P(x) P(x-1/2) is exactly the same in the general case.

We need to get a better estimate than (4.2) outside of I. If S is any set, let
{x" x +1/26 S} and g’= {0" cos 0 6 S}. Note first that ]gn(O)-g(O)] <-_ CAirn --’

for all 0 and g,(O)=g(O) if dist (0,’)_->rn -. Hence, if we take 0’ and let
6 dist (0, ’) and assume that 6 _-> rn -, then we have

Ig. (0 + t)- g(O)l <- Ig. (0 + t)-g(O + t) + Ig(O + t)-g(O)

and so Ig,(O +t)-g(0)l 0, Itl_-< and <-_CAn- ltl when Itl> . This gives

(g.(O+t)-g(O))K.(t)dt <-_CAn- ItIg.(t)dt

<_CAn-6-+ Itlg(t) dt <__ CAn-r-6-’+,

because of (4.5). Translating this to x /’, using dist (0, [’)_-> dist (x, D, we find

[f(x)-’(x)l<-CAn--(d,(x,D)-+1, x [-1, 1],
with C a constant depending only on k, where we have also used (4.2). When we
restate this last inequality in terms of fi and P and make the simple observations
that d, (x, I) _-> 1 and r _-> k + 1, we get (4.3).

5. Approximation of the functionsf.The approximation of the functions
is more complicated. In this section, we will use standard techniques to get a good
polynomial approximation to fi. but this polynomial may not be monotone and so
we will have to make corrections to this polynomial in the next section. Again, it is
more convenient to work on [-1/2, 1/2] than on [0, 1]. Let I-[a, b] be one of the
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intervals I), and denote as before/={x "x +1/2el}, (x)=fx(x +1/2), and g(0)

We will approximate first with the Jackson operators of order r. Let

M(g, 0) (_)
r

g(0 +,t) K. ()

where K, is the kernel of (4.4). ThenM, (g, 0) is an even trigonometric polynomial
of degree =n,< and so P(x) M, (g, arc cos x) is an algebraic polynomial of degree
n. The polynomial P(x) (x -) is a good approximation to f.

Let E =E E2, where E =[a-rn-, a +rn-] [0, 1] and Ez=[b-rn-b + rn-] [0, 1]. The following lemma establishes the approximating properties
of P and in the process redefines the constant C2 of [2].

LEMMA 2. e constant C2 can be chosen so large that

(5.1) ]f(x)-P(x)]CzAn--(d,(x,I))-, x [0, 1],

(5.2) I[(x)-’(x)lc(a,(d.(x,e)) +(d.x,t))-)n -, x [0, ].

Proof. It will be important to observe that our choice of C2 does not depend
on any of the other constants, particularly A1 and A2. Throughout the proof C
and C’ denote constants that depend on k but are independent of all of the other
constants.

If I [0, 1], then (5.1).and (5.2) follow from the usual Jackson theorems on
the simultaneous approximation of a function and its derivatives. Hence, we can
assume that I # [0, 1]. This will allow us to control the derivatives of f provided n
is sufficiently large. Indeed, we know that If’(x)]-<An -k on an interval of
length =>n -1 because of (3.5). This and the fact that If(k+)(x)l _-< 1 on give that
Ifi)(x)l<=CAn -k+i-, x , i= 1, 2, k + 1, with C a constant depending
only on k.

Now that we have f(i) controlled on, it is easy to get an estimate for all x. For
example, if Xo , we have

If("(x)l<-If("’(Xo)l+ f("+’(t) dt <=(CAin-l+ 1)

where we used the fact that Ill(+)1[oo 1. Continuing in this way, we get

[If()ll<=(C’Aan-+ 1), i- 1, 2,..., k / 1,

with C’ depending only on k. Thus for n sufficiently large C’An-<= 1 and we
have Ilf(i)[I <-_ 2, 1, 2,..., k + 1.

We now proceed to the actual proof of (5.1) and (5.3). We need only verify
these inequalities for n sufficiently large since they hold automatically for n _-< N.
The proof consists of showing the corresponding result for the approximation
of g by M,,(g). To do this, we first need some estimates for A(g, 0). If S’ is
any subset of [0, 1], then as in 4, we denote ={x’x+1/2eS}, and ’=
{0" cos 0 }.

Since fl is constant outside of I, we have

(5.3) A(g, 0) 0, when [0, 0 + rt] I’= .
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Also, since f(x)=f(x)-f(a) on/, we have

(5.4) [A;(g, 0)[ =< 2rlA+l(g, when [0, 0 + rt] _I’

with C a constant depending only on k. In the second inequality, we used the fact
that the (k + 1)st derivative of g can be expressed in terms of the f(i),
1,..., k + 1 and we know IIf/ll =< 2, i= 1, 2,-.., k / 1.

We also need an estimate for A(g, 0) in the remaining case. Let F=
([a-rn -a, a]U[b, b +rn-a]) [0, 1]. Because of (3.5), we know that

f n-k--1(5.5) IfI(x)-(f(x)-f(a))l< f’(t) dt<2rAa x 6F,

where we have used the fact that the two intervals that make upFeach have length
rn a, and f’i(x) O, x F.

Letf(x) =f(x +1/2) and h(O)=f(cos 0). It follows from (5.5) that

(5.6) [g(O)-(h(O)-f(a))[ <-_ 2rA n-k-l, 0 iif’.

Now, suppose that [0, 0 + rt] is not contained in either/", or [’, and It[ _-<n
Then, 0 /’ and for each value of v either 0 + vt /’ or 0 + vt /", and so

-1

’ (- 1)( r)(g(O + vt)- h(O + vt)+f(a))

(5.7)

with C a constant depending only on k and the set E introduced at the beginning
of this section. The Y’ indicates that this sum is taken only over those v for which
0 + vt is in F’. This sum was estimated using (5.6).

The estimate (5.7) holds for all other values of 0, if It _-< n -a, because in the
other cases either (5.3) or (5.4) holds. Hence,

n -k-1oor(g, n -a) < CA

again with C a constant depending only on k. Hence for any t and 0,

[A(g, 0)] =<wr(g, t)=<(1 + nt)%r(g, n-1) <-CAan-k-a(1 + ntf

Now, the estimates (5.3) and (5.8), can be used to prove (5.1). First for any 0,
we have

(5.9)
Ig(O)-M.(g, o)l IAT(g, O)lK.(t) dt

<-- CAin
-k-1 (1 + nt)rKn (t) dt <- C’A in

-k-1

with C’ a constant depending only on k. Here, we have used (5.8), the fact that
has integral 1 and the estimates for the moments of K, given in (4.5).
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We need to improve this estimate when 0 is not in I’. For such 0, let
6 dist (0, [’). If 6 >0, then

(5.10)

Ig(O)-M,(g, 0)1 <- IAT(g, O)lK.(t) at <=rr--" t’lA(g, O)lKn(t) at
tl>,3r

<-rCA16-n -k-1 t(1 +nt)Kn(t) dt

=< C’A (nS)-rn-k-
with C’ a constant depending only on k. Here, we have used (5.3), (5.8), and (4.5).

The last inequality coupled with (5.9) shows that

(5.1) [g(O)-M,(g, O)[<=C’Aan--l(d,(O, _’)) -r.
This together with the fact that d,(x, I’)d,(O, [’), x cos 0, gives the estimate
(5.1), when everything is restated in terms of f and P.

The estimate (5.2) is established in much the same way. In exactly the same
way that we have proved (5.3), (5.4), and (5.8), we can show that

(5. 2) a(g’, 0) 0, when [0, 0 + rt] I’ ,
(5.13) ]A;(g’, O)]Ctk, when [0, O+rt]’,
(5.14) [AT(g’, 0) CA n-k (1 + nt), for any and 0.

In exactly the same way that we have established (5.11), we can use (5.12) and
(5.14) to see that

(5.15) g’(O)-(M,(u))’(O)Caan-k(d,(O,[’))-, foranytand0.

Here, we have used the fact that M,(g’, O)=(M,(g))’(O). Restating this last
inequality in terms of , we find

ca an- (d. (x, ))-" (1 -x2)-a/2
(5.16)

2Caln-k(d,(x, ))-, -x.
For x in L we can improve this last estimate. When 0 I’, let 6 dist (0, E’). Then

Ig’(O)-(M.(g))’(O)lN[ IAT(g’, O)K.(t) dt
tlr-l

+ I la;(g’, O)IK (t) dt

(5.17)
Z + Z2.

We use (5.14) on Z and estimate exactly as in (5.10) to find that

(. 8) C’A n- (n6)-.

For , we use (5.13) to find

(5.19) E1c Itlg(t) dtC’n-,
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because of (4.5). These last two estimates when put back into (5.17) give

(5.20) [g’(O)-(Mn(g))’(O)l<=C’(A,(d,,(O,’)) + 1)n -k, 0 /’,
where we have used (5.15) to replace na by dn (0, E’) in our estimate (5.18) of

Restating (5.20) in terms offx and using the fact that d, (x, ) 1, x e L gives

(5.21) Ifx)-P’(x)l<-_ZC’(a,(d,(x, 1)) +(d.(x,[))-’)n -’, x

This inequ.ality also holds for any x [-1/2, 1/2] because of (5.16) and the fact that
outside of I, dn (x,/) =< dn (x, [). Restating (5.21) in terms of fx and P gives (5.2).

6. Monotone approximation of the functions ]’I;. We can now give a
monotone approximation to the functions f7 analogous to that given in Lemma 1
for ;.

LEMMA 3. If I is one of the intervals I, 1,..., m, then there is a
polynomial P II*,, such that

(6.1) If(x)-P(x)]<=Cn--(d,(x,I))-’, x e[0, 1].

Proof. Let P be a polynomial of degree =<n which satisfies Lemma 2. Since P
need not be nondecreasing, we must make some corrections. The correcting
polynomials will not vanish outside I as was the case for splines. Instead, these
polynomials will fall off due to the factor d, (x, I). This means that all our estimates
will contain terms involving d, (x, I). While this complicates matters some, the
basic idea is the same as the approximation of f by splines given in [2].

While P’ is not necessarily positive, we do have from (5.2) that

(6.2) P’(x)>=f’(x)-Cz(Al(dn(x,E)) +(d,(x,I))-’)n -’, x [0,

Let 3’, C2A ,o-llEllrt-k CzA ,ra’- n-k-, 3’2 C2ce-’llI rt-g, and define

Ql(X)--- "yI(AEI(X) + AE2(x)) + yzA(x),

where E, and E2 are the two intervals that make up E and the A polynomials are
as defined in 2. Now, A,(x) At(x) and therefore from (2.9) and (6.2), it follows
that

(6.3) P’(x)+Q’(x)>=f’(x)>=O, x [0, 1].

However, we may have added too much error and so we must take it away.
As in 3, let I=[in -, i2n-], with i2-i r2A +/x, 1 <A, 0--</x <r2, and

x- (i, + vr2)n -1, u 0, 1,..., A. From (3.3), we know that there is an interval
[lon -1, (lo + r)n -]

_
I, on which

(6.4) P’(x) + Q’(x) ->- f’(x) >=Bzn -k.

Also, from (3.4), we know that for each l=<u_-<A there is an interval
[ln-’, (l + r)n-] [x_,, x], on which

(6.5) P’(x) + O’s(x) >= f’(x) >- B,n -.
Define

a A,(x,) At(0),

a,, A,(x,,) A,(x,,_),

a, AI(I)-A,(xA-1),

2_<v=<A-1.
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Then, because of (2.10)-(2.12), we have

(6.6) lal<-4r2cr21II-n- t,= 1 2,... A

where the r2 appears because ]x-x_] rZrt -, and the 4 appears because the
estimate of a uses (2.12) twice and (2.11) once.

Recall the polynomials introduced in 2. Let us use the notation -l)[l,,n-1, (L,+r)n-’] and b [l,,n-’, (l,,+r)n -] (tv. Define

O2(x) 2‘/0(x) + 72 a(x).

The polynomial P P+ O1 Q2 will be our approximation to fi.
First, we want to show that PI is nondecreasing. The polynomial 4 ’ is

only positive on the interval [ln -1, (1 + r)n -1] and so because of (6.3), we need
only check that P is positive on these intervals. Let’s first consider [lon -,
(10 + r)n-1]. This interval can intersect at most two of the other intervals [ln -1,
(l + r)n -1] and so from the definition of 02, we find

O;(X)--< 2Tlff2rt +‘/2(4r2a2lll-’n-’)2n
_N 2rC2A lO-(la2n -k + 4r2C2aa-(ln -k

<-B2n -k <-_P’(x)+Oi(x), x [/on -1, (lo+r)n-1],
where the first inequality uses (2.16) and (6.6), the second uses the definition of ‘/1
and ",’2, the third used the value of B2 32-4A 2>-- lOOr2a-oC2A11, and the
fourth inequality is (6.4). Thus P’(x)>=0 on [lon -, (1o + r)n-].

For the other intervals [ln -, (l + r)n -1], 1 < t, < A, we need only check on
the parts of these intervals that don’t intersect [Ion -, (lo+r)n-1]. For such an
interval, we have

< -[iln- (4rZaz[I[-1n-1)azrO(x)- mzla 114, (x)[--< C21
<=Bin- <=P’(x)+O’l(X), x e[ln -, (l +r)n-1]\[lon -, (lo+r)n-1],

where the second inequality uses the definition of y2, (6.6), and (2.16). The third
inequality uses the value of B1 100r2Cza[la, and the last inequality is (6.5).
This shows that P is indeed monotone nondecreasing.

To finish the proof of Lemma 3, we need to verify (6.1). To this end, it is
enough to show that

(6.7) ]Ol(x)- O2(x)] <= Cn-k-l(dn (X, I))-k, x [0, 1],

with C depending only on k. Consider first the polynomial 2y1o- ya(A +A).
If dist (x, I) >= 2rn -1, then dist (x, I) < 2 dist (x, El), dist (x, I) < 2 dist (x, E2), and
dist (x, I)_-<dist (x, I/on -i, (lo+r)n-]). Hence, ifwe use (2.10) and (2.17), we find
that for x <= a- 2rn -1, I [a, b ], we have

(6.8) [271o(X 71(A, (x) +A(x))[ -< 6ya2(d, (x, I))-2k --1

<- Cn-k-l(d, (x, I))-k,
where in the first inequality, we have used the facts that r-2>-_2k-1 and
]Eli rn -1. In the second inequality we used the fact that "/1 --< const, n-k-, with
the constant depending only on k.
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Similarly, when x >- b + 2rn-

IZTl(t)o(X)- "gl (AEa(X) + A(x))] _--< 12"Y1(1 (I)o(X)) T, (1 A,(x))

(6.9)
<- Cn--a(d, (x, I))-,

because of (2.11) and (2.18).
The estimates (6.8) and (6.9) also hold when dist (x, I)N 2rn -1, because the

polynomials o, Az, and Az all have supremum norm equal to 1 on [0, 1].
Therefore,

(6.10) 2yao(X)-ya(a(x)+az(x))NCn--a(d,(x,I))-, x [0, 1],

with C depending only on k.
We will now prove an estimate like (6.10) for the polynomial yz(At-
a) Let x_a 0, xx+a 1, and ao 0. Then, ifXo<X NXo+a

A(x)-Za..(x) Z a.(l-.(x)) +2lA(x)-A(xo)l
0 -1

(6.11) +72
A

Y. a,,(x)
Vo+

To estimate 1, we need only observe thht because of (6.6), we have
2max lal<-Cn -k-l, with C depending only on k. Also, if we let s
[lvn -1, (tv+r)n-1]c[X_a_ x,,]cI_ then d,, (x, I) < d,, (x, s for any xe[0, 1] and
u 1,..., A. Hence, from (2.18)

X tl2/t2 max la] Y (d.(x, s))-2-a

(6.12) o
<-_azCn-k-a(d,(x, I))-’ Y. (d,,(x, s))-2 -< C’n-k-l(d,,(x, I))-k,

with C’ depending only on k. Here, we used the fact that Y’. (d,(x, s))-2 is
uniformly bounded on [0, 1], because Ix_ x r2n- a.

The sum3 can be estimated in exactly the same way asa except that nowwe
use (2.17) in place of (2.18) to find

(6.13) wZ3<--C’n-k-l(dn(x,I))-k, X e[O, 1].

If x e L then 5;2 is estimated by using (2.12) to find

Z2<=Ya21II-l[x--X,,o[<--_C’n-k-a(d,(x,I))-k, x

because d,,(x, I)= 1, x eL and Ix -Xol<-2rZn -1. When xI, we use either (2.10)
or (2.11) as appropriate to find

E2 <- yzlAi(x)- AI(Xo)] =< 2yzazllI-ln-l(d,, (x, i))-r+2

<--C’n-k-l(d,,(x, I))-k, x

because r 2 => k.
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Putting our estimates for --1, "-’2, and ’3 back into (6.11) gives

(6.14) ’z(Ax(x)- a,, (x )) <-3C’n-k-l(d,, (x, I))-k, x 6 [0, 1].
\ /

Finally, when we use (6.14) and (6.8), it follows that

IOl(x)- Oz(x)[ <= (3C’+ C)n-k-l(d, (x, I))-k,
and so using (5.1), we have

If,(x) Px (x)l <- If,(x P(x )l +101(x) Q2(x )l --< Cn -k-(d, (x, I))-k

for all x e [0, 1]. with C depending only on k. This proves Lemma 3.

x6[0, 1],

7. Proofs of theorem. It is easy to prove Theorem 2, using the results in
Lemmas 1 and 3. If Ilf(k+l)llL[O,1] 1, then

+ (x) + (x)
o

P(x) f(O)+EPj’(x)+EPt(x),
o

as in (3.1). Let

where the polynomials Pj, are given in Lemma 1 and the polynomials P,,. are given
in Lemma 3. P is then a monotone polynomial.

Now, k -> 2, IJ?l -> r2n -, and Ilfl > r2n -. Hence,

E (d, (x, j.))-k +E (d,, (x, I))-k =D, x [0, 1],
o

with D depending only on k. Therefore,

o

)<= Cn -k-1 (d, (x, j))-k +E (d, (x, I))-k =< CDn-k-1,

for any x [0, 1], which proves Theorem 2. As we have shown in the introduction,
Theorem 1 follows from Theorem 2.
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ERRATA: POLYGAMMA FUNCTIONS OF
ARBITRARY ORDER*

NATHANIEL GROSSMAN?

R. B. Paris of the Centre d’Etudes Nucl6aires has pointed out to the author
that the coefficients in several expansions in the entitled paper were incorrectly
calculated. They are given correctly below.

The last term in the braces in the equation for Ie log F(x) at the top of p. 369
has a spurious factor (k +p)-l. That term should read

Z (-1)k((k)B(P + 1, k)x k.
k=2

The residues used to obtain the asymptotic expansion of Ie log F(x) as Ixl oo
were all incorrectly calculated. There are simple poles at s 2, 3, 4,... and at
s =-2, -4, -6, , and there are double poles at s 1, 0, -1, -3, -5, . The
residues are as follows.

Ats -2k (k 1, 2,. .). Using the functional equation of st(s), we calculate
the residue to be

R-zk (-- 1)k +,x-Zk (27r)-Zk-1 sin rrp F(2k p)sr(2k + 1).

Ats=l.

X
R1 F(p + 2)

{log x O(p + 2)}.

Ats=O.

1
Ro {log 27rx -y-O(p + 1)}.

2F(p + 1)

At s 1 2k (k 1, 2, .). Again using the functional equation of sr(s), we
obtain the residue

Rx-2k (27rx)x-zk
((2k) log27rx_O(p+2_2k)_(’(2k)l

rr F(p +2-2k) ((2k) J"

The asymptotic expansion for I’ log F(x) follows by summing residues, as in
the article. It is more complicated than that originally given.

* This Journal, 7 (1976), pp. 366-372. Received by the editors October 8, 1976.
t Department of Mathematics, University of California, Los Angeles, California 90024.
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SOLUTION OF INTERFACE PROBLEMS
BY HOMOGENIZATION III*

IVO BABUKA?

Abstract. The paper is the third in a series. The first two, Solution of interface problems by
homogenization I, H are devoted to the study of the linear case. This paper studies the case of strongly
nonlinear differential equations.

1. Introduction. In 1] and [2] appear surveys of some problems and applica-
tions of the homogenization method, together with extensive lists of references.
For an indication of the relevance of the homogenization method in different
fields of applications, we refer the reader to the first paper in this series [3] where
an extensive list of references is given. In [3] and [4] we prove some basic theorems
on the homogenization approach for linear equations. This paper generalizes the
homogenization method to nonlinear equations. Starting from the form of results
in [3], a simplified proof is presented which also holds for the nonlinear case.

We are concerned with the analysis of the solution of the following differen-
tial equation on

ai,j(, Ux)-.-... h,
Oxji,j=

with boundary conditions

u =g on

Here, sc x/H and Ux grad u. The functions ai,j(, ux) are periodic with period 1
in sc, and satisfy some growth and ellipticity conditions. The solution of the
problem obviously depends on H. The main result (Theorem 4.1) describes the
behavior of the solution for small H with an error estimate. Section 5 introduces
an example for n 2 when the coefflfficients aij(, Ux) depend only on :1 (i.e., are
independent of

2. Background. We denote by Rn the n-dimensional space, x=
(x x,)R,, with Ix[2==x2

," i. Let fRn be a bounded domain and
assume that its boundary, 01, is of Lipschitz type. We say, in short, II is a
Lipschitz domain. Denote by SIq(z), z R, the cube

SH(z) {x [Ix z [< 1/2H}
and by yH the set of all grid points with the mesh size H. That is, yH is the set of all
points x =--(mlH,’", m,H) with mi an integer. When z 0 and H 1 we will
write S instead of S 1(0).

* Received by the editors October 17, 1975, and in final revised form June 1, 1976.
J" Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park,

Maryland 20742. This research was supported in part by the U.S. Energy Research and Development
Administration under Contract AECAT (40-1)3443. Computer time for this project was supported in

part through the facilities of the Computer Science Center of the University of Maryland.

The boundary, 012, is of Lipschitz type when it may be locally expressed as a Lipschitz function of

n- variables.
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Given a function u(x, tz) defined on Rn x R,,, we will use the notation
Ou/Oxi Dx..iu ux,, etc. For example, D,;iu (x, lz) means the value of the deriva-
tive Ou/Oi evaluated at (x,/). The gradient of u will be denoted by ux, and
Ux =- (U, U, Ux).

We consider the Sobolev spaces V(f), 1 <p < o,/" =0, 1, and denote by
Ilw(a) the norm in W(I),

i=1

where Lp(f)= Wp(f) is the usual space of functions whose pth power is
integrable.

It is well known (see, e.g., [5]) that any u Wp(f) has a trace on 0f. The
subspace of W(I)) of all functions with zero trace on 0I will be denoted by
l;/’(f), and WI(E) will be the space of linear functionals over

We also will consider the space of periodic functions with period 1 and
understand these functions to be defined on $. Denote the space of these functions
by Wp,PER(S). Obviously Lp PER(S) Lp(S).

Thus far we have considered only scalar functions. We will deal also with
vector functions u (ut, , ut"), with norm defined in the natural way:

Ilull +. E
/=1

All other notation is extended analogously to vector functions.
Let us ormulate a lemma which will be used later.
LEMA 2.1. Let u l;’ (f). Then there exists a ]’unction {u}n (I) such

that it is constant on every S (z ), z 3,
, S (z , {u} 0 on f fn, where

and for all H<Ho

(2.1)

a’-’ (z)(n)

S(z =fl

where C is independent o]’H and u.

Proofi 1) Because u e lgg(fl) it can be extended by zero to R, preserving its
norm, i.e., It can be shown by the usual arguments that

(2.2)

The domain l) is Lipschitz by assumption and hence we can write (by
partition of unity arguments)

k

U Ui
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so that the functions u(x +AA), [A[ 1 have compact support in for any
0<h <Ho. Thus

k

vn , ui (x + AiHC)
i-----1

is a function with support in 1, where C>0 is a properly chosen constant.
Inequality (2.2) yields

(2.3) Ilv" u Ik,n) --< CHllu Ilw,).
2) Now we may construct function {u}n so that its value on Sn(z) is the

average of vn over Sn(z). Then it can be shown that

and the lemma is proved.

3. The boundary value problem.
3.1. The nonlinear Poisson problem. Consider the Poisson boundary value

problem for a quasilinear equation on f,

(3.1) L(u) Z Dx;ja,,j(, I.)Dx;iU(X)= h(x)
i,j

.with the boundary condition

(3.2) u g on

where : x/H, 0 < H--- 1 and tz ux. We are assuming
(i) the functions a,(, ) a, (5, tz), i,/= 1,. ., n, are defined on R, x R,

and are periodic in : with period 1;

(ii)

(3.3) , la,.(#, )1K( +11)-=,
i,]

(3.4)
l,i,j

]O ;,a,.(, )1-K(1 + [/zl)p-3,

(3.5) L ID,..,D;,a,.(, )1-<K(1 +1 1).-",

where K is independent of (,/z) and p => 2
(iii) g in (3.2) is the trace on 911 of a function G E W(I’I), and h E Wa(l’l).
Condition (3.3) yields that for any u W(fl) (lip + 1/q 1),

(3.6) II=l a,,(_t, u,)Dx,.,u
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with Cindependent ofHand u. Therefore on W(fl) x IYc’(fl), the form B (u, ),

(3.7) B(u,v)= fa [ ai,,(4, ux)Dx;iuDx.,,vJ dx,
i,j

is continuous in v and

(3.8) iB(u, v)l_-< c(1 +llu"- ,/qllv

Let us now assume that the problem (3.1) and (3.2) is well posed. More precisely,
(iv) let a e w (at such that a d + #, d e e e and

(3.9) B(a, v)- Ia hv dx

for any v lY (tl), and IIG d <.> -<- , 0 < r -<_ o. Then there exists at least one
u e W(tl), u G + w, w e IfC(tl) such that

B(u, v)= Ia hv dx

for any v (ll), and

(3.10) 0<p_-<l,

where p and C depend on yo only. Quasilinear problems satisfying conditions
(i)-(iv) are well studied. See [6], [7], or [8].

3.2. The associated problem. Corresponding to the operator (3.1) is another
problem which we will call the associated problem. For any given r 6 Rn we seeka
periodic (vector) function X(x, o’)=-(x{aJ(x, o’),"., X"J(x, o’)) Wp,PER(S), such
that

(3.11) fX(x, o’) dx =0,
s

and

(3.12) -Z Dx;yaid(x, tx)(t3 -:POx;iX [k])
i,]

where/x (/x, ,
xi r (6 +Dx;iX

k=l

and 8/k is the Kronecker symbol.
Similarly to equation (3.1), equation (3.12) must be understood in the weak

sense. That is, we have for k 1,. ., n

(3.13) Is[ ai’y(X’l)(aki +Dx;iX[’])Dx;fl)] dx=O
i,j
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for any v Wp,PER(S). Obviously, if X(x, o’) satisfies (3.12), so does X(x, o)+
constant. Equation (3.11) normalizes this arbitrary vector constant.

We make the following assumptions"
(i) For every o- Rn there exists at least one solution X(x, o-) W,PER(S).
(ii) The function X(x, o-) has two derivatives with respect to r, i.e.,

Dot;iX(X, 0") Wp,PER(S), D;iD;iX(X, or) Wp,pzR(S).

(iii) Let r(x) be any function of x S such that

(3.14) IDx;O’l-<, 0<s-<sc0, j= 1....,n.

Then X(X,O’(X)), Do-;iX(x,o(x)), and D,,;iD,;jX(x,o(x)) are functions in
W,PER(S), and

(3.15) IIX(x, r(x))-X(x, cr(O))llw],ts) <= C,
with the same inequality valid for D,;iX(x, o-(x)) and D;D;iX(x or(x)).

The results of [6] can be used for the analysis of problem (3.12). As in the
previous section, we postulate only the required properties. Now we define

(3.16) + (x, r)) dx.
i,j

Because of (3.13) we have also

(3.17)
Al’k(O’)--IS [ aid(X’ l’6)((’q-Dx;iX[l])(] dx

i,j

fS [i ai’k(x’ld’)(l’t-Dx;iX[l])] dx.

Equation (3.16) yields immediately that Ai, (o-) Aj,i(o and that ellipticity of the
operator L leads to the ellipticity of the operator

(3.18) /_7,(o’, U)= Dx;i,j(o’)Dx;i.
i,j=

Assumptions (3.3)-(3.5), together with assumption (ii) about X[1], yield that the
functions At,k (or), l, k 1," , n have two derivatives with respect to r.

3.3. The homogenized problem. In 3.1 we introduced the problem (3.1)
and (3.2) and in 3.2 concerned ourselves with the associated problem. Now we
will formulate the homogenized problem as the Poisson problem

(3.19) /2(u) Dx;A,,(ux)Dx;U h
i=1
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with boundary conditions

(3.20) u = g.

Fhe functions h and g in (3.19) and (3.20) are the same as in (3.1) and (3.2). We
will assume that there exists at least one solution u of (3.19) and (3.20). Later we
will assume that the solution is smooth. In applications, our assumptions about the
homogenized problem are a consequence of the assumptions about the Poisson
problem (3.1) and (3.2) and about the associated problem (3.11).

4. The homogenization.
4.1. Formulation o| the problem. The problem (3.1) and (3.2) has rapidly

changing coefficients with the scale H. The solution obviously depends on H.
Denote it by uH. The question is what is its behavior when H 0. This problem is
studied in [ 1]-[4] when the a, are independent of/z. Here we study it (by another
method) when the coefficients depend on the gradient of the solution.

4.2. The homogenization.
THEOREM 4.1. Let there exist a solution of the homogenized problem (3.19)

and (3.20). In addition, assume that the solution Uhas three bounded derivatives on
(1. Then for every 0 <H<Ho there exist at least one solution u of (3.1) and (3.2),
and

(4.1) uH U-H Xtk -;-;, Ux Dx.,kU <= CHp/p

w,()

where X(x, r) is the solution of the associated problem, C is independent ofH (it
depends on U), and p is given in (3.10).

Proof. 1. Define

w (x) U(x) +H Xm(, (r)Dx ..tU,
(4.2)

t=l

withs=x/H and tr=U,

and compute D.,w(x). We get

(4.3) D;jw
rz Dx ;jU+ O;Xt’](, r)D;,U+HV,

/=1

where

v =T.
/=!

(4.4)

Now, using assumptions (ii) and (iii) about the associated problem (in 3.2) and
the fact that U has two bounded derivatives, it readily follows that

(4.5) c
and C does not depend on H.
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2. We will show now that

(4.6) B(wn, v)-Ia hvdx <=CHIIvlIw(a,

for any v e If’(II), with C independent ofH and v and where B(wn, v) is given by
(3.7). We mrite

B(w, v)=(v)+R(v)
with

(4,7)

and

(v) E a,,i(, ,)(Dx.,,U
i,]

+ Y’. D;UDe.xm)D uv dx
/--1

U +, X3(, tr)Dx.,,U

and wish to estimate R(v). We have
Hw =12 +HV

and therefore for 2 p -< 3 and 3 _-< p < oo

So

In [Ei,.=l (a,,/(, w)-a,,i(,/2))(/.2, +HVi)

+ ai. (se, )HV ]D,,;iv dx

(4.8)
-CH[ In t(I+II+HIVI)-IvI((II+HIVI)

l/q

+ ( +lrtl)"-’lvl)]"/"-ax

<- CHIIvll4a).
3. By (4.8) we may replace B(wn, v) in (4.6)by. Thus we will restrict our

analysis to as

(4.9)
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where

(4.10)

(4.11)

o2H(u)-- Ir [ (Dx;j(l)Dx;IU)ai’j(’
i,j,l

(31+De.iXt’(, o’11] dx,

i,j,l

(61i +De;ix[l](, ))] dx,

and we will show that

(4.12)

(4.13)

with

(v) (vDx;lUDc;j)A,,j(o’(x)) dx + Re(v),
l,

(v (vD;D;g)&((x dx +(vl,
l,

(4.14) IR,(v)l CHIIvllv4a, 2, 3.

4. Let us prove (4.12). The proof of (4.13) is similar. Integrating (4.10) by
parts and taking into account (3.13), we obtain

(I)(/2) =--fa [2 Dx;14 = Do.;k[ai,j(, 12(o’))
i,j,l k

(4.15)
(I q-D,;,x[l](, o))]Dx;kDx;jq] dx

z..’yH(z (Z i,j,l k-1

"(t$ + D,,i/[l](, tr))]Dx;kDx;jU]] dx +R4(t).

Because

(4.16) ’. D;k[a,.j(,/2(o-))(a +De;, (, o))]D;kD; =C,
k Lq()

where C is independent of H, we readily get (using Lemma 2.1)

(4.17)

Inequality (4.16) is a simple consequence of assumption (ii) of 3.2 about the
associated problem, and of inequalities (3.3)-(3.5). It is also possible to show (by
easy, but slightly tedious, computations) that

H(Z) i,j,l k
S(z)cO

(4.18) (, +D,;ix[l](,, ))]Dx;kDx;jU]] dx
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’yEH H(Z) iEj {vD ;1U}n kE1= D,,k [ai,j (:,/2 (O’(Z)))
SH(z)cR

/Rs(v)

eT H(Z) k,j
Sn(z)

EH
SH(z)12

E {vDx;lUIHDx;ymld((o’(x)))+Rs(v)+R6(v)
l,]

vDx;lUDx;]Al,j(o(x)) dx +R(v)+Re(v)+RT(V)
l,

and that

(4.19)

Thus we have shown that

(4.20)

with

IRs(v)l < CHIIvlIw,(a).
This gives in turn that

l,j

where

(4.22) IR (v)[-< CH]lvlJw},(a).

Using (3.19), (4.21) and (4.22) gives (4.6).
5. The function U satisfies the boundary conditions; w does not. Let us

show that U-wn on 0fl is a trace of the function G, so that IIG- w(a
CH/p. Here G is the function whose trace is g, as in the assumption (iii) about the
Poisson problem ( 3.1).

Obviously, for any H> 0 there exists a smooth function n such that 1
in a neighborhood of 0, "(x)=0 for any x such that dist (x, OO)2H and
II C/H.

Using (4.2) and the assumptions about X[/](x, ), we readily see that

H H /P
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where C does not depend on H. So for GH G -t- (U-- G)tH (U- wH)tH the
trace of Gn on 0f is the same as that for wu, and IIGn-GIIw <-CH1/.
Assumption (iv) on the Poisson problem, ( 3.1) gives (4.1), and so Theorem 4,1 is
proved.

Theorem 4.1 and its proof lead to the following.
THEOREM 4.2. Let U and uH be the functions in Theorem 4.1. Let

(4.23)

(4.24)

with

ff(x)- . a,,(,
i=1

1 Is -.(z) dzT. (x) H--"z ,<

H

and

(4.25) W.(x)= E Aq(cr)Dx.,,U, (r= Ux.
i=I

Then

(4.26) T.H. (x < CHp/p,

for any f< such that dist (, a) >H.
Proof. T(x) is defined on . Repeating the argument used in (4.18) and

(4.20), we get

(4.27)

where

and

(4.28)

Because

we have

(4.29)

and therefore also

(4.30)

’(x) = a,.j (:,/2)D.iwH(x),
l=l

Hx/H, w

1 Is #.(z) dz.:(x H--"z "%

IlwH- uHllw,(a <= CH/,

Inequality (4.27) and (4.30) give the desired result.



HOMOGENIZATION III 933

5. Applications.
5,1. Linear equations. Let us assume that coefficients aij(e,/z) are indepen-

dent of tz, i.e., a.(,/z)=a,(e). Then we may take p=2, and obviously
(3.3)-(3,5) are satisfied when la,.(:)l _-<K.

Assume now that

(5.1) a,.i(c)r/,rt =>M /,2., M>0.
i,j=l i=1

Then the operator is elliptic and all assumptions introduced in 3.1 are satisfied.
The associated problem will split, in this case, into n independent problems

with periodic boundary conditions. The existence of these solutions follows from
the ellipticity of the operator L. Obviously the homogenized operator L now has
constant coefficients and its ellipticity follows from (5.1) and (3.16). Therefore, if
0fl is smooth, smooth right hand side and boundary conditions assure that the
solution U is smooth, too. Thus all of the assumptions of Theorems 4.1 and 4.2 are
satisfied, giving (as a special case) part of the results included in [3].

5.2. The problem of a laminated medium. As an example, consider the two
dimensional problem,

(5.2) -D;a(:, ux)Dx;U -D;a(, ux)Dx;zU h

in 1), with u = g on Ofl. Assume that with 0 < b < 1/2

for

for

where

a (, Ux) a(l[ux [[z) > 0

-1/2<a <-b, b <: <1/2,
a(:, ux)= az(lluil) >0

-b<a<b,

llu=l[z (o= ;u)2 +(O;=u)z.
The homogenization approach now consists of solving the associated problem
(3.11) for the unknown functions

xt(x, o.), xt:(x, or), o. R:.
In this case, (3.12) reduces to

-Dx;a(x, +)(1 +Dxz;aX[])
(5.3)

-D;2a (x a, +)D;2X
ta 0,

-D;2a (x, +)(1 +D;zXTM) 0,
(5.4)

a a(1 +O;axt) +2O;axt2,

az =D;Xt+z(1
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These equations are to be understood in a weak sense. For example, (5.3) and
(5.4) may be satisfied with xtzJ=0 and XtlJ(Xl,r) depending on xl only and
satisfying the ordinary differential equation in x a,

(5.5) X-1-da(x (O’I ( i --d,[1]
2 -- o-) ( ]. -t-ddx}} dXl[1]0.}

We can readily see that

dxt (resp. z2) zi constantdxi",)=Zl
in the intervals b<]x]< (-bxb). The problem reduces to solving a
nonlinear system for unknown z and z2. We get

[1/2A,()
"-/

a(x, ) 1 + l(x, ) dx,

A1,2() 0,
1/2

a(x, ) dx.A:,()
-/

In [7, 68-69], an equation of the form (5.1) is studied under the assumptions that
0)

(5.6) o+azP/Z-la(z)Ao+Aazp/2-1, 0<z <,

and, Ao, A 1, A0, A1 are positive numbers,

5.7) a’ z) Klz /-

(realizing that z 2, the right hand sides of (5.6) and (5.7) are equivalent to
those of (3.3) and (3.4).);

(ii) The function a is twice continuously differentiable. (This condition is
close to (3.5).); and

(iii)

(5.8) a (z) + 2z A > 0.

Under these hypotheses, all assumptions we introduced earlier are satisfied.
Let us compute now a special example. Assume

a(z)=ai, 0<z <

23,a(z) a +fl(z2-l 1

All of the assumptions made above are satisfied with p 2(y+ 1) and p
1/(p-1). Taking the torsion problem (see [7]) as a physical interpretation, the
values of >i are yield points for a composite material.
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For

b =.2, a 1.0, az= 10, [.I, 1-- 1.5,

1 5, /2 .1, ’ 2,, /-2-- 10,

the functions A 1.1(0-1, 0-2) and A2,2(0-1, 0-2) are shown in Figs. 1 and 2. Because of
symmetry, only 0-1 --> 0 and 0"2 0 are considered.

I000

5O0

200

I00

I0

0 1.0 2.0 5.0
0-
2

FG.

4.0
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A VOLTERRA EQUATION WITH A
NONCONVOLUTION KERNEL*

T. R. KIFFES-

Abstract. This paper is concerned with the asymptotic behavior of solutions of the Volterra
integral equation

x(t)4- a(t, z)g(x(r)) d"r ’(t), 0-<t<a3.

If x(t) is a solution of this equation, the limiting values of g(x(t)) are given under various sets of
hypotheses on the kernel a(t, ’) and the functions g(t) and f(t).

1. Introduction. In this paper we consider the asymptotic behavior of
bounded solutions of the equation

(1.1) x(t)+ a(t, s)g(x(s)) ds f(t), 0_<-t<,

where a, g, andf are prescribed real-valued functions. Throughout we will assume
that

(1.2) g(x)6 C(-c, ),

(1.3) f(t) C[0, c)f-] BV[0, ).

Closely related to (1.1) is the convolution equation

(1.4) x(t)+ b(t-s)g(x(s))ds =f(t), 0-<_t <,

which has been studied extensively by several authors.
With regard to (1.4), Levin [2] proved that if b(t) C1[0, c), (--1)kb(k)(t) >-- 0

(0 <-- < c, k 0, 1), f(t) C1[0, o), [/’(/)l dt <, g(x) C(-, ), g(0)= 0,
and g(x) is monotone nondecreasing, then (1.4) has a bounded solution. He also
proved that if, in addition, we assume that b(t) L 1(0, az), b(t) is not constant on
any interval except, possibly b(t)=- 0 on T_-< < for some T, f’(t) 0 as
g(x) is monotone strictly increasing, and x(t) is a solution of (1.4), then x(c)
lim,_ x(t) exists and satisfies

(1.5) lim Ix(t)+ g(x(t)) b(s) ds] ](oo).

Londen [8] generalized these results by showing that if (1.2) and (1.3) are
satisfied, b(t)>-_O, b’(t)<-_O and b(t):Ll(O, o), then for every bounded solution
x(t) of (1.4) we have g(x(t))O as t-c. If b(t)L 1(0, o) he proved that (1.5)
holds for bounded solutions of (1.4). In a later paper [9], Londen replaced the

* Received by the editors August 14, 1975, and in revised form April 12, 1976.
t Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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hypothesis b’(t)<=O by b(t) is nonincreasing without altering the above conclu-
sions. This result was further improved by Londen 10] when he replaced (1.3) by
the conditionf(t) L(0, ), f(t)-->F as --> oo and obtained a result similar to (1.5).

Several of the ideas for treating the nonconvolution equation (1.1) arose from
an analysis of the asymptotic behavior of solutions of the differentiated equation

(1.6)
x’(t)+ a(t, s)g(x(s)) ds =f(t),

x(0)=Xo.

This equation was first studied by Levin [3] and his results were improved by the
author [1]. Several of the identities in the present paper, like (3.13), are closely
related to similar ones which appeared in these two papers.

Volterra equations with nonconvolution kernels arise naturally in the area of
viscoelasticity in the presence of chemical reactions. For more details see [7].

It is the purpose of this paper to study the asymptotic behavior of bounded
solutions of (1.1). Specifically, this paper will be concerned with extending the
results in [8] to nonconvolution kernels. This paper is a refinement of the author’s
Ph.D. thesis written at the University of Wisconsin-Madison under the direction
of Professor J. A. Nohel.

2. Statement and discussion of results.
THEOREM 1. Let R {(t, s)10 < < oo, 0 < s < t} and / {(t, s)[0 -<_ < oo,

0 <- s <- t}. Suppose

(i) a(t,s)C(R), a,(t,s)C(R), a(t,s)>-O, at(t,s)<-_O for (t,s)6R,
(ii) supo__<t<oo a(t, t)=M<
(iii) tt_7-a,(t,s)ds+a(t,t)-a(t,t-T)>-O fort>-T,
(iv) there is an q >0 such that lim,_ inf fl(t)>0 for every 6, 0<6 <

where/3(/) inf {- at(t, s) dsl2-l >-6, t-rl <=1 </32-< t},
(v) limT-_,oo {supt__>a, _Ta(t, s) ds}= .
(vi) (1.2) and (1.3) are satisfied,
(vii) x(t) is a bounded solution of (1.1)for O<-t <o.

Then g(x )) --> O as --> c
In Theorem 1 we do not assume that every solution of (1.1) is bounded but we

only treat the asymptotic behavior of bounded solutions. Hypothesis (i) is the
obvious analogue of the hypothesis b(t)>-O, b’(t)<=O in (1.4) and we use the
notation a,(t, s)= Oa(t, s)/Ot. For the convolution case a(t, s)= b(t-s), (i) implies
(ii) and (iii). Hypothesis (iv) is not required for (1.4) and (v) is the analogue of
b(t)C_L’(O, ) in (1.4).

THEOREM 2. Let (i), (ii), (iii), (iv), (vi)and (vii)but not (v)of Theorem 1 be
satisfied. In addition, suppose

(viii) limT._, {suptr _7-a(t, s) ds}= A <

Then we have

(2.1) lim [x(t)+Ag(x(t))] =f().
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The remarks following Theorem 1 also.apply to Theorem 2. Hypothesis (viii)
is the analogue of b(t)L 1(0, oo) in (1.4). If one tries to relax hypothesis (iii)of
Theorems 1 and 2 the behavior of solutions of (1.1) becomes more complex than
in the convolution case. Theorem 3 and especially Theorem 4 below give an
indication of what can happen.

THEOREM 3. Let (i), (ii), (iv), (vi), (vii) of Theorem 1 be satisfied. In addition,
suppose

(ix) [ at(t, s) ds + a(t, t)>-O,
(x) limT-,oo limt-,oo o-T a (t, s) ds B <
(xi) Jo a s ) ds --> oo as --> oo

Then g(x(t))-->O as too.
THEOREM 4. Let (i), (ii), (iv), (vi), and (vii) of Theorem 1 and (ix) and (x) of

Theorem 3 be satisfied. Suppose that

(xii) ’o a (t, s ) ds -+A <oo as -+ oo.

Then we have

(2.2)
-KB <-_ lira inf Ix (t) + (A B)g(x (t))-f(t)]

-< lim sup [x (t) + (A B)g(x (t))-f(t)] <-KB
oO

where K is given by (3.1). In particular, ifB 0, then (2.1) is true.
Examples of kernels a (t, s) which satisfy the hypotheses of Theorems 1 and 2

are easy to construct. We present two such examples.
Example 1. If a(t, s)= d(t)c(s)b(t-s) and d(t) C1[0, oo), c(s) C2[0, oo),

b(t) ca[o, oo),

d(t)>-O, d’(t)<-_O, b(t)>-_O, b’(t)<-O and [d(t)c(t)]’>-_O
fbr 0 < <

c(s)>-O, c’(s)>-_O, c"(s)<-O for 0<s<oo,
(2.3)

c(s)O, c(oo)<oo, d(t)O, d(oo)>0.

b(t) is not constant on any interval except possibly an interval of the form
[T, oo) where T>0 and b(t) is not identically equal to a constant,

then the hypotheses of Theorem 1 are satisfied if we add b(t)L 1(0, oo) to (2.3)
and the hypotheses of Theorem 2 are satisfied if we add b(t)L 1(0, oo) to (2.3).

Example 2. If a(t, s)= b(d(t)(t-s)) and if in addition to the hypotheses on
b(t) and d(t) included in (2.3) we assume that

(2.4) [td(t)]’>-_O, td’(t)->O ast

then the hypotheses of Theorem 1 are satisfied if b(t)6Ll(O, oo) and those of
Theorem 2 are satisfied if b(t)Ll(O, oo). These examples will be discussed
further in 8.

For the sake of completeness we present a simple set of sufficient conditions
under which (1.1) has a bounded solution.
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THEOREM 5. Let (i), (vi), and (ix) of Theorem 3 be satisfied. Suppose

(xiii) inf_oo<< G(x)>-o, liml,,l_, sup G(x)=oo and there is a constant
MO such that Ig(x)l<=M[1 /[G(x)l] where (x)-- g() d:,

(xiv) f(t) is absolutely continuous and If’(t)l dt <

Then (1.1) has a bounded solution for 0 <-

_
o and every solution of (1.1) is

bounded.
For a much deeper result concerning boundedness we refer to [5, Th. 3].

3. Proof of Theorem 1. By (vii)and (1.2), there is a constantK< oo such that

(3.1) sup [g(x(t))[-- g.
O--t<oo

First we wish to establish

(3.2) g(x (t)) is uniformly continuous for 0 -<_ <

Let y(t)= ) a(t, s)g(x(s)) ds, so (1.1) becomes

(3.3) x(t)+ y (t) =f(t).

By (i), y(t) is locally absolutely continuous for 0_-<t < and we have

(3.4) y’(t)=a(t, t)g(x(t))+ a(t, s)g(x(s)) ds a.e.

To see that (3.4) is true, integrate the right side of (3.4), use Fubini’s theorem and
invoke the absolute continuity of y(t). Also by (ii), (iii), (3.1) and (3.4) we have

(3.5) ly’(t)[ =< 2MK a.e.

so y(t)is uniformly continuous for 0-<t < oo. By (1.3), f(t) is uniformly continu-
ous, so by (vii), (1.2), and (3.3), (3.2) is established.

Next we wish to show that

(3.6) sup IorOT<a3

and

(3.7) oSUpr<o (-1) Ior Io

a(T, s)[g(x(s))]2 ds <

a,(t, s)[g(x(t))-g(x(s))]2 ds at < 0.

Fix T>0. By (3.3) and the fact that y(t) is of bounded variation on the interval
[0, T], we have

T T T

(3.8) Io g(x(t))dx(t)+ Io g(x(t))dy(t)= fo g(x(t))df(t).

Now or g(x(t)) dx(t)= G(x(T))-G(x(O)) where G(x)= g(s) ds so, by (vii) and
(1.2), there is a constant C, independent of T, such that

T

(3.9) Io g(x(t))dx(t)l <- C.
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Also by (1.3) and (3.1) we have
T

(3.10) Io g(x(t)) df(t)l <-KVt[O’ e)

where Vf[0, oo) denotes the total variation off(t). Since Twas arbitrary, we have
T

(3.11)
0=< T<oo
sup

By (3.4) we have
T T

(3.12) T

+ Io Io a,(t, s)g(x(t))g(x(s))ds dt

which becomes

T 1 fo
r

g(x (t)) dy (t) - a(t, t)[g(x(t))] dt

(3.13)
+- at(t, s)[g(x(t))] ds dt

+- a(T, s)[g(x(s))l ds-- a,(t, s)[g(x(t))-g(x(s))l2 ds dt.

To see that (3.13) is true, merely expand the last term in (3.13) and use Fubini’s
theorem. If we let

(3.14) A(t)= at(t, s) ds + a(t, t)

we may rewrite (3.13) to get

T 1 IO
T

g(x(t)) dy (t) - A (t)[g(x(t))]2 dt

1o(3.15) +- a(T, s)[g(x(s))]z ds-- at(t, s)[g(x(t))-g(x(s))]2 ds dt.

By using (i), (iii), and (3.11) in (3.15), (3.6) and (3.7) are established.
The following property of solutions of (1.1) will be crucial in the proof of

Theorems 1, 2, 3, and 4 below. Suppose that there is a sequence {t,} and real
numbers c and c with a > 0 such that g(x (t,)) >= + a for all n and t, oo as
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n eo. We claim that there is a t > 0 and a sequence of integers {I,,} such that for
each m

(3.16) g(x(t))>-a for tn-61-mrl <=t<-tn and n >I,,,

where rt > 0 is given by (iv). To prove (3.16) we first observe that by (3.2) there is a
61 > 0 such that

(3.17) O1g(x(t))>-a +- fort,-61<-t<=tn.

Next we claim that there is an integer I1 such that

(3.18) g(x(t))>-a +-- fortn-61-r/<-t<-tn and n ->/’1.

Suppose (3.18) is not true. Then there is a subsequence {tn,} of {tn }, a sequence {(,,}
and a 3’ > 0 such that

O1(3.19) g x in )) <--_ a + -- and tn t "l’l <-- [ni <-- tn t ’]/.

By (3.2), there is a 62 > 0 such that

7Cel(3.20) 62<61, 62<3, and g(x(t))<a +-
Again by (3.2) there is a 6 > 0 such that

for t-n, --< _-< in, + 82.

(3.21)
3

for [n, + 62 -< _-< [n, + 82 q- t.

Let zn, ,,, + t2 and /zn, min {tn,, zn, +r/}. Consider (3.7) and let T =/xn, for
some integer L Then

(-1) at(t, s)[g(x(t))-g(x(s))]2 ds dt

(3.22) ->-- (-1) at(t,s)dsdt
--36i=1 (1

>- B(t)dt
-36 1"

since, if tn,--61 <-t <=tzn,, then by (3.20) and (3.21) we have t-rt <-zn, <=zn, +6 <t.
Since/x,,-(t,,-61)>_-62 we have, by (iv)

B(t) dt _-> 62 inf B,(t) --> oo(3.23_)
i=1 81 i=1 "tni--81<--t

as I--> oo. By (3.22) and (3.23) we have
T

(-1) I Ioa,(t,s)[g(x(t))-g(x(s))]2dsdt->oe asT->oe
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which contradicts (3.7). This establishes (3.18) and by repeating this argument we
have that there is an integer 12 such that g(x(t))>=a +al/8 for tn -1- 2r/<<-t<=tn
and n _-_ I2. Proceeding in this way it is clear that we can construct a sequence {i, }
so that (3.16) is satisfied. Similarly one can show that if there is a sequence {t} and
real numbers a and with > 0 and g(x (t)) a then there is a 8 > 0 and a
sequence of integers {/} such that for each m, g(x(t))a for t -x-mtt
and n I.

To complete the proof of Theorem 1, suppose that g(x(t))does not converge
to zero as . Then, for instance, there exist real numbers a > 0 and a > 0 and
a sequence {t,} such that t, as n and g(x(t,))a+ for all n. Let
S =6+m where 61 and are given by (3.16). By (iii) tt-s.a(t, s)ds is an
increasing function of t for each S. Hence, by (v) and (3.16), there is a sequence
{T} which is a subsequence of {t, } such that

T

[ a(t,s)ds asm and g(x(t))a forT-StT.
Sm

Hence

foTm 2
Tm

(3.24) a(T, s)[g(x(s))]2 ds a a(T, s) ds

as m, which contradicts (3.6). Hence g(xQ))oO as .
4. Proof ofeotem 2. Suppose (2.1) is not true. Then, for example, there is

a 8 > 0 and a sequence {. } such that . as n and

(4.1) x(t.)+Ag(xQ.))>f()+8 for all n.

We claim that there is a 8 < 0 and a sequence of integers {I } such that for each m

(4.2) g(x(t))g(xq.))- for.-8,-mn., n I,

where n is given by (iv). We begin proving (4.2) by noticing that (3.1) implies that
there is a subsequence {.,} of {t.} and a real number such that g(xQ.,))o as
n . Without loss of generality we may assume this for the original sequence.
Thus there is an a such that 0 <a < 8/(4A) and

(4.3) -ag(x(t))+a foralllargen.

If we let 3a 1/2, (4.3) becomes

(4.4) a +ag(x(t))a +2a forlargen.

As in the proof of eorem 1, (3.16) is still true, so (3.16) and (4.4) imply that
there is a 8 > 0 and a sequence of integers {I} such that for each m,

3al 1=+ a-2a >g(x(t))>
2

=g(x(t))-2a

(4.5)
fort,-x-mtt and nI.

Since a < 8/(4A), (4.2)is established.
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(4.6)

Let Sm= 8 + mrt. By (iii) -s.a(t, s) ds is an increasing function of t for each
$.,, so by (viii) and (4.2) there is a sequence {Tin} which is a subsequence of {t,,,}
such that

ir, a(T..s)dsA as m -. oo
T,,, -$,,,

and

(4.7) g(x(t)) >= g(x (T., ))-X-7 for TIn-S,., <-t<=Tm.

For these sequences { T., } and {S,,, } we have

(4.8) a(T,, s) ds <= a(T,., s) ds <-_ sup a(t, s) ds
Tm Sm T T

so by (viii)and (4.6)we have

(4.9) a(T.,,s)ds-->A as m --> oo.

fT,.-s.Since jo a (T,., s) ds Io a (T,., s) ds -s. a(T,., s) ds we have

Tra-sm
(4.10) a(Tm, s)ds0 as m.
Since

Tin-sin
x(T)+Ag(x(T))= a(Tm, s)g(x(s))ds

a(T,s)g(x(s))ds+Ag(x(T))+f(T)

we have, by (4.7),
Tin-sin

x(T)+Ag(x(T)) a(T, s)g(x(s)) ds

a(r,s)dsg(x(r))
-s

(4.11)
a(r, s) s +ag(x(r))+(r).

By (3.1) and (4.10) the first integral on the right hand side of (4.11) converges to
zero as m m. By (4.6) we have

a(r, s) s +ag(x(r)) 0-g(x(rll -and

a T., s ) ds -, -2A .-s..
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These facts together with (1.3) imply that

(4.12) x(T,,)+Ag(x(T,,))<-f(c)+6 for large m

which contradicts (4.1). This establishes (2.1) and completes the proof of Theorem
2.

5. Proo o[ Theorem 3. Hypothesis (ix) is just enough to ensure that all the
arguments in the proof of Theorem 1 up to and including (3.16) remain valid.
Suppose that g(x (t)) does not converge to zero as - c. Then, for example, there
is a sequence {t.} and real numbers a and a wtih a > 0 and O 0 such that
g (x (t.)) -> a + a. As in the proof of Theorem 1, there are sequences {S,. } and { T,. }
such that

T-s
(5.1) a(T,,,s)dsB as m-

and

(5.2) g(x (t)) >- a for T, S,,, _<- t _-< T,,,.

Since -s.. a(T,, s) ds " a(T,,, s) ds _m-s. a(T,,, s) ds, we have, by (xi)
and (5.1),

T

(5.3) [ a(T,,,s)ds-,o as m - o.

Since (3.6) is still true, (5.2) and (5.3) lead to a contradiction as in the proof of
Theorem 1.

6. Prooi ot Theorem 4. If A B, (2.2) follows immediately from (1.1) and
(xii). Thus let us consider the case B <A. We will establish the last inequality in
(2.2). The proof of the first inequality is similar. Suppose it is not true that
limsupt_o[x(t)+(A-B)g(x(t))-f(t)]<-KB. Then there is a 6>0 and a sequ-
ence {t } such that t. --> oo as n --> oo and

(6.1) x(t.)+(A-B)g(x(t..))-f(t.)>KB+6 foralln.

As in the proof of Theorem 2 we have that there is a t > 0 and a sequence of
integers {I,. } such that for each m

6
(6.2) g(x(t))>-g(x(t))-2(A -B) for t.-6l-mrt <-t<=t, n =I.

Hence by (x) there exist sequences {S,.} and {T.,} where S,,, 81 +,mrt and {T.,} is
a subsequence of {t.} such that

(6.3) a(T..,s)ds-->B as m oo

and

(6.4) g(x(t))>- g(x(T’))-2(A -B) for T,. -S,. <_-t<_- T.
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By (xii)and (6.3)we have
T

By (1.1) and (6.4) we have

x(T)+ (A -B)g(x(T ))-f(T ) <-
o

(6.6)

a(T,s)g(x(s))ds

-g(x(T)) a(T,s)ds

a(T,,,s)ds- 2(A-B) T-s.

+(A -B)g(x(T.,)).

By (3.1) and (6.3) we have lim sup,_, (-1) ,,,-s., a(T,,,, s)g(x(s)) ds <-KB. By
(6.5) we have -g(x(T,,))_s.a(T,,,,s)ds+(A-B)g(x(T,))O and
[a/(2(A-B))]_s.,a(T,,,,s)ds8/2 as moo. Thus for large m we have
x(T,,,)+(A-B)g(x(T,,,))-f(T,,,)<-KB+ which contradicts (6.1).

7. Proof of Theorem 5. By a well-known result, (1.1) has a solution x(t) for
0 =< t-< T for ,some T> 0. Using the notation of Theorem 1, we have, by (3.8)

T T

(7.1) G(x(T))-G(x(O))+ J0 g(x(t)) dy(t)= Jo g(x(t)) dr(t).

By (i), (ix), (3.14)and (3.15)we have g(x(t))dy(t)>-O, so by (xiv)
T

(7.2) G(x(T))-G(x(O))<= J0 Ig(x(t))[ If(t)l dt.

By (xiii) there is a constant M1 such that

IG(x(T))I<-MI +IG(x(O))I+ If(t)ldt
(7.3) T

/Mj0 Ia(x(t))l If’(t)l dt.

By Gronvall’s inequality, there is a constant C, independent of T, such that
IG(x (T))[ <- C. By (xiii) there is a constant C1, again independent of T1 such that

(7.4) Ix (T)I--< C.
The usual continuation argument for Volterra equations gives us a solution x (t) of
(1.1) for 0-<t< and Ix(t)[<=C1 for 0_-<t <o.

8. Discussion of examples. For Example 1 the verification that the hypoth-
eses of Theorems 1 and 2 are satisfied is fairly straightforward. The verification of



948 T.R. KIFFE

(iii) rests on the fact that if a,(t, s)+as(t, s)>-O, then

It’ at(t,s)ds+a(t,t)-a(t,t-T)
-T

>->->=- as(t,s)ds+a(t,t)-a(t,t-T)=O.
-T

Since at(t,s)=d’(t)c(s)b(t-s)/d(t)c(s)b’(t-s) and as(t,s)
d(t)c’(s)b(t-s)-d(t)c(s)b’(t-s) we want d’(t)c(s)+d(t)c’(s)>=O for 0<s<t.
Since c(s)>-O, c’(s)>=O, and c"(s)<=O we have d’(t)c(s)+d(t)c’(s)>=
d’(t)c(t)+d(t)c’(t), 0<s <t; so [d(t)c(t)]’>=O implies at(t, s)+a(t, s)>=O,

For Example 2 we only need to comment about hypothesis (iv). Note that
at(t, s)= b’(d(t)(t-s))[d’(t)(t-s)+d(t)]. Thus

a,(t,s)ds b’(d(t)(t-s))d(t)ds
(8.1) r

l_ b’(d(t)(t- s))d’(t)(t- s) as

and
ta’(t) If"b’(d(t)(t-s))d’(t)(t-s)ds <=- b’(d(t)(t-s))d(t)ds.

By (2.4) this last term converges to zero as t-->. Since b(t) is not constant on
any interval except possibly those of the form IT, ) where T>0 and b(t)
is not identically equal to a constant, it is easy to see that if r/is chosen small
enough, then for every , 0<8<r/, there is a constant c8 such that- b’(d(t)(t-s))d(t)ds =>c8>0 for B2-Bx >=5, t-t <=B1 <:B2<=t and sufti-
ciently large. Thus the same is true for -g at(t, s)ds.
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ON AN INTEGRAL EQUATION IN A HILBERT SPACE*

STIG-OLOF LONDEN?

Abstract. We consider the nonlinear Volterra equation

(1.1) u(t)+ a(t-r)g(u(’)) d" f(t), >-0,

where a, g, f are given and u is the unknown function taking values in a real Hilbert space H. The
kernel a(t) maps R R whereas f is a map of R/H. The nonlinear function g has its domain and
range contained in H.

Making use of the theory of monotone operators we give at first an existence and uniqueness
theorem on (1.1). This is followed by a result detailing the asymptotic behavior of solutions of (1.1).
Finally we give some applications of our results. The results extend earlier results by Barbu.

1. Introduction. We consider the nonlinear Volterra equation

(1.1) u(t)+ a(t-’)g(u(’)) dr f(t), >-0,

where a, g, f are given and u is the unknown taking values in a real Hilbert space
H. The kernel a (t) is real-valued and defined on R+, whereas f maps R+ into H.
The nonlinear function g (in general multivalued) has its domain Dg and range Rg
contained in H. The integral in (1.1) is to be considered as a Bochner integral.

A solution of (1.1) on an interval [0, T] is a function u(t) defined on [0, T],
taking values in H, and satisfying

(1.2) u E L2(0, T; H),

(1.3) u(t)EDg a.e. on (0, T),

and such that there exists w satisfying

w L2(0, T; H),

w(t) g(u(t)) a.e. on (0, T),

(1.6) u(t)+ a(t--)w(-) d’=f(t), O<-__t <-T.

A solution of (1.1) on [0, c) is a function u(t) defined for all t_->0, taking
values in H, and satisfying (1.2)-(1.6) for every T<

This work is structured as follows. We begin 2 by stating an existence and
uniqueness result which is followed by some comments including comparisons to
earlier studies. We then formulate Theorem 2 which deals with boundedness and
asymptotic behavior of solutions of (1.1). After a few remarks related to Theorem
2 we give some corollaries providing partial extensions of our results. The proofs

* Received by the editors October 31, 1975, and in revised form June 20, 1976.
? Institute of Mathematics, Helsinki University of Technology, SF-02150, Otaniemi, Finland.
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of Theorems 1 and 2 are given in 3 and 4 respectively. Corollaries 1 and 2 are
p,_,’ed in 5. Finally, in 6, we give some applications of the results.

Our approach when analyzing (1.1) in H relies on combining the properties
of maximal monotone operators, see [3], with the use of certain techniques
developed in [5], [6] for scalar Volterra equations. The notation used is the usual
one; thus g for example denotes the Yosida-approximation of g, that is g
A-(I-].) with ] (I+Ag)-.

2. Statement of results.
THEOREM 1. (a) Suppose

(2.1) a(0) > 0,

(2.2) g Oq for some lower semicontinuous proper convex
function q: H- (-, ],

(2.3) f(O) t D(q),

and let, for some T> O,

(2.4) a(t), f(t) be absolutely continuous on [0, T] and such that

(2.5) a’ BV[O, T],

(2.6) f’ L2(0, T; H).

Then there exists a unique solution u of (1.1) on [0, T].
(b) Assume (2.1)-(2.5) hold. In addition let

(2.7)

(2.8)

a(t), f(t) be locally absolutely continuous on [0,

f’6 Lc(0, ; H).

Then there exists a unique solution u of (1.1) on [0,
The solution u(t) of course by definition satisfies (1.2)-(1.6). But observe in

addition (see (3.63)-(3.67)) that u(t) and q(u(t)) are locally absolutely continuous
and

I0(2.9) u’(t) + a(O)w(t) + a’(t-z)w(-) dr f’(t)

a.e. on the interval of existence. Thus, Theorem 1 in fact asserts the existence of a
strong solution of (2.9). If a’(t)=0, then (2.9) reduces to

(2.10) u’(t) + a(O)w(t) f’(t),
for which existence and uniqueness of a strong solution are well established under
the present hypotheses. See 1-3, Chap. III].

The motivation for this work came partly from recent results by Barbu [1]
who considered (1.1) in the same setting. Comparing our Theorem 1 to Barbu’s
first theorem we observe that in the latter a(t) is assumed to satisfy

(2.11)

(2.12)

a(t) continuous on [0, ) and locally absolutely
continuous on (0, c),

(--1)ka (k)(t) _--> 0, k=0, 1 a.e. ont>0,
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(2.13) Re (1) >0, Rel >0,

where

(2.14) a (I) exp (-It)a (t) dt.

Thus a(t) is required to be a kernel of positive type before existence can be
obtained. Obviously this hypothesis has been abandoned in the present Theorem
1.

The assumptions on g, f in our Theorem 1 and in the existence part of
Theorem 1 of [1] are identical.

Note that we obtain uniquenesss without imposing strict monotonicity on g
(which is done in [ 1 ]).

Finally it should be pointed out that Barbu obtains some existence results (i.e.
Theorems 3 and 4 of [1]) which do not require g to be the subdifferential of a
convex function. These results do however require other conditions to be satisfied.
Theorem 3 of [1] for example requires, for some positive constants cl, c2

with g: V- V’, V a Hilbert space and VcHc V’.

THEOREM 2. Let,(2.1), (2.7), (2.8) hold.. In addition assume

(2.15) a (t) >- O, -> O,

(2.16) a’(t) <- 0 a.e. on >- O,
(2.17) a

(2.18) ,Y= Ill’l[2 dr < oo.

Let u(t) be a solution of (1.1) on [0, oo) and suppose there exists a locally absolutely
continuous [unction p (t) such that

(2.19) q’(t) (w(t), u’(t)) a.e. on > O,

and such that [or some q < 2

(2.20) q(t) >-_ -cllu (t)llq ,
for all >-_ O, and some constants a, . Then

t+l

(2.21) sup+ IIw (r)l[2 dr < oo,

(2.22) sup+ Ilu (t)ll < oo,
tR

(2.23) u’e L2(0, oo; H).

Observe that (2119), (2.21), (2.23) together imply that q varies "slower and
slower" when
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Commenting on the hypothesis of Theorem 2 we observe at first that once
existence of u is assumed then the monotonicity of g may be dropped; only the
existence of a function q satisfying (2.19), (2.20) is needed. Note that the
condition (2.2) and the existence of a function u (t) satisfying (1.2)-(1.5) together
imply that (2.19), (2.20) hold; the latter has q 1. (Recall that the asymptotic
result of Barbu, that is Theorem 2 of [1], does assume (2.2).) Also observe that we
do not, in order to obtain (2.21)-(2.23) impose anything like p(u)-+oo for

Secondly, we note that (2.15), (2.16) are customary assumptions made when
analyzing (1.1) with H R. Observe, however, that the strongest results obtained
in this scalar case require less smoothness on the kernel; that is only a->_0, a
nonincreasing. See for example [4], [6]. It is very likely possible to weaken (2.15),
(2.16) in this direction but w(t) must then be taken continuous. Note, however,
Corollaries 3 and 4 below.

In Theorem 2 we assume a L (0, de). This allows us to impose only a rather
weak hypothesis on the behavior of q, namely (2.20). The case whena L1(0,
a(oo) 0, is included in Corollary 1 where instead we have to take q bounded
from below.

The assumption (2.18) is somewhat stronger than the corresponding one,
which is f’ LI(0, oo), usually made when working with the scalar version of (1.1).
The condition (2.18) constitutes the price we pay for working in H, and in
particular for not using the unrealistic condition IIg(u (t))ll <-- K[ 1 + p (u (t))], (com-
pare with [8]).

Theorem 2 and Corollary 1, when applied to the case H R, extend results
obtained in [4], [6]. This follows from the fact that only (2.20), (2.24) are assumed
about the asymptotic behavior of

The method used in the final part of the proof of Theorem 2 can also be used
to provide a shorter and different demonstration of previously known results
about (1.1) when H R. For details, see [7].

Finally, note that our Corollary 2 is essentially equivalent to the boundedness
and asymptotic results of [1]. The key additional assumption made in this
corollary is a (oo) > 0 which greatly simplifies all proofs. Also note (compare with
(2.15) of [1]) that this additional assumption is a key ingredient in permitting one
to deduce that 0o lim_,oo p (t) exists. This last fact could not be deduced under
the hypothesis of Theorem 2. If also the assumption (2.2) is made then it follows
after using the definition of the subdifferential of a convex function that
minion p(v). As a final point of comparison with [1] we note that the assumption
(2.2) and the requirement that q (u) - +o for lul- do (these hypotheses are both
made in Theorem 2 of [1]) together imply (2.24).

COROLLARY 1. Let (2.1), (2.7), (2.8), (2.15), (2.16), (2.18), (2.19) hold. Also
suppose

(2.24) p (t) ->_ -/3, _-> 0,

for some constant . Then (2.21), (2.23) hold.
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COROLLARY 2. Let (2.1), (2.7), (2.8), (2.15), (2.16), (2.19), (2.24) hold. In
addition assume

(2.25) lima (t) a() > 0,

(2.26) f’ 6 L2(0, oo; H).

Then (2.23) and

(2.27) w L2(0, oo; H),

are satisfied. Moreover, q’ LI(0, ) and so limt_ q(t) exists.
Our final results, which deal with (2.28), show that a step function, with a

finite number of jumps, may be added to the kernel without affecting the results.
In (2.28) we take Ck, Tk tO be constants, k 1, 2,-.., N<, Tk > 0.

(2.28)
u(t) + a(t-r)g(u(’)) dr

+ Ck
k=l ax(O,--Tk)

g(u(’)) dr f(t), t _>-0.

COROLLARY 3. Let (2.1)-(2.8) hold. Then there exists a unique solution of
(2.28) on [0, oo).

COROIaAR 4. Let the hypothesis of Theorem 2 hoM, except that u is assumed
to be a solution of (2.28). In addition let Ck > O, k 1, 2,’", N. Then (2.21)-
(2.23) are satisfied.

The proofs of Corollaries 3 and 4 are omitted, as being straightforward
extensions of those of Theorems 1 and 2.

3. Proof of Theorem 1. We begin by proving existence on [0, T]. This will
last until (3.72).

Let u (t), A > 0, be the unique solution of

(3.1) ux(t)+ a(t-’)gxux(’) d’=f(t), O’t

Then

(3.2) ui(t)+a(O)gxux(t)+ a’(t-’)gxux(’) d-=f’(t),

a.e. on (0, T). Form the scalar product of g,u, and (3.2), and integrate over (0, t).
This gives

(3.3)

qx(ux(t))-qx(f(O))+a(O) Ilgxuxl]2 dr

+ gxux (r), a’(’-s)gxux (s) ds dr (gxux, f’) dr.
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Let T1 be arbitrary fixed but satisfying

(3.4) 0 < T1 _-< T, 2 ]a’(r)[ dr <-a(O).

After these preliminaries our goal is to obtain existence on [0, T1]. This will
occupy us until (3.60). To accomplish the goal we begin by establishing certain
bounds on gaua and ua, namely (3.10), (3.11).

Let A2=Iel a2(r)dr. Then, from (3.1), after estimating and using the
absolute continuity of f, we obtain

(3.5) Ilu (t)ll--< A IIgu/I2 d /f,

for 0 _-< t _-< Ta if F sup II/(t)ll, 0 =< _-< T1. Also note that by (2.2)

(3.6)

for some constants a,/3, and so, combining (3.5), (3.6), we have

(3.7) -q,, (u, (t)) <-aA IIg,u, d +,F+, O<-_t <- rl.

Estimating the last term on the left side of (3.3) gives by (3.4)

Io
(3.8)

<-_ 2-a (0) Ilgwu, II dr.

Using now (2.6), (3.7), (3.8) in (3.3) yields, 0 <-_ <- T,

2-a(0t [lau,(,)112
(3.9)

_<-[a +f] I[gu,(,)l[ a +f+ +(f(0)).

where F [I2111f’(,)ll2 e,]/2, But (3.9) clearly implies

lifo
T1 TI 1/2 def

(3. a 0) sup
A>0

Combining (3.5), (3.10) gives

(3.1a) sup I[u,(t)llcn +f<.
A>0
Otr

Observe that T is restricted only by (3.4).
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Having the bounds (3.10), (3.11) our next purpose is to show that

(3.12) lim [gu-gt,ut,]d- =0, O<=t<-T.
A,0

Note that once we have (3.12) then it is not hard to show that

su I]u (t)- (t)ll 0,(3.13) lim
o__<t7-A,O

which is the crucial fact (in addition to (3.10), (3.11)) needed to get existence on
[0,

In order to obtain (3.12) we prove at first a slightly weaker assertion, namely
the following.

Take any fixed /satisfying 0 < , _<- T1 and such that

(3.14) a(s)- 16 ]da’(v)ldr-20

on 0 s , for some constant . By (2.1), (2.5) such , exist. We assert that

10(3.15) lim [gu -g,u,]d =0,
A,0

The demonstration of (3.15) which follows (and which is the key part of the proof
of Theorem 1) will occupy us up to and including the paragraph containing (3.37).

Suppose the assertion (3.15) does not hold. Then there exist
> 0, I 0, 0, such that

Take any such , , {I}, {n}. Then note that for s, s arbitrary but satisfying

(3.17) ONs <sNT, 4c[sa-s]N,
and for arbitrary I, one has, by (3.10),

 lls I g.u. -g.u. l

2c[s- s]/ .
Divide the interval [0, ] into subintervals by points to, t, , t so that

(3.19) O=to<t<...<t_<te=, 4c[t+-t]N8" i=0,1 R-1

Then take the smallest /-value (call it m) for which there exists an infinite
subsequence n = n (let n n) such that

(3.20) [gu -g,u,] d , n 1, 2,. .
Define h gu-g,u,, and take N suciently large so that

(3.21) h()dr N, ]=0,1,...,m-i; nN.
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def

For any [0, tm], let ? max {tjlj =0, 1,. ., m- 1; tj -<t}. Then, by (3.17)-
(3.19)

(3.22) h, (r) dr =< 6.

Consequently, for any e [0, tm ],

(3.23) h, (’) dr <= 6 + h, (-) dr <- 26,

(the second inequality follows from (3.21) and the way was defined) and for
arbitrary sl, s2 [0, tm ]

Ills II Illo  ll II/o  [I(3.24) h, (r) dr + 46.

In the sequel we need the following key
LEMMA. Let a (t) be absolutely continuous on [0, T] and satisfy a’ BV[0, T].

Assume

(3.25) z L2(0, T; H),

and take t [0, T]. Then

otlIoz(’), a(’-s)z(s) ds dr

(3.26) -a(t)lllo’
a’() z(s) ds dr- a’(t-r)

Proof ofLemma. We begin by demonstrating

2
a’(t-) z(s) ds

(3.27)

z(v) dv da’(s) dr

z(s) ds dr.

a’(’-s) z(v) dv, z(r) ds dr

  o’io+’ z(v) dv da’(s) dr.

Let {a’,,(t)} be a sequence of functions satisfying (by the assumptions on a(t) such a
sequence clearly exists)

(3.28) a’, C’[0, t],

(3.29) a’(s)- a’(s), O<=s <=t,

(3.30) Var (a ’,; [O, t]) <= Var (a’; [O, t]) < c
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Then ((3.31) follows by differentiating both sides)- a(t-’) z(s) ds dr

o’io i(3.31) a’,,(’-s) z(v) dv, z(’) ds d

Using (3.29), (3.30), the fact that (for fixed r)ll_z(v)dvl]2 is a continuous
function of s, and [9, Thm. 16.4, p. 31] gives

(3.32) lim z(v) dv a(s) ds z(v) dv da’(s),

for each [0, t]. Bt combining (3.25), (3.30), (3.32) and the dominated
convergence theorem yields

Io’/o1 IoIo1" I(3.33) lira z(v) dv a(s) ds d= z(v) dv da’(s)

Taking now limits in (3.31), using (3.33) for the last term and (3.2), (3.29), (3.30)
and the dominated convergence theorem for the remaining terms gives (3.27).

Now replace the last term on the right side of (3.26) by the right side of (3.27),
then differentiate the relation thus obtained and finally use Fubini’s theorem. This
provides an identity and our claim (3.26) is hence true.

Apply the Lemma and take t, z h in (3.26). Then use (3.20) (with
m) to estimate the first term on the right side of (3.26), and (3.23), (3.24) for

the remaining terms on the right. One obtains

Io, o(.4 --a(tml-a aa’(sl-2

oo la’()l d >
2

=e>0,

where the second inequality follows by (3.14).
Write (3.1) with I I, I , take differences and multiply by h. Then use

(3.34). This yields

(3.35)

But gu g(Ju,) and so, by the monotonicity of g,

(3.36)
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Integrate (3.36) over (0, t,,), add the result to (3.35), and use ux-J,u, Ag,u,.
This gives

(3.37) (g.u.-g,.u,.,Ang.u.-lxng,.u,.) d’<=-e <0.

But expanding (3.37), using (3.10) and the fact that A, $ 0, tx, , 0, shows that
(3.37) implies 0 =<-e. This is absurd. Hence (3.16) leads to a contradiction, and
(3.15) is true. Note that the convergence in (3.15) is uniform on [0, 3’].

Having (3.15) we proceed to prove (3.12). For this we suppose the equality in
(3.12) holds for O<=t<-py, p an integer, and show that then it holds on py <=t<=
(p + 1)y. Consider

(3.38) u(t)+ a(t--)gu(-) d- ]’(t), py<-t<-(p+ 1)y,

which we rewrite as

I0 Io(3.39) v(s)+ a(s-x)gv(x)dx=(s+py) a(s+py--)gu(’)d’,

where s t-p3,, v(s) u(s +P3’). We claim that for 0_<-s =</,

(3.40) x,,-.01im Illf [gvx-g’v’]d’ll =0"
To prove this claim we assume it does not hold and show that a contradiction

(namely (3.45), (3.48)) follows. Hence suppose there exist g, 6, 0 < g =< y, 6 > 0,
A, + 0,/x, + 0, such that (compare with (3.16))

(3.41) lim [g.v. g,.v,] dr 26 > O.

Now repeat the arguments that made up the first half of the proof of (3.15)
(including the use of the Lemma), but with ’, h, replaced by g,
respectively. This gives (compare with (3.34)) that there exists e > 0 and 0 <
y satisfying

i0(3.42) k,(’), a(r-s)k,(s) ds d" >-e,

where kn
def

gx.vx.-g,.v,.. Observe that as [P3’, (P+ 1),/] c [0, T] we still have
(3.10) and so (3.42) can be obtained.

Replace in (3.39) by , then by/x, take differences, multiply by k,, and
integrate over (0, s). This gives

(3.43)
(k,(r), vx.(r)-v,.(’)) dr+ k,(r), a(r-s)k,(s) ds dr

;ok,(r), a(r+p,-s)h,(s) ds dr,
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def
where hn g,.u,.- gx.ux.. By the monotonicity of g one has (compare with the
arguments running from (3.35) to (3.37))

Io"(3.44) (kn (r), v. (r) v.. (r)) dr e -.
By (3.42)-(3.44)

(3.45)

But

k,(r), a(r+py-s)hn(s)ds dr>-e.

a(r+py-s)h,(s)ds=a(r+py) h,(s)ds
(3.46)

pv-I a’(r+py-x){fx h.(s)ds} dx,

and by assumption

(3.47) lim h. (r) dr O, uniformly on 0 <- t <-_ py.

Estimating the left side Ln of (3.45) by the aid of (3.10), (3.46), (3.47) one
therefore gets

(3.48)

for some en $ 0 and some constant c 1. But (3.45), (3.48) are in obvious contradic-
tion and so (3.40) holds.

Having (3.40) we recall the lines preceding (3.38) and hence realize that we
have proved (3.12).

With (3.12) ready we proceed to show that (3.13) (rewritten below as (3.51))
follows. Take any An $ 0,/ $ 0. By (3.12), (3.18),

(3.49) lim [g.ux. g,.u.. dr O,

uniformly for 0S < S2 - T1. Let A An,/x in (3.1), take differences use Fubini’s
theorem and the absolute continuity of a. This gives

(3.50)

ux. (t) Ix.. (t) + a (t r)[gx.ux. (7) g..u.. (7)] dr

u. (t) u,. (t) + a (t) J. [gx.ux. g..u,.] dz

a’(t 7) [ga.ux. g..u..] ds dr O,

and so, by the absolute continuity of a, (3.49), (3.50),

(3.51) lim u,,.(t)ll- 0, uniformly on [0, T].
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Once the key result (3.51) is established we may complete the existence proof
on [0, T1]. By (3.10) there exists

(3.52) w 6 Lz(0, T1 ;H),

such that for some hn 0,

(3.53) g.u.---w inL2(0, T1; H).

Take any such {h,}, w. By (3.51) there exists u satisfying

(3.54) u. u in C([0, T1], H).

LetDae=f{ulu L2(0, T1; H), u(t)Dg a.e. on 0<_-t_-< T1}, and define onD by

(3.55) u {vlv e L2(0, T; H), v(t) g(u(t)) a.e. on (0, T)}.

From the maximal monotonicity of g follows that is maximal monotone. Hence
is demiclosed. Using this fact together with (3.53), (3.54) gives

u D,, w,u,(3.56)

and so

(3.57) w(t) g(u(t)) a.e. on (0,

Next define j by (note that j is independent of n)

(3.58) j(t) u(t)-ux.(t)+ a(t-z)[w(’)-gx.ux.(r)] dr,

take an arbitrary fixed " 6 [0, T], and form the scalar product of (3.58) and fl().
This gives

(3.59) 1  ff)ll2=< ff), uff)-u .ff)>+ <aff-z)ff), w(z).-g,.u.(z))dz,

where a (t) de___.f 0, t < 0. But by (3.53), (3.54) the right side of (3.59) 0, for n - oo.
Hence [[f(’)l[ 0. As ’ was arbitrary we conclude from (3.1) and (3.58) that

(3.60) u(t)+ a(t-z)w(z) d-=f(t), O<=t<= T1

By (3.52), (3.57), (3.60) we have existence on [0,
To show that a solution u exists on [0, T] we proceed as follows. We assume

existence has been proved on 0 <-t <-nT and demonstrate that we then have
existence on [0, (n + 1)T1], assuming (n + 1)T1 _-< T. As T1 is restricted only by
(3.4), this will eventually get us to T. Thus suppose there exists

(3.61) w L2(0, nT1; H),

and u e C([0, nT], H) such that

(3.62) u(t) + a(t--)w(-) d- f(t), O<--_t <--nT1.
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Observe that

(3.63) a(t-)w() d a(O) w(s) ds + w(-s)a’(s) ds d,

which can be verified by applying Fubini’s theorem to the last term. Consequently
the convolution term in (3.62) is absolutely continuous, ditterentiable a.e., and by
using (2.6) also, we have

(3.64) u’(t)+a(O)w(t)+ a’(t-r)w(’) d’=f (),

a.e. on (0, nTa). From the absolute continuity of a, (2.6), (3.61), (3.64) follows

(3.65) u’ 6 L2(0, nT; H),

and so, by (3.57), (3.61), (3.65) and as u L2(0, nTa; H),

(3.66) q(u(t)) is absolutely continuous on [0, nTa],

d
(3..67) d-q(u(t)) (w(t), u’(t)) a.e. on (0, nT1).

By (3.66) q(u(t)) is bounded on [0, nTa]. Therefore

(3.68) u (t) Dq, 0 <= <= nT.
We rewrite (1.1) on nT1 -< =< (n + 1) Ta as

Ios f T1
(3.69) v(s)+ a(s-’)g(v(’))drf(s+nT)- a(s+nTl-’)w(’)d’,

"0

where 0=<s =< Ta, s t-nT, v(s)= u(s +nT). Clearly v(0)= u(nT), and so, by
(3.68), v(0) Dq. Hence, by (2.6), one realizes that to apply the existence result
obtained on [0, Ta] to (3.69) one only has to show that the integral term on the
right side of (3.69), call it f, (s), is absolutely continuous and satisfies

(3.70) f’, L2(0, T,; H).

However, by (3.61) and the absolute continuity of a,

(3.71) f(s)=f,(0)+ a’(u +nT-’)w(r) d" du,

which can be checked by interchanging the order of integration. Finally, it is not
hard to show that

(3.72) a’(s + nT-’)w(r) d ds <
0

Hence we may apply the existence result obtained on [0, Ta] to (3.69) and
consequently, remembering the lines before (3.61), we have existence on [0, T].

This completes the existence part of Theorem 1 (a).
To prove the existence part of Theorem 1 (b) one proceeds in steps of size T.

Thus, one assumes existence has been obtained on [0, nT] and rewrites (1.1) on
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[nT, (n + 1)T] as

io iov(s) + a(s -’)g(v(’)) dr ](s + nT) a(s + nT-r)w(’) d’,
(3.73)

O -< s <= T,

where s t-nT, v(s)= u(s +nT). Applying the existence result of part (a) to
(3.73), which by (2.7), (2.8), (3.68) (where we replace T1 by T), and the fact
that w Le(O, nT; H) can be done, gives the existence part of Theorem 1 (b). Note
that (compare with (3.72)) the integral term (=q,) on the right side of (3.73)
satisfies q La(0, T; H).

To complete the proof of Theorem 1 we demonstrate uniqueness. Let u, v be
two solutions of (1.1) on [0, T], T as in (3.14). Then

(3.74) u(t)-v(t)+ a(t-)[w()-w(r)]dr=O, w, w eLa(O, ;g).

We assert that

Io(3.75) [w,-w]d=O, OtNy.

Suppose (3.75) does not hold and pick any ’, 6 such that

(3.76) [w,-w,]dr =26>0.

For s a, s2 arbitrary (0 =< sa < s2 -< 3/) we have, by the second part of (3.74),

(3.77) [w, w,] dr NIJ,[S2--S1] 1/2,

for some constant/x and so

(3.78) if [$2--S1]1/26lJ, -1, then [w,-w,]d’r =<6.

Divide [0, ’ in subintervals as follows:

(3.79)
0=t0<tl<’’’<tR =’,

ti+l--ti -<61d, -1, =0, 1,’’" ,R-1.

Then take the smallest/-value (call it m) for which

(3.80) [Wu Wv] d >=6.

For te[0, t,,] we may write I;=I+Iro.., m- 1; tj =< t}, and so, by (3.78)-(3.80),
where max {tj lJ 0, 1,

(3.81) [w,-wv]d <=26, [w, w] dz -<46,
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for [0, tin], O<--Sl <s2trno Take z wu -wv and tm in (3.26). By the second
part of (3.74) this can be done. Then use (3.80) (with i= m), (3.81), and finally
recall (3.14). This gives

(3.82) w.(r)-w.(r), a(-s)[w.(s)-wo(s)]cls cl>-_e >O,

for some e, and therefore, after multiplying the equality in (3.74) by w, wv, and
integrating over [0, t,, ],

(3.83) U--.)) dr<--e.

This, however, is absurd as g is monotone. Hence the assertion (3.75) follows. To
see that (3.75) implies u v on [0, y] one performs the usua! integration by parts
(see (3.50)). By translation and repeating the arguments above one finally obtains
u v on the whole interval of existence. This completes the proof of Theorem 1.

4. Proof of Theorem 2. We begin by proving (2.21). This will be accom-
plished once we get to (4.9).

Form the scalar product of w and (3.64) (which holds under the present
hypothesis), integrate, over (0, t) and use (2.19). This gives

(4.1)

qg(t)-q(0)+ w(r), a(0)w(r)+ a’(r-s)w(s) ds dr

Io (w(),f’()) d, 0--<t<oo.

The equality in (4.2) below can be verified by expanding the right side of this
equality. The inequality in (4.2) follows by (2.15), (2.16).

(4.2)

l ot- a(t--)llw(-)l[2 d-.
-2

Pick any 6 > 0 such that a(6)> 0 and such that 6M 1 for some integer M. By
(2.16), a(t)>-a(6), O<=t<-6. Combining this fact with (2.15), (4.1), (4.2)implies

(4.3) Ia(6)’ llw()l[2dT (w(r),f’(r))dr+cp(O)-q(t),
2
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But (let 6N, where N an integer)

io (w, f’) dr _-< I(w, f’)l dr
(4.4)

{[f(n+l)6 ql/2[fn(n+l)6 ql/2}
=0 n

Assume tp is such that

(4.5) Iw ()ll2 d, Ilw ()ll2 d, t.

Then, by (4.3)-(4.5), (take tp in (4.3), (4.4)), and using an elementary inequal-
ity to to get the second inequality in (4.6), one obtains

a() [tp 12
tp ]l/2n=0 In(n+1)66 d’}/2(4.6) --< [ip-- [[W(’)I[2 d { [[f’(’)l[2 +qg(O)--o(t)

<=MK - llwll2 d +(0)- (t),

where K .o {:+ [[f’[[: dr}/. Take tp in (1.1); estimate and use (4.5). This
gives

Ilu(t)ll sup IIf(t)ll+ Ilwll= d a=() d
tR+ tp-- =0

(4.7)
N sup I[f(t)l[+ []w[I2 d 61/2a(0)+-/2 a(z) d
tR+ --where we used (2.15)-(2.17) to obtain the second inequality.

Combining (2.20), (4.6), (4.7) gives

Ilwll2 d2

(4.8) <--MKf - Ilwll2 d + I(o)1 +is

+ +IYll+ /a(0+-/ a( - lwll

As q < 2 it follows from (4.8) that there exists Kw < such that

(4.9 IIw()l .
tp-6

Combining (4.5), (4.9) gives (2.21).
Repeating the estimates in (4.7), but with tp replaced by an arbitrary t, and

using (4.9), one obtains (2.22).
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We finally prove (2.23). Rewrite (3.64) as follows:

(4.10) u’(t) + a’(’)[w(t-’)-w(t)]d’+a(t)w(t)=f’(t).

Estimating the integral in (4.10) one gets

f’ I,r’()I IIw (t r)- w (t)ll dr
0

(4. ; la’(;I I’(;lllw(t-;-w(t;lF a
0

la’(,)lllw(t-,)-w(t)ll2 d

and so, using (4.10), (4.11) and squaring one obtains

(4.12) Ilu’(t)ll 3 I1’11 + a(t)llw(t)ll+ a(O) la’(r)][w(t-r)- w(t)ll2 d

By (2.18),

(4.13) /’ L2(0, ; H).

Invoking (2.18), (2.21), (4.4) one has

(4.14) sup
tR+

and from (2.20), (2.22) it immediately follows that

(4 15) inf (t) >-m.
tR

Therefore, by (2.15), (2.16), (4.1), the equality in (4.2), (4.14), (4.15) one obtains

Io(4.16) sup a
tR+

(4.17) sup a’(s)lll(,)-(,-s)l dsd<.
tR+

But, recalling (2.15), (2.16), one gets

(4.18)

and so, from (4.16), (4.18),

(4. 9 a(0(01 e (0,.
Integrating (4.12) and using (4.13), (4.17), (4.19), one arrives at (2.23). is
completes the proof of Theorem 2.. Pts t eildes 1 . The proofs of both Corollaries 1 and 2
closely follow that of Theorem 2 and so we indicate only the necessary changes.
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Proof of Corollary 1. The only part of the hypothesis of Theorem 2 that has
been dropped is (2.17). On the other hand, when proving (2.21) in Theorem 2 we
needed (2.17) only to obtain (4.7) which in turn was needed only to estimate q(t)
from below. But as we now a priori assume 0 (t) bounded below (see (2.24)), then
(2.17) is clearly superfluous for the validity of (2.21).

Examining the proof of (2.23) (that is, the arguments running from (4.10) to
(4.19)), one realizes that if (4.15) equal to (2.24) is assumed a priori then there is
no need for (2.17), (2.22).

Proofof Corollary 2. The relation (4.1) and the equality in (4.2) are still valid.
Hence, using also (2.15), (2.16), (2.24), one obtains

lfot Iot(5,1)
2

a()llw ()112 d <_- <f’, w> d t > 0,

and so, by (2.15), (2.6), (2.25), (2.26), (5.1),

(5.2)
a() IIw()ll2d I1’()112 d IIw()ll2 d
2 0

which yields (2.27).
To prove (2.23) we note that (4.10)-(4.13) still hold. The relation (4.14)

follows by (2.26), (2.27) and (4.15) is (2.24). Hence we have (4.17). But now, if we
integrate (4.12), and use (2.27), (4.13), (4.17), and the fact that suptsR
we obtain (2.23).

To show that ’ La(0, ) and hence that lim, (t) exists, it suffices to
combine (2.19), (2.23), (2,27).

6. Applications. Let O be a bounded open subset of Ru with sufficiently
smooth boundary F and let H, H stand for the Sobolev spaces. Choose y such
that

(6.1) ] is a convex, lower semicontinuous map of R (-, ], +,
and denote B 0.

Example 1 [2, p. 111]. Define (u) for u L2(O) by

Igrad u

for u e D() {ulu
+, for u

Then : La() (-, ], is lower semicontinuous and convex, and clearly
+. It also follows that

Ou
(6.3) O(u)=-u, u eD(O)={uu ella(a), -eB(u) a.e. on F}

where O/On is the outward normal derivative. Let, for any T>0, (t, x) map
[0, T] x a R and satisfy

(6.4) [ e AC([0, T]; L(a)), eL(0, T; L(a)),
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(6.5) f(O, x D(o ).

Applying Theorem 1 with H L2(-) and recalling the absolute continuity of
o(u(t)) (see the observation following Theorem 1) we immediately have

COROLLARY 5. Let o satisfy (6.1), (6.2) and suppose f satisfies (6.4), (6.5) for
every T> O. Moreover assume a (0) > O, a (t) locally absolutely continuous on [0, o)
and a’ BV[O, ] for some >0. Then there exists a unique ,function u(t, x),
defined on [0, o) satisfying

u AC([0, T], L2(O)) f] Loo(0, T; H’(f)) fq L2(0, T; H2(O)),
OU

(6.6) -- L(0, T; Le(l)),
8t

On

On
a.e. on F for almost every t (0, T),

(6.7) u(t,x)- a(t-z) Au(r,x)dr=f(t,x) on[0, T]xa,

for every T> O.
An application of Theorem 2 gives:
COROLLARY 6. Let the hypothesis of Corollary 1 hold except that a’

BV[0, ] need not be satisfied. In addition suppose

a(t)>=O, t_>O; a’(t)<--O a.e. ont=>O,

L2(-)
n=0

a 6 L(O, oo),

Let u(t, x) be a solution of (6.7) on [0, oo) x 12. Then

t+l

sup+ I]Au (r, x)llc:a)dr < oo,
tR

sup+ Ilu (t, x)lG . <
tR

U’G L2(0, ; L2(a)).

Example 2 [2, p. 123]. In addition to (6.1) assume

(6.8)
j(r)

Irl
for Ir[ oo.

For u 6 H- (-) define

(6.9)
u D(o)={ulu E.LI(’), J’(U) Ll(-)},

u t H-’(fl)\D(qg)..
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Then o" H-I() (-, ], 0 is lower semicontinuous and convex, not identi-
cally +c, and

(6.10) Oq(u)={wlw H-I(),-A-lw(x)(u(x)) a.e. on }.

Our assumptions on f are

(6.11)
f(t, x) AC([0, T];

f(O,x)D(q),

ore L(O, T; H-’(fl)),
Ot

for any T> 0 and we suppose a satisfies

a (0) > 0, a (t) locally absolutely continuous on [0, o),
(6.12)

a’ BV[0, ] for some > 0,

Applying Theorem 1 with H-H-(I) and using the absolute continuity of
rp(u(t)) gives (assuming/3 single-valued).

COROLLARY 7. Letrpsatis[y (6.1), (6.8), (6.9)andsuppose[, asatisfy (6.11),
(6.12) respectively. Then there exists a unique function u(t, x) such that for any
T>0

u e AC([0, T]; H-’(a))f3L(O, T; LI(-)),

Ou
(6.13)

Ot

fl(u(t, x)) e H(12) on (0, r),

and such that

Io(6.14) u(t,x)- a(t-’)Afl(u(r,x))dz=f(t,x) on [0, o) xa.
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HYPOELLIPTIC INFINITESIMAL GENERATORS*

ALBERTO BAIDER AND BARRY CHERKAS?

Abstract. In this paper we study semi-group generation by semi-bounded second order differen-
tial operators on a noncompact C manifold. It is shown that the usual regularity assumptions can be
relaxed to include hypoelliptic operators of the H6rmander type. The related question of the identity
between weak and strong extensions for such operators is also studied. Sufficient conditions are given
in terms of the behavior at infinity of an appropriate exhaustion function. We include examples to

illustrate how this function may be chosen in concrete applications.

1. Introduction. Consider the evolution equation

(1.1)
du
d--=Au, >0,

in L 2(12,/x), where 12 is an n-dimensional C manifold,/ is a C measure locally
equivalent to Lebesgue measure, and A is a second order hypoelliptic differential
operator with real C coefficients. The purpose of this paper is to discuss growth
conditions on the coefficients in A for which there is a unique semi-group of
solution operators {exp (tA)" t _->0} in L2(,/z) associated with (1.1). At the same
time, the techniques used here enable us to study the related problem of when the
weak and strong extensions of A in L2(f,/) are identical.

We suppose that in 12, A can be written in the form

(1.2) A =,X. +Xo+c

where Xo, , Xr denote first order homogeneous operators in 12 with real C
coefficients and A 1 c C(12). Noting that the termination coefficient for the
formal adjoint of A with respect to/x can be written A* 1, we require that

(1.3) sup {1/2(A 1 +A * 1)} A0 < a3.

Let D (A {u L" Au L 2}, where Au is understood in the distributional
sense, and denote by Do(A) the closure of C() in D(A) equipped with the
graph norm of A. Assuming (1.2) and (1.3), we use elliptic regularization to show
that for A sufficiently large the equation Au-Au ]: can be solved in L 2 with a
finite Dirichlet integral, ] IIX/.uJl2.

In order to insure that the solution u belongs to Do(A), we need some control
over the growth of the coefficients at infinity as well as some kind of regularity for
the operator. For the condition at infinity, we assume that there is a real valued
proper function p 6 C() and constant K such that whenever IPl --> 1 we have

(i) [X.p]_-<Klpl, j 0,..., r,
(1.4)

(ii) [Xp <-Klpl, j 1,..., r.

* Received by the editors December 18, 1975, and in revised form May 4, 1976.

" Department of Mathematics, Hunter College of the City University of New York, New York,
New York 10021.
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In R", this condition essentially means that the leading coefficient can grow up to
order 2 (see Example 3.5). As far as regularity is concerned, we assume the
explicit conditions given by H6rmander [1, Thm. 1.1] for hypoellipticity:

The Lie algebra over the reals generated by the
vector fields {X0," , X} has rank n at each x e.

The equality between Do(A) and DI(A) will follow if A* satisfies the same
conditions as A. In addition to the conditions above, it is sufficient that

(1.6) [Xll<-K, j= l,. .,r.

Several examples are given at the end.
The identity of weak and strong extensions has been studied by many

authors, especially in connection with essential self-adjointness of Schr6dinger
operators (cf. [4] and the references listed there). Most of the recent papers (see
viz. [3], [5], [6], [7]) are improvements upon the pioneering work of Ikebe-Kato
[2]. Their main thrust is to find minimal regularity conditions on the coefficients.
The present study is different in that we do not restrict our attention to elliptic or
symmetric operators. Also, the operators we treat need not be defined in the
whole of R n, although we require the coefficients to be smooth. In addition, since
we study semi-group generation, we require a condition (see (1.3)) that insures
semi-boundedness of the operators.

Remark. Unlike the strongly elliptic case (see viz. Yosida [8, pp. 419-425]),
hypoelliptic operators need not generate holomorphic semi-groups. Indeed, the
operator A 02/Ox 2 --t-- O/Oy in R 2 generates a semi-group on Do(A DI(A ). The
spectrum of A is the entire half plane Re (A)-< 0, as one easily sees by taking
Fourier transform. However, the resolvent of a holomorphic semi-group
generator must be defined in some sector r/2 < [arg [< 0o < r, at least when Ill is
large (see viz. [8, pp. 256-257]).

2. A necessary condition. The purpose of this section is to prove that any
second order differential infinitesimal generator with real C coefficients must
have a positive semi-definite principal part. Although this may have been done
before, we include a proof since we know of no reference.

THEOREM 2.1. Let A be a differential operator with continuous coefficients on
an n-dimensional Coo manifold and supposeA is locally oforderm >- 1 atx
Let C

_
D(A ). A necessary condition for A to be an infinitesimal generator of a

semi-group of class (Co) in L2(1),/) is that the principal symbol a, (x, i) of A
satisfy the inequality

Re (a (x i)) < 0,

Proof. Since A generates a semi-group of class (Co) in L 2([-, ), we have the
estimate

(2.1) 114 -A4,I[ _->M (Re (A)- Ao)21141[2

for b C(f), Re (A)>Ao, and some constants M>O and Ao. Consider the
expression

A (eit(x’#)t-mp) ei’(x’e>{a,, (x, i)d +...}
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where the dots indicate terms involving negative powers of t. Let Re (z) > 0 and
setA ztm. Upon replacing b in (2.1) by eit<x’>t-"ff9 and letting t c, we obtain

(2.2) f ](z-a(x, i:))4[2 d/z =>M (Re (z))2 In 1412 d/z.

If for some o we have Re (a,, (x, isc)) > 0, set z a,, (x, ic) so that Re (z) > 0
and by the continuity of am (x, so), (2.2) cannot hold for all b C(f).

COROLLARY 2.2. Ifm is even then Re ((-1)m/2a,,(x , )) <=0. Ifm is odd then
Im (a, (x, so))= 0.

Proof. Let a,, (x, so)= 11---, as (x)sc" If m is even then

Re (am (x, i:))= Re ((-1)’/2a,, (x,
If m is odd we have

0 _-> Re (a,, (x, -i:)) -Re (a,, (x , isc)).

Thus, 0 Re (a,, (x, isc))= +Im (a,, (x,
3. Generating semi-groups with hypoelliptic operators. Our starting point is

a coordinate free integration by parts. Let A be a second order differential
operator which we take to be real (in the sense that Ab is real whenever is real.)
If x (x 1,’", x,,) is a local system of coordinates then we may write A
a2(x,O)+’’’ where az(x,)=aij(x)ij is the leading term and 0=
(O/Oxl,..., O/Ox,). We know that this function is invariantly defined on the
cotangent bundle of 12, for example as the leading term of the polynomial in t

e-t*a (e t*) az(x, sc)t 2 +" ", sc dck(x).

We shall use the abbreviation a2(dq5). We will also have use for its polarization,
the symmetric bilinear form

b(dc, d$) 1/2{a2(d4 +d) a2(df a2(dq)}.

In local coordinates, b (x; :,
PROPOSITION 3.1. For real valued ck Cff we have

(3.1) (Ab, 4))= -In az(db) d/x +1/2((A 1 +A * 1)b, 4).

Proo[. A computation shows that Leibniz’ formula for A assumes the form

A(&) bAff +A& 4qA 1 + 2b (db, dq).

In particular, when 4 we obtain

qbAdp -a2(d4 + 1/2{A (4 2) +b2A 1}.

Integration over f gives (3.1), if one notes that

A (b 2) d/x f th 2A * 1 d/z ((A * 1)th, th).
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For the remainder of this paper, we shall take A in the form (1.2). In this case,
a2(db) =11xl2 so that (3.1) may be written

(3.2) (A, )-- Ilx, 2 +((A 1 +A *1), ).

THEOREM 3.2. Suppose A in (1.2) satisfies (1.3). Then for A >Ao and
fL(,/z) there is uD(A) for which hu-Au=f and Xu L(l,/z) for
]=l,...,r.

Proof. We begin by constructing a sequence of elliptic operators that approxi-
mate A on C(12) and satisfy certain properties uniformly. Choose a C(R ) so
that 0 _-< a -_< 1, a (t)= 1 if [t]-< 1, and a (t)= 0 if [t[ _-> 2. Let p be a real valued C
proper function on f and set

(3.3) a,, a (p/n C(fD.

Denote by E a real elliptic operator in f which is formally self-adjoint with
respect to/z, dissipative on C, and satisfies E 1 0. That such an operator exists
may be seen, for example, by putting a Riemannian metric on 1 and defining
E- div, (grad ), where the divergence is taken with respect to/z and the
gradient with respect to the Riemannian metric. If/x is the Riemannian volume
element then E is the usual Laplacian on f. In general, it will differ from the
Laplacian by lower order terms. Consider

1
A,,

I
E +aA (A,a2 2

n -- -a,,A 1)

From (1.3)we have

(3.4) 1/2(a,,l+a*,l)=1/2aZ,(al+a*l)<-,o<O.
Observe that the quadratic form of A, is nonnegative. Thus, for >o and

C(O), by Proposition 3.1 we have the estimate

[[h -a,[[ {[[(h -A,) Re [12 +[[(h -a,) Im 112}1/2 (/

Let H,, be the completion of C in the norm []2 (he-A,, ), h > ho.
Since A, is elliptic and its antisymmetric part has compact support, it follows that
the Hermitian form (A,, ) is continuous in H,. Indeed, the antisymmetric part

1/2CA, A *) +Ca2.A-A *a 2)
can be written in the form fl,+X+y, where fl,+, y,,eC(12). Since
1(/3,+X&, p)I_-<II/3,+XIIII+II, it clearly suffices to show that for any compactly
supported vector field X one has an estimate of the form IIXII _-< C[],,, for in
C(). Observe that (3.4) together with Proposition (3.1) applied to A,, yields

(;t -Ao)llll2 / a,2Cd) dtz.

Noting that X can be expressed as the Riemannian inner product (X,
where V, denotes the gradient operator in the Riemannian metric defined by the
symbol of A,, since (V,, V,)= a,2(d) we have the estimate

[X [2 _<_ (X, X)(V,, V,) -< CZa,,z(d).
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Thus,

<-_ C2 J, a,(d4)

__< =
Under these circumstances, the Lax-Milgram theorem (see viz. [8, p. 92]) implies
that the resolvent of A. as an operator on D(A.)= D(A.)H. exists for A > Ao
and satisfies

(3.5)

From (3.2) we have

Thus, the map a,. sends H, continuously into L2(O, ). It follows that any
u D(A,) satisfies

(3.6)

since a continuity argument shows that for such u one has

[u ]2,, <= iiAu A,,u Ilu II-
Forf L2(fL/x) and fixed A > A0, set Un R (A A,,)f. From (3.5) and (3.6) we

see that the sequences {u,}, {A,,u,,}, and {a,Xu,} are bounded in L2(l,/x).
Therefore, passing to a subsequence if necessary, we may assume that these
sequences converge weakly in L2(,/z) to elements u, v, and wj, respectively. For
4 e C(f), we have

(A,u,,6) l(u,,E*qb)+(u,,,aZA*6)+(u,,(A*a2 2,,- a,,A* 1)4).

If n is sufficiently large, the right hand side reduces to

1--(u,, E*dp + (u,, A *qb )

2since a 1 on the support of b and the support of A *a 2 2 ,.- a.A 1 is contained in
{x 6f: n <-Ip(x)l<=Zn}. Thus,

(v, b) lim (anu., c) (u, a *c)

so that v =Au as a distribution. Copsequently, u DI(A) and ,u-Au =f.
Moreover, from

(a,Xu,, b -(u,, a, (X.b (X1)b )) (u,, bXa,
we have wj X.u L2(12,/x) for 1, , r. This completes the proof.

THEOrEM 3.3. LetA in (1.2) satisfy conditions (1.3), (1.4), and (1.5). ThenA
with domain Do(A) is the infinitesimal generator of a semi-group {exp (tA )" t >= 0}
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of class (Co) in L2(, ) satisfying the condition [[exp (tA)][ _-< exp (tAo) for >- O.
Moreover, for u Do(A) we have Xu L2(, t*),/" 1,. ., r.

Proof. For h > ho, Proposition 3.1 and (1.3) imply that the estimate

[[h a4 [[----> (h h 0)[[th
holds in C(I) and therefore in Do(A). Thus, by the Hille-Yosida-Phillips
theorem (see viz. [-8, p. 248]), it suffices to prove that for f C(gl) and h > ho the
solution u of the equation hu-Au f given in Theorem 3.2 belongs to Do(A).

Consider the sequence {a,u}, where a, is defined in (3.3) and the function p
used there satisfies (1.4). From (1.5) we see that h -A is hypoelliptic. Thus, since
[ C(gl), by hypoellipticity we have u C() so that a,,u C(12). Clearly,
s-lim,_o a,,u u and s-lim,_oo a,,Au Au. Observe that we can write

(3.7) A (OgnU) a,Au + 2 (X.a,)X.u + uX.a, + uXoa,.

From

1
X.a, a p/n Xp,

n

Xa, 1 12--a’(p/n )X. p +Na"(p/n)(X.p)2,

and (1.4) we see that the terms X.a,, ] 0,..., r, and X.a,, ] 1,..., r, are
uniformly bounded with support in {x :n<-[p(x)[<-Zn}. Therefore, since

Xu G L2(,/), 1,’’’, r, the last three terms in (3.7) converge to zero in
L2(,/z). Thus, s-lim,,_oo A (a,u) Au so that u Do(A ).

THEORE 3.4. Suppose A in (1.2) satisfies conditions (1.3), (1.4), (1.5) and
(1.6). Then Do(A) D,(A).

Proof. Observe that

A*=X-{2 (X1)X. +X0} +A*I
is of the form (1.2) and satisfies (1.3). Using (1.6) it follows that the vector fields
2 Y] (X1)X-X0, X1,’’’, Xr satisfy condition (1.4). Let W(A) denote the Lie
algebra over the reals generated by {X0,’’’, Xr} and let (A) denote the Lie
algebra over C(O) generated by {Xo, , X}. Without assuming (1.5), it is easy
to check that the rank of the natural evaluation maps eVx from either (A) or
A/(A) to the tangent space at x, TxO(12), are the same. Since (A*) =(A),
using (1.5) we have

eVxO((A *)) eVxO(/(A *)) eVxO((A)) evxo((A)) TxO(I’1).

Thus, A* satisfies all the conditions in Theorem 3.3 so that for h >h o,

(h A *)Do(A) L2(f,/x).
Given u DI(A) there is v eDo(A) for which hv -Av hu -Au. Therefore,

w v u Ker (A). But, Ker (A) 0 since the range of A* on Do(A *) is
L2(, Ix). Hence, w 0 so that u v Do(A).
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In order to illustrate the flexibility of condition (1.4) over a fixed set of growth
conditions, several examples are given for which the conclusions of Theorems 3.3
and 3.4 hold. Note that in each case we choose a different proper function.

Example 3.5. For any positive integer n, let A--O2/OxZ+xn(O/Oy) on
(R 2, dx dy). The bracket between O/Ox and x" (O/Oy) reduces the exponent of x in
the second of these vectors by one. It follows from taking brackets n times that
H6rmander’s condition (1.5) is satisfied. Now take p x 2n + y2. A computation
shows that (1.4) and (1.6) hold.

Example 3.6. Let A (eU(Y)(O/Ox))2-+- O/Oy, where lu’(y)l =<M. This is slightly
more general than the above as far as growth at infinity is concerned. Take
P e2u + X

2 _]_ y2.
Example 3.7. In R "+1, let A =Z1 (ai(O/Oxi))Z+ao(O/OXo) where for some

constant K we have

(i) lai(x)l <-KIx [, 0,..., n,

Otli(X)
(ii) _-<K, i- 1,..., n,

OXi

O{a, OaiI Oa<K.(iii) 1 "X/’ 0x------
Assuming condition (1.5), it is enough to take p o x.

Example 3.8. We include this example to illustrate the kind of pathology that
may occur if the coefficients are chosen appropriately. For arbitrary fl R , let

As
0 0 1 e,=+(l+x2)t(2+sin(yeX))-y+-(l+x2)t3 cos(e y)

OX 2

Here, we take p (1 -X2)2/3 +y2. Note the wild oscillation of the termination
coefficient.

REFERENCES

[1] L. HORMANDER, Hypoelliptic second order differential equations, Acta Math., 119 (1968), pp.
147-171.

[2] T. IKEBE AND T. KATO, Uniqueness of the self-ad]oint extension of singular elliptic differential
operators, Arch. Rational Mech. Anal., 9 (1962), pp. 77-92.

[3] T. KATO, Schr6dinger operators with singularpotentials, Israel J. Math., 13 (1972), pp. 135-148.
[4] M. SCHECHTER, Spectra of Partial Differential Operators, Elsevier-North Holland, Amsterdam,

1971.
[5], Essential self-ad]oinmess of the Schriidinger operator with magnetic vector potential,

preprint.
[6] B. SIMON, Essential self-adjointness of Schr6dinger operators with positive potentials, Math. Ann.,

201 (1973), pp. 211-220.
[7], Schr6dinger operators with singular magnetic vector potentials, Math. Z., 131 (1973), pp.

361-370.
[8] K. YOSIDA, Functional Analysis, 3rd ed., Springer-Verlag, New York, 1971.



SIAM J. MATH. ANAL.
Vol. 8, No. 6, November 1977

NEW RELATIONS BETWEEN TWO TYPES OF
BESSEL FUNCTION INTEGRALS*

HENRY E. FETI’IS?

Abstract. It is shown that, in certain special cases, the incomplete Lipschitz-Hankel integrals are
related to incomplete integrals of Hankel-Nicholson type.

Integrals of the form

(1) Fp,q (x, z) e -tqze (zt) dt

where Zp(t) may be any one of the Bessel functions, fall under the general
category of incomplete Lipschitz-Hankel integrals (see [ 1 ]). These integrals were
studied in some detail by Luke (see [4]), where recursive relations were developed
connecting integrals in which p and q differed by integers. Later, Ng [6] extended
Luke’s results to the more general case

(2) e-at"tqZp (zt) dt.

In the present paper, we show that the integrals defined by (1) are related to
incomplete integrals of Hankel-Nicholson (or Sonine) type, i.e., to integrals
having the general form

(3) I t’Jp(xt) dt

To obtain the desired connection between these two types of integrals, we use the
following relations which are essentially those given in [6] and [4]:

(4a Fp,q(x, 2;)
] P +q (x, z) z (x, z),e xqZp (xz) + Fp,q-1 Fp+,q
a a a

(4b) Fp,q(X, z)
a aa_.Fp+ P-q + 1

=-e xqZp+(xz)+ 1,q(X,Z)+a
Z Z Z

Fp+l,q-l(X, Z),

where the parameters c and/3 are defined as follows"

(5)

1 forJp, Yp andlp,
! -1 for Kp;

1 forJp, Yp andKp,
/3=-1 forlp.

* Received by the editors April 9, 1976, and in revised form June 1, 1976.

" 1885 California, Apartment 62, Mountain View, California 94041.
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By eliminating Fp+l,q(X z) between (4a) and (4b), we obtain the following
result:

(a 2 + azZ)Fp,q (x, z) e-xq[zZp+ (XZ aZp (x, z )]
(6)

+ a(p + q)Fp,q_(x, z)+z(p-q + 1)Fp+a.q_(x, z)

which, in the special case p -q reduces to

(a 2 + azZ)Fp,_p (X, z) e-aXx-p[zZp+ (XZ aZp (xZ )]
(7)

+/3z (2p + 1)Fp+l,-p-l(X, z).

If, now, the above equation is multiplied by zp, and use is made of the easily
verified relation

(8)
0

z [Z%.,(x. z)] z%_..,+.(x. z)

we arrive at the following

(9)
(a 2 +aflz2)z[ZPF,-,(x, z)]+az(1-2p)[zPFp.-p(x, z)]

o e-aXx-p+l[zP+llp(xz)-azPZp_l(XZ)]
or, equivalently,

(lO)
(a 2 + flz 2)l/2+P[ O--- zP (a Z + flz 2)’/z-PFP’-Poz

a e-aXx-p+l[zP+lZp(xZ)-- azPZp_l(XZ)].
In an entirely analogous manner, we find

(a z +azZ)/z-P O---[z-p(a2 +azZ)/Z+PFp,p(x, z)]
Oz

()
ot e-aXxp+[Z -p+’lp (XZ) + aaz-PZp+l(xz)].

By assigning definite limits to the integrals Fp,_p and Fp,p and specifying the type of
Bessel function, integration of (10) and (11) between the limits 0 and z yields
relations between these integrals and those of Hankel-Nicholson type. For
example, if Zp Jp, and Re p > 0, the limits in the former ones may be taken to be
0 and x. Integration of (10) then gives

z(a+z)/- e-t-J(zt) dt

a (z t2p-1 dt
(12) 2p-IF(p Jo (aZ+t2) a/2+p

+ e_x_P[Io tP+’Jp(xt) dt
(a2+tz)/Z+p

tPJp- (Xt dt ]-a (a+t2)i/2/pj,
Re (p) >0.
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(13)

Similarly, from (11),

ioz-P(a+z)//p e-atPJp(zt) dt

la ]2p+l I e-att2P dt
2PF(1 +p)

+e-,Xx+P[IoZt-’Jp(xt)dt IoZt-PJp+(xt) dt]
(a 2 + 2) 1/2--p r- a --- -tiSiTi_-F j,

Re (p) =>0.
By replacing a with -a in (12) and combining the result with (12), the

incomplete Hankel-Nicholson integrals can be expressed in terms of the
Lipschitz-Hankel integrals:

Io I0X
1--p

tp+ 1jp (Xt) dt zp (a 2 2),/2-p t-PJp (zt) cosh a (x t) dt("-g’"/2T1/--2+’-’ + Z

a f 2p- dt
(4) -2,,_,r(p) sinh ax Jo (a;e)m+"’

Re (p)>0,

Io Ioax -p
tPJp_(xt) dt

p(a e)l/-p5/+ -z +z t-PJp(zt) sinh a(x -t) dt

a tep- dt
(15) +2P_F(p cosh ax Jo (a t2) l/2+p+

ae(p>0.

Similar relations may be obtained by applying the same procedure to (13).
Analogous relations involving the modified functions or functions of second

kind can be derived in a similar manner. In particular for p 0 and a > 0, the
following typical set df relations can be found:

io io tt(a+/ e-%(t at -e + e (
(6) ;o ,,t+a (S;

io li ,o,xt,t(a-z)/ e-%(zt) t 1-e -x e (
(7)

io ,,xt,t+ a (

Io -{ IK’(xt)dt IKo(xt)tdtl(z2-a2)/2 e-tKo(zt) dt x e a (t2_a /2- (j,

(18)

z <a,

Z >a,
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(19) (a2-z2) 1/2 e-atKo(zt) dt:xe -_21/2-a (a-_t2)1

(20) IO --axlfZlo(X’f):/t IaZll(X’t)2tl(z 2- a 2)1/2 e-’Io(zt) at x e
(t- a 1/2 -[" a

(t2- a ,/2

z>a.

The incomplete Lipschitz-Hankel integrals of order zero are also known as
"Schwarz integrals" and find application in the theory of unsteady aerodynamics
[7]. Those appearing on the right side of the (16-20) are of a type encountered in
problems in radiation theory [2].

Appendix. The first integral, appearing on the right side of (12) and in
subsequent relations can be expressed in terms of the hypergeometric function:

t2p+ dt 1
(a 2 + t2) 1/2+p 2a2p z 2p (a 2 + Z 2) 1/2-P2F1 1 1 +p

Letting x , we obtain the known result [5]:

e-"t-’J,(zt) dt
ar(1 +p) 2F1 1; 1 +p;

In addition, the following special results are obtained by letting z- in (12):

a>0,

Io tv+J)xt) dt x- e
a<0.

See, e.g. [3, art. 6.565; (3)].
The integrals on the right side of (13) are convergent for z, provided

0=<Re (p) <1/2.

This leads to the following, perhaps less familiar, result:

{Io t-vJp(xt) dt fo t-PJp+l(xt) dtle-x+P (;2)/2-p -a (-a-;.- j

2’F(1 +p) F[(l+2p),ax], a>0,

relating the complete Hankel-Nicholson integrals to the incomplete gamma
function.
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GENERALIZATIONS OF FARKAS’ THEOREM*

B. D. CRAVEN? AND J. J. KOLIHA?

Abstract. A unified treatment is given of generalizations of Farkas’ theorem on linear inequalities
to arbitrary convex cones and to dual pairs of real vector spaces of arbitrary dimension. Various
theorems for locally convex spaces readily follow. The results are applied to duality and converse

duality theory for linear programming and to a generalization of the Kuhn-Tucker theorem, both of
these in spaces of arbitrary dimension and with inequalities involving arbitrary convex cones.

1. Introduction. Farkas’ theorem on systems of linear inequalities 11] (see
also [ 10, Thm. 4-1) has been generalized to systems involving polyhedral cones [ 1],
and to arbitrary cones in locally convex spaces [12]. A unified theory is presented
here, based on arbitrary cones and dual pairs of real vector spaces. A necessary
and sufficient condition is obtained (Theorem 2) for the solvability of a linear
equation Ax b by a vector x in a given convex cone. A related necessary and
sufficient condition (Theorem 1) is obtained as an inclusion relation between two
cones. Although these results are closely related to the Hahn-Banach separation
theorem, the proofs of Theorems 1 and 2 (based on the approach of Bourgin [6])
require only a finite-dimensional separation result, of which a simple proof is
given in Lemma 1.

When these results are applied to continuous maps and real locally convex
spaces, it is found that each theorem appears in two versions, standing in a duality
relation, and not generally deducible from each other. Theorems 5 and 6 are a
typical such pair; Theorem 6 was previously known, but apparently not Theorem
5. Such a theorem holds if and only if a certain cone is closed, in an appropriate
topology. This fact was stated in [2], for finite dimensions only, and is here
extended to any dimension. The equivalence of this hypothesis to an alternative
hypothesis given in [1] for finite dimensions only is proved in Theorem 7 for
Fr6chet spaces.

The main application of Farkas’ theorem and its various generalizations is to
Lagrangian and duality theory in mathematical programming. The present results
are applied in Theorems 8 and 9, to duality and converse duality theory for linear
programming, in spaces of arbitrary dimension. In Theorem 10, the Kuhn-Tucker
theorem is generalized to arbitrary spaces; an appropriate generalization of the
Kuhn-Tucker constraint qualification is formulated.

Some further results are given for finite-dimensional problems in Theorems
11 to 14. These concern the solvability of linear operator equations by operators
which map one given cone into another.

2. Notation and preliminaries. For any real vector space X, X denotes the
algebraic dual of X, i.e., the set of all real-valued linear functionals on X, and
(x, x) denotes the evaluation of x * X* at the point x X. Let A" X be a
linear map between real vector spaces X, Y. The algebraic adointA of A is the
(linear) map from Y*-to X* satisfying the equation

(x, A y *) (Ax, y ), Ix X, /y Y.

Received by the editors July 17, 1975, and in revised form May 3, 1976.
? Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia.
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Let X+ be a subspace of X separating points of X. (This means that for any
two distinct points x l, x2 in X there is an x X+ satisfying (xl, x )# (x2, x ).)
Then X can be regarded as a subspace of (X+) when we identify each x X with
the linear functional x + --(x, x+), Vx+ X+, and observe that X separates points
of X+. The pair (X, X+) is called a dual pair [15, p. 32].

Given a dual pair (X, X+), we denote by or(X, X+) the weak topology on X,
i.e., the coarsest topology on X for which the functionals x + X+ are continuous.
The weak topology r(X+, X) on X+ is defined symmetrically. It is known that X
with the weak topology o-(X, X+) is a locally convex space real locally convex
Hausdorff topological vector space), and the weak topology is generated by any
family of seminorms I[xll I(x, x+)l, where {x+} is a Hamel basis of X+ [16, p.
124]. In the following we often abbreviate "weak topology", "closed in the weak
topology", etc., to "w-topology", "w-closed", etc.

Let (X, X+) and (Y, Y+) be two dual pairs. A map f" X- Y is w-continuous
(with respect to (X, X+) and Y, Y+)) if it is a continuous map between topological
spaces (X, o-(X, X+)) and (Y, or(Y, Y+)). A necessary and sufficient condition that
a linear map A" X- Y is w-continuous is that A (Y+)

_
X+ ([16], p. 128). In this

case the restriction A + of A to Y+ is w-continuous (with respect to (Y+, Y) and
(X+, X)). The map A + is called the adjoint of A with respect to the dual pairs
(X, X+) and (Y, Y+).

A nonempty set K in the real vector space X is called a convex cone if

K+K_K and aK_K, a >-O.

If (X, X+) is a dual pair, the anticoneK+ of the convex cone K
_
X (with respect to

(X, X+)) is defined as the set

K+={z X+’(x,z)>-_O, /x K}.

It is easily seen that K+ is a w-closed (with respect to (X+, X)) convex cone in X+.
We prove the following characterization of anticone:

(2.1) K+= {z X+" inf (x,z)>-oo}.
xK

Let #(z) inf {(x, z)’x e K} >-oo. If x e K, then axK for all a > 0, and (x, z)
-(ax, z) > -1 (z) Passing to the limit as a oo, we get (x, z) > 0 for all x e K.

The second anticone K++ of a convex cone K
___
X (with respect to the dual

pair (X, X+)) is defined to be the anticone (K+)+ ofK+ (with respect to (X+, X)).
IfX is a locally convex space and X’ its topological dual, then the anticone K+

of a convex cone K (with respect to (X, X+)) coincides with the dual cone K* of K
[16, p. 218]. If X’ is regarded as a locally convex space under the strong topology
[16, p. 140], then K* is a strongly closed convex cone. The second dual cone
K** (K*)* is in the second dual X" of X. Under the natural embedding ofX into
X" we have

K++ (K*)+ K**.

It can be shown that if K is a strongly closed convex cone in X, then

K** f3 X K.
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The concept of anticone is introduced to provide symmetry which is missing in the
case of dual cones. In fact, it will be shown presently that

K++= K
for any w-closed convex cone K in X (cf. Lemma 3).

In the rest of the section, <X, X+) is a certain real dual pair, and K a convex
cone in X. The main result of this section is Lemma 4, the main tool for its proof is
the separation theorem for convex sets given in Lemma 1. We give a completely
elementary proof of the separation theorem which does not invoke the full force
of Mazur’s theorem for topological vector spaces [16, p. 46], and which is
essentially an adaptation of Bourgin’s argument employed in [6, p. 643].

LEMMA 1: Let S be a w-closed convex subset o/X, and let a e X\S. Then there
is an a + eX+ such that

(2.2) inf (x a, a +) > 0.

Proof. There exist z 1," ",zn X+ and an e > 0 such that

I(x a, zi)l >-__ e, Vx S, l, n.

Define a map " X-n by

,(x) ((x, z), , (x, z,)), Vx x.
Let F denote the " closure of 0(S), let p 0(a), and let q be the point in F with
minimum (Euclidean) distance from p. It is easily checked that F is convex, that
the distance from p to F is not less than e, and that

(u-q,q-p)>=O, Vu6F,

where round brackets refer to the standard inner product in Nn. Define a +=
i= 10liZb where (c1, an) q-p. Then

(x a, a +) (tO(x)-p, q -p) >= (q -p, q -p) >-- e 2

for all x eS. [-1

The following three lemmas will be needed in the next section.
LEMMA 2. LetKbe a w-closed convex cone in X, and let a X\K. Then there is

an a + K+ such that (a, a +) < O.
Proof. Let a +X+ be a functional satisfying (2.2); from (2.1) it follows that

a + e K+. Inequality (2.2) then implies that (a, a +) < (0, a +) 0 since 0 K. 1
LEMMA 3. Let K be a convex cone in X with w-closure K. Then

Pro@ , is a w-closed convex cone inXwith/+ K+. From the definition of
anticone we deduce/

_
K++. Ifa X\/, Lemma 2 guarantees the existence of an

a + K+ with (a, a +) < 0; this shows that aK++. El
LEMMA 4. Let P and O be convex cones in X with P w-closed. Then

p+
_
Q+:p

_
Q.
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Proof. From Lemma 3 and the definition of anticone,

P_ O=P+
_
O+ =)>p++

_
0+/

P_QP_Q_Q

since P is w-closed.

3. Farkas’ heorems for dual pairs. The original Farkas’ theorem [ 11] dating
back to 1902 gives a necessary and sufficient condition for the solvability of the
real linear system

aijX b, x >- 0 for all], 1 _-< _-< m.
j--1

The result has been since generalized by many authors (e.g. [1], [2], [3], [7], [12])
to give necessary and sufficient conditions for the solvability of the linear system

(3.1) Ax b, x S,

where A" X- Y is a linear map, and S a convex cone in X. If the cone S is such
that S f3 (-S) {0}, the relation

x<=yCy-xS

defines a partial order on X. In this case, any x satisfying (3.1) is a positive solution
(x _-> 0) of the linear equation Ax b.

In the present paper we adopt a new, more encompassing approach to the
theorem: Instead of regarding Farkas’ theorem as a criterion for the positive
solvability of a linear equation, we view it as a criterion for a cone inclusion. The
formulation in the setting of dual pairs instead of locally convex spaces is a vital
part of the generalization: It yields two important results for locally convex spaces,
neither of which can be deduced from the other (Theorems 3 and 4).

THEOREM 1 (Two cones theorem). Let (X, X+), Y, Y+) and (Z, Z+) be real
dual pairs, let S

_
X and T

_
Z be convex cones, and let A X- Y, B Z- Y be

w-continuous linear maps. If A (S) is w-closed, the following conditions on B are
equivalent:

(a) B(T)A(S).
(b) A+y + s+B+y+ T+.
Proof. First we observe that A (S) and B(T) are convex cones in Y. Let

y+6 Y+. Then

A+y +
6 S+z>(Vy 6S)O(y,A+y+)=(Ay, y+)

:y+ A (S)+,
where A (S)+ denotes (A (S))+. Similarly

B+y +
6 T+,y+ 6 B(T)+.

Therefore

(b):>a (S)+ B(T)+(a)

by Lemma 4 since A (S) is w-closed.
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Let us consider the special case of the preceding theorem when Z Z+= ,
and T is the cone / of nonnegative real numbers. In this case each linear map
B: Y is uniquely represented in the formB sob (Vsc e ), where b e Y. Since
/ is its own anticone with respect to the dual pair ([, ), the cone B(T) is the ray
{hb h >-- 0}, and

(3.2)

Next,

Hence

(3.3)

B(T)_A(S)C:b A(S).

(, U+y+) (b, y+) VsCeR, Vy+e Y+.

B+y + e T+ :>(b, y+) >-_ 0.

This leads to the following result.
THEOREM 2 (Generalized Farkas theorem). Let (X,X+), (Y, Y+) be real

dual pairs, let S be a convex cone in X, and let A X- Ybe a w-continuous linear
map. IfA (S) is w-closed, the following are equivalent conditions on b Y:

(a) The equation Ax b has a solution x e S.
(b) A+y + eS+(b, y+)->_0.

Conversely, the equivalence of (a) and (b) implies that A (S) is w-closed.
Proof. Let A (S) be w-closed. The equivalence of (a) and (b) follows from

Theorem 1, (3.2) and (3.3) on setting Z Z+ [, T + and Bsc :b (Vsc e ) in
Theorem 1.

Assume that the conditions (a) and (b) are equivalent. If {x,} is a net in S such
that {Ax,} is convergent to b in the w-topology, then

(b, y+) lim (Ax,, y+) lim (x,, A +y +) -> 0

wheneverA +y+ S+. The implication (b) =), (a) now guarantees that b

4. Farkas’ theorems for locally convex spaces. Let X be a locally convex
Hausdortf space with the topological dual X’ 16, p. 48]. The original topology on
X is called the strong topology, r(X, X’) is called the weak topology on X, and
o’(X’, X) is called the weak* topology on X’. We recall that every continuous
linear map A:X- Y between locally convex spaces is also weakly continuous.
Let x,, ->0 strongly in X; then (x,A *y’) (Ax,,, y’)--> 0 for each y’ Y’, i.e., the
necessary and sufficient condition A*(Y’)___ X’ for the weak continuity of A is
satisfied. The adjoint of A with respect to the dual pairs (X, X’) and (Y, Y’) will be
denoted by A’; it is a weak* continuous map. If S is a convex cone in a locally
convex space X, S* denotes the dual cone of S, that is, the anticone of S with
respect to (X, X’).

One of the deeper properties of locally convex spaces used in this section is
the fact that the strong and the weak closure of any convex set are identical.
Unlike the results of 3 of this paper, the proof of equality of the two closures
requires a separation theorem [16, p. 65] based on Mazur’s theorem [16, p. 46],
and hence on transfinite induction.
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The two cones theorem for dual pairs gives rise to two independent results for
locally convex spaces. For readers’ convenience we include diagrams illustrating
the respective theorems.

THEOREM 3. Let X, Y, Z be locally convex spaces, let S
_
X, T

_
Zbe convex

cones, and let A X- Y, B: Z- Ybe strongly continuous linear maps. IfA (S) is
strongly closed, the following conditions are equivalent:

(a) B (T) A (S).
(b) A’y’ E S*=B’y’ E T*.

x[s] x’[s*]

A A’

Y Z[T] Y’
B B’

FIG.

Z’[T*]

FIG. 1’

THEOREM 4. LetX, Y, Zbe locally convex spaces, let S a_a_ X, T a_ Zbe strongly
closed convex cones, and let C: Y-X, D: Y-Z be strongly continuous linear
maps. If C’(S*) is weak* closed, the following conditions are equivalent:

(a) D’(T*) c_ C’(S*).
(b) Cy SDy T.

x[s] x’[s*]

c c’

y y,..Z[T] Z’[T*]
D D’
FIG. 2 FIG. 2’

Proofs. Theorem 3 is a straightforward application of Theorem 1.
To prove Theorem 4, we make the following replacement in Theorem 1: X,

Y, Z, S, T, A, B are replaced by X’, Y’, Z’, S*, T*, C’, D’ in this order. The maps
C’ and D’ are weak* continuous, i.e., w-continuous with respect to the dual pairs
(X’, X), (Y’, Y) and (Z’, Z). We have to show that (C’)+ C, (D’)+ D, (S*)+ S
and (T*)/= T with respect to the mentioned dual pairs. Now (C’)/ is the
restriction of (C’) * to X, i.e.,

((c’)+x, y’) (x, c’y’) (Cx,

for x X and y’ Y’; hence (C’)+= C. Next, S is strongly closed, and conse-
quently also w-closed with respect to (X, X’). According to Lemma 3, (S*)+=
S++= S. The remaining two equalities are proved similarly. F]

It should be observed that in Theorem 3 we do not make the assumption that
the cones S, T are closed; this hypothesis, however, is indispensable in Theorem 4
as we need the relations (S*)+= S and (T*)+= T.
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Specializing the space Z in Theorems 3 and 4 to N and the cone T to [+ and
applying (3.2), we obtain the following results.

THEOREM 5. LetX, Ybe locally convex spaces, letS
_
Xbe a convex cone in X,

and letA X Ybe a strongly continuous linear map. IfA (S) is strongly closed, the
following conditions on b Y are equivalent:

(a) Ax b has a solution x S.
(b) n’y’eS*(b, y’)->0.

Conversely, the equivalence of (a) and (b) implies that A (S) is strongly closed.
THEOREM 6. Let X, Y be locally convex spaces, let S Xbe a strongly closed

convex cone, and let C: YX be a strongly continuous linear map. If C’(S*) is
weak* closed, the following conditions on b’ e Y’ are equivalent:

(a) C’x’ b’ has a solution x’ e S*.
(b) Cy S=>(y, b’)-_>O.

Conversely, the equivalence of (a) and (b) implies that C’(S*) is weak* closed.
Berman and Ben-Israel proved the direct part of Theorem 5 in the special

case that the spaces X, Y are finite dimensional under the additional hypothesis
that the cone S is also closed (cf. [2, Thm. 1]). The direct part of a finite
dimensional version of Theorem 2 is given in Theorem 2.4 of [1] with the
assumption "A (S) is closed in Y" replaced by "S +A-(0) is closed in X"; R. A.
Abrams (see [5, Lemma 3.1]) proved that these two hypotheses are equivalent in
finite dimensional spaces. We prove, in Theorem 7, that this equivalence holds
more generally. Let us remark that the results of [1], [2], and [3] are presented for
complex vector spaces.

Our Theorem 6 is essentially Hurwicz’s generalization of Farkas’ theorem
(cf. [12, Thm. 1II.4]); it is hoped that our formulation is more transparent.
However, Hurwicz uses the Hahn-Banach separation theorem, and thus relies on
transfinite induction, whereas our Theorems 1 and 2 do not. It should be noted
that Hurwicz’s result does not lead to our Theorem 5. In fact, neither of the
Theorems 5 and 6 implies the other (witness the hypotheses about the cone S).
Finally, Hurwicz’s version of Farkas’ theorem requires only that X be locally
convex, while Y can be any linear topological vector space.

If C(Y) X in Theorem 4, and no hypotheses are made about the closure of
cones, then Theorem 2.2 of [7] shows that the conditions (a) and (b) are equivalent
whenX and Y are Fr6chet spaces. This statement remains true whenX and Y are
any real locally convex spacessee [8, Thm. 1].

The next theorem provides an alternative to the hypothesis made in
Theorems 3 and 5, namely that A (S) is closed, in a certain special case.

THEOREM 7: Let A X- Y be a strongly continuous linear map with closed
range between Frdchet spaces 16, p. 49] Xand Y, and let S be a convex cone in X.
Then

A (S) is closed in Y,S +A-(0) is closed in X.

Proof. Assume first that A (X)= Y. Denote N A-(0) and M (S +N)
where denotes set complements (in X or Y). Let y As for some s e S. For any
x eA-y, A(x-s)=O, so x eS+N; hence

(4.1) A-(A(S))_ S +N,
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and xEM, so yA(M). Consequently,

A (S) a (M) Q.
Since also

we have

Y A (X) A ((S +N) M) A (S) A (M),

(4.2) A (S) A (M)

Also, from A(S +N)=A(S), S +N_A-I(A(S)). With (4.1) this shows that

(4.3) A-’(A (S)) S + N.

Since A is surjective andX and Y Fr6chet spaces, the open mapping theorem
[16, p. 77] shows that the image A(G) of each (strongly) open set GX is
(strongly) open in Y. If S +N is closed, thenM is open, so A (S) is closed in view of
(4.2). Conversely, if A (S) is closed in Y, then S +N is closed in view of (4.3) as the
inverse image of a closed set by a continuous map.

Suppose now that the range A (X) is closed in Y, butA (X) Y. ThenA (X) is
a Fr6chet space, and the above argument shows that S +N is closed inX iffA (S) is
closed in the relative topology ofA (X); the latter is true iffA (S) is closed in Y. []

5. Duality and converse duality in linear programming. Let (X, X+) and
(Y, Y+) be dual pairs; let A X Y be a w-continuous linear map; let K _c y be a
convex cone; let c X+, and b Y. Consider the pair of linear programming
problems:

(P): minimize {(x, c) Ax b K};
xX

(D): maximize{(b, v):A+v=c, vK+}.
vy

If (P) attains a minimum at x a, denote d Aa b, and define the map " [--> Y
by (Vr )r-->rd.

The mathematical program

(B)" maximize {4(z)’z 6 U}

is called a dual program to

and

(A)" minimize {f(x) x S}

(i) (Vx e S, Vz e U) 4(z)_-<f(x);

(ii) if (A) attains a maximum at x* 6 S, then (B) attains a minimum at
some z* U, and f(x*) oh(z*).

THEOREM 8. Let A" X Ybe a w-continuous linear map, and letK
_
Ybe a

convex cone. If (P) attains a minimum at x a, d Aa -b, and the convex cone

{[ A+S 6x+ff’s 6K+}
is w-closed, then (D) is a dual program to (P).
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Proof. Let Ax b K, A +v c, v K+. Then, for some k 6 K,

(b, v) (Ax k, v) (x, A +v)-(k, v) (x, c)

since A+v =c, and k K, eK/(k, v)>-O. So requirement (i) holds for (D) to
be a dual to (P). It remains only to find a solution v to (D) satisfying a,

Let z X and r e satis[y Az + rd e K; then Az k rd for some k K. If
this implies that z O, then (z, c) O; if z # 0 then, for all sufficiently small t [+,

A(a +tz)-b =d +t(k-rd)=tk + (1- tr) d K.

Since (P) attains a minimum at x a, it follows that (a + tz, c) >- (a, c}. Therefore

If z 0, then (5.2) holds trivially.
By hypothesis, the cone

[A ]+(K+)
(d,s)

X+xl’sK+

is w-closed. Then Theorem 2 shows that there exists an h 6 K+ such that

and thus A+h c and (d, h) 0. Then v h is a solution to (D), satisfying

(b, h (Aa, h (a, A +h (a, c

as required.
Remarks. The hypothesis that the cone (5.1) is w-closed cannot be omitted,

since an infinite-dimensional linear program can have a duality gap, i.e. min (P) >
max (D) can occur. See Duffin [9] for relevant earlier results.

Kretschmer [13] has given an analogous result, with the hypothesis that (5.1)
is w-closed replaced by the hypothesis that the cone

r-{b, s
"s 6K+, r N+

is w-closed. These hypotheses are nontrivial, even in finite dimensions, for convex
cones which are not polyhedral.

Now let U and V be real locally convex spaces; let L: U- V be a strongly
continuous linear map; let S_c U and T_ V be convex cones; let m U’ and
p V. Consider the two linear programming problems:

(P1): minimize {(u, m) :Lu -p S};
uGU

(P2): minimize {(p, v’):L’v’-m T*}.
tPG V
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In finite dimensions, each problem can be put in the form of the other; but this
does not necessarily hold in infinite dimensions. Define the cones

O1= (La-p,s)
E’s6

} s

where a U and a’ V’.
Toa 9. I (P1) attains a minimum at u a, and g the cone O is weakly

closed in U’x N, then (P1) has a dual program"

(D1)" maximize {(p, v’)" L’v’= m, v’ S*},
I)’E V’

which is equivalent to a minimization problem

(DI’)" minimize (-p, v’):[L I]’v’-
t’E V

of the form of (P2). (I denotes the identity map.)
If (D 1) attains a maximum at v’ a’, and if the cone 02 is weak* closed in

V , then (D 1) has a dual program (P 1).
Proof. Apply Theorem 8.
Remarks. The second part of Theorem 9 is a converse duality result.
Analogous results hold for the dual of (P2).

6. Kuhn-Tucker conditions in dual pairs. Let (X, X+) and (Y, Y+) be dual
pairs; let f" X- and k" X- Y be Frchet-differentiable maps; let K Y be a
convex cone such that (- K) f3 (K) {0}, where K denotes the w-closure of K. Let
O {x 6 X" k (x) K}. Fix a X, such that d k (a) K.

Suppose d 0; since (-K) f3 (K) {0}, -dJK. Then by Lemma 2, there
exists a 6 /+=K+ such that (-d, q)=-1, so (d, q)= 1. If d 0, set 0.
Define a projection P: Y- Y by (Vy Y) Pff y (y, q)d; then Pd 0. Let
H={6X’Pk’(a)P(K)}. Define the map d: Yby (Vr 6 [) dr=rd.

DEFINITION. The minimization problem

(MP)" minimize {f(x k (x K}
xGX

satisfies the extended Kuhn-Tucker constraint qualification (EKTCQ) at the point
a X (such that d k(a) K) if to each w H there exists a continuous arc
x =/3 (t) (0 _-< _-< 6) in Q, for which/3 (0) a and the initial slope/3’(0) :.

Remark. An elementary calculation shows that the EKTCQ reduces to the
classical Kuhn-Tucker constraint qualification in the case in which X=
Y= E’, K is the positive orthant in m, and P is the orthogonal projection
orthogonal to d. The present definition is applicable to any dimension, and to
arbitrary cones.
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THEOREM 10 (Extended Kuhn-Tucker conditions). Let (MP) attain a local
minimum at x a let d k (a let the EKTCQ hold at a let the cone

(6.1) [k’(a) d]+(K+)

be w-closed in X+ x (where k’(a) is the Frdchet derivative of k at a). Then there
exists a Lagrange multiplier A K+ such that

f’(a) A k’(a) and (k(a), A) O.

Proof. If w H, thus if

(::lz K, ::ir ff) k ’(a )w z -rd,

then

d
f’(a) -f(fl (t))l,=o -> 0

since (MP) attains a minimum at a, and the arc {fl (t)}_ Q. Thus

[k’(a) ][7]K+zr[f’(a) 0][7]->0.
Since the cone (6.1) is w-closed, Theorem 2 shows there exists A 6 K+ such that

[f’(a) 0] h [k’(a)

and the theorem follows.

7. Finite-dimensional applications. In this section we assume that X, Y, Z
are finite-dimensional real vector spaces, and that S

_
X, T Z are convex cones.

We identify X with its dual by choosing any inner product which induces the
unique locally convex topology in X; the same convention applies to Y and Z. We
are concerned with the following two problems:

PROBLEM I. Given linear maps A:X Y, B: Z- Y, find a linear map
U: Z-X such that

B=AU and U(T)_S
(cf. Fig. 3).

PROBLEM II. Given linear maps C: Y- X, D: Y- Z, find a linear map
V: X-Z such that

D VC and V(S)
_
T

(cf. Fig. 4).

x[s] x[s]

A \ U C
\

\

\

\ v

- Z[T]
D

FG. 4
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If the cones S and T are closed, so that S**=S and T**= T, we can
transform Problem II to Problem I according to the following diagram"

x[s*]

\

Y - Z[T*]
D’

FIG. 5

The following lemma, the proof of which we omit, provides a link between
Problem I and Theorem 3, and between Problem II and Theorem 4.

LEMMA 5. Th8 conditions

(7.1) B(Z)_A(X) and B(T)_A(S)

(7.2) (resp. D’(Z)
_
C’(X) and D’(T*)

_
C’(S*))

are necessary for the solvability of Problem I (resp. Problem II). They are also
sufficient ifA is in]ective (resp. C is surjective).

We note that (7.2) is equivalent to

C-I(0)_D-(0) and C-a(S)_D-(T).

If Z is specialized to E and the cone T to E+, Problem I is answered by
Theorem 5, and Problem II by Theorem 6. Mangasarian [4, Thm. 3.1] gave a
solution to Problem I in the case that X E’, Y Em, Z E, and that the cones
S, T are the positive orthants [_, E+. He proved that under these assumptions
Problem I has a solution iff

A’yE2B’y+.
Our first theorem in the present section is devoted to a generalization of

Mangasarian’s result. We show that S can be any convex cone, while T is
restricted to a special polyhedral cone (sometimes called simplicial) which in
reduces to an isomorphic image of the positive orthant. Necessary information
about polyhedral cones can be found in 17].

THEOREM 11. Let A (S) be closed and let T be a polyhedral cone whose
generators form a basis of Z. Then the following are equivalent:

(a) Problem I has a solution.
(b) B(T)_A(S).
(c) A’y S*B’y T*.
Proof. The conditions (b) and (c) are equivalent by Theorem 3, and (a) implies

(b) by Lemma 5. Only (b)=),(a) remains to be proved. Let tl, t2,’", tk be
generators of T that form a basis of .Z, so that

(7.3) T= 1& "A _-> 0
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By (b), there are vectors si S such that Bti Asi, 1, , k. Let U be the linear
map from Z to X that carries ti to si, 1,. ., k. Then

AUz AU ili Z iAUti iasi iBti B i Bz
i=l i=l i=l i=l i=l

for each z Z, so that AU=B. The relation (7.3) shows that U(T)_S.
Transforming Problem II to Problem I via the diagram in Fig. 5 and recalling

that a polyhedral cone is closed, we obtain the following result.
THEOREM 12. Let S and C’(S*) be closed and let Tbe a polyhedral cone whose

generators form a basis of Z. Then the following are equivalent:
(a) Problem II has a solution.
(b) D’(T*) C’(S*).
(c) Cy S =)> Dy T.
When we attempt to replace T in Theorems 11 and 12 by an arbitrary

polyhedral cone, we may discover that the condition (b) is no longer sufficient for
the solvability of the appropriate problem. We are forced to restrict the cone S
also to a polyhedral cone, and to resort to necessary and sufficient conditions of a
different type. Let us assume that S

_
X and T Z are polyhedral cones, and let

us introduce the following notation:
L (Z, X) ’, the set of all linear maps from Z to X;

eg L (Z, Y) ’, the set of all linear maps from Z to Y;
(U, V) tr (V’U), the inner product in (resp. );
s: - , the map s(U) AU for all U ;
5={U6: U(T)S};
oW* ={VT: (U, V)=>0 for all U0*}.
Recall that the trace tr M of a linear map M: Z-*Z is defined by tr M

k= (Mzk, z), where (zl,. ", z,) is any orthonormal basis of Z.
We observe that s is a linear map from to with adjoint M’: -0

defined by M’(W) A’W for all W 0-g. It is easily seen that 0 is a closed convex
cone. We prove that 0 is in fact a polyhedral cone in . Then M(oW) is closed
being a polyhedral cone in , and Theorem 5 is applicable to , , s and ow.

In the next lemma we give a description of the dual cone * motivated by
Theorem 3.1 of Berman and Gaiha [4] for cones of matrices. We assume that

t,’",tp and s’,’",Sq

are generators of T and S*, respectively.
LEMMA 6. The cones 5 and * are polyhedral, with * generated by Pij T,

1 <-i -<-p, 1 -<_.j <=q, where

(7.4) Pqz (z, ti)s[ for all z Z.

Proof. First we show that for each U

(7.5) tr (PjU) Uti, s[ ).
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Pick an orthonormal basis (zl,..., zn) of Z. Then

k=l k =1

(UZk, Pijzk)----- (P;jUZk, Zk).
k=l k=l

Let be the polyhedral cone in with generators Pi- Since Ue
iff (Ut, s) 0 for all and j, we deduce from (7.5) that

=*, andso *=.

Since is a polyhedral cone, so are and *.
Write {V " V(T*) S*}. It is proved in [4] that * ff even if S and

T are merely closed convex cones. This inclusion follows directly from (7.4) as

(Piit*, s) (t *, ti)(s?, s) O

for all t* e T* and all s e S.
Theorem 5 and Lemma 6 combine to give the following result"
THEOREM 13. LetS Xand T Zbe polyhedral cones. enProblem I has a

solution iff
(7.6) A’Ve*tr(B’V)O (VeL(Z, Y)).

Since * if, Theorem 13 implies the following corollary"
COROLLARY. Let S X and T Y be polyhedral cones. If

(7.7) (A’V)(T*)S*tr(B’V)O (VeL(Z, Y)),

then Problem I has a solution.
Applying the transformation of Fig. 5 and recalling that S*, T* are

polyhedral when S, T are polyhedral, we obtain the following analogue of

Theorem 13, in which

W={VX" V(T*)S*}={V6T" V’(S) T}.

THEOREM 14. Let S
_
Xand T

_
Zbe polyhedral cones. Then Problem II has

a solution iff

(7.8) CWe 3-* tr (DW) _-> 0 (W e L (Z, Y)).

More generally, (7.6) (resp. (7.8)) is a necessary and sufficient condition for
the solvability of Problem I (resp. Problem II) if S and T are closed convex cones
and if the cone M(0) (resp. C’(3-)) is closed. In this case we have the following
characterization of 5*: For T and s* S* define Pts* 6 by Pts.z (z, t)s* for
all z 6 Z, and put

{Pt.e" e T, s* eS*}.

Then

and 90* U6 9,
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where fiG denotes the closed convex hull in . An analogous representation can be
given for the cone -*. Also in this more general case, 5* _c -. This representation
is given in Theorem 3.1 of [4] for matrices.

For other finite-dimensional applications of Farkas’ theorem (Theorem 5)
including a theorem of Bellman and Fan on positive definite matrices, and
theorems of the Lyapunov and Stein type, as well as further generalizations, see
Ben-Israel and Berman [3].
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NONEXISTENCE OF NONTRIVIAL SOLUTIONS OF SCHRDINGER
TYPE SYSTEMS*

G. B. KHOSROVSHAHIt

Abstract This paper is primarily concerned with the question of nonexistence of nontrivial
solutions of the Schr6dinger equation Au +p(x)u 0 in an exterior domain 1, which is a connected
open region in Ii:", containing {xlllx >= Ro}. The function p (x), (p (x) po(x +P (x)), is assumed to be a
continuous function, Po satisfies Opo/Or+61Po>=62 where 61,62>0, and Pl is a complex-valued
function such that supll,ll=r[rp(x)[<=K. It is shown that any C solution which satisfies

IRoPt spPolUl ds dp <=M for/3 >-1 is identically zero. The theorem is generalized to a system of
equations of the type Aui + 7’= pqu O, 1, , m, and a theorem concerning upper bounds for
positive eigenvalues of the Schr6dinger operator -A + V(x) is given. The main theorem has features in
common with Agmon’s result [J. Analyse Math., 23 (1970), pp. 1-25]. However somewhat different
conditions on p(x) are assumed and a different line of proof is given. This method will be extended to
more general elliptic differential equations and nonlinear inequalities in subsequent papers.

Introduction. In this paper we are concerned with questions of growth and of
nonexistence of solutions of Schr6dinger type equations in exterior domains. In
particular we consider solutions of the equation

Au +p(x)u =O inl),

where 12 is an open unbounded connected region in n-dimensiona! Euclidean
space (n => 3) and A denotes the Laplace operator in n-dimension. Throughout we
shall assume u C2(f) and that the potential p is a prescribed complex-valued
function in .

This problem has been investigated by F. Rellich [11], T. Kato [6], and S.
Agmon [1], [2] and [3]. Successive authors have in general considered an over
widening class of potentials thus in some way extending the result of previous
authors.

The primary objective in this paper is to take potentials similar to those of
Agmon’s [1] and by imposing somewhat different conditions on p(x) and on the
class of admissible solutions give a variation of his theorem using a somewhat
different method of proof. This method can be applied to classes of solutions not
treated by Agmon, and it can be extended to more general elliptic operators and
to classes of nonlinear inequalities. These latter questions will be dealt with in
subsequent papers. We indicate in 2 a reasonably straightforward extension to__
elliptic systems of the form Aui Yj=I Pij(x)ui O, 1, m.

In 2 we also specialize our results to an eigenvalue problem and state a
theorem concerning the positive eigenvalues of the operatorH -A+ V(x). This
theorem handles a wider class of potentials than those cited in the literature; in
particular, it includes Agmon’s Theorem 411] and it also provides upper bounds
which are at least as sharp as Kato’s, for the positive eigenvalues of the operatorH
with V(x)= O(1/r).

* Received by the editors August 26, 1974, and in revised form April 20, 1976.

" Mathematics Department, University of Tehran, Tehran, Iran, and Department of Mathe-
matics, Cornell University, Ithaca, New York, 14850. This research was supported by the National
Science Foundation under Grant GP 33031X.
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1. Single Schr6dinger equation with complex potentials. In this section we
shall deal with the Schr6dinger equation for a specific class of potentials, studying
in particular the behavior of solutions as Ilxlloo. The main purpose of the section
is to demonstrate a method of proving nonexistence of solution in a certain class of
functions. Although the method has some features in common with those of
Agmon [1] and Kato [6], it will nevertheless yield sharper results in some cases.

Preliminaries. (i) The following lemma will be used in subsequent sections.
MAIN LEMMA. LetFbe a nonnegative, real valuedfunction of t, continuous in

the half open interval (0, to] and twice continuously differentiable in (0, to), where to
is an arbitrary and finite number.

Suppose for all e (0, to],

and that

n-F(n dn <

(1.2) FF"-(F’)2 >--C,t-IFF’ + et-IF n-F(n) drl,

where C1 and e are strictly positive, Ol 2 > 1 and -2C1 + a +2> 1. Under these
conditions F(t) =- O, V [0, to].

The proof of this lemma is given in the Appendix.
Remark 1. One may generalize the above lemma by replacing (1.1) and (1.2)

by

(1.1)’

and

(1.2)’

Io’ h2(/)F(r/) d/<

FF"-(F’)2>=-Clt-’FF’-C2(t)F2+sh(t)F h2(’o)F(’q)

provided C2, h and h2 are appropriately chosen.
Remark 2. For a certain range of values of a > 1 this lemma can be obtained

from Agmon’s Lemma 1 1].
(ii) Throughout this paper we let 1) be an open connected region in Nn for

n _>-3 and use the notation throughout DRo {x] Ilxll>=Ro}. It will be assumed that
DRo c

We shall be concerned with solutions u C2(fD which satisfy

(1.3) Au +p(x)u 0 in 1),

where p(x) is a complex-valued function in f which can be decomposed as

(1.4) p(x)=po(x)+pl(x)

In (1.4) we assume that po(x) is real and positive and possesses a continuous radial
derivative while p(x) is a complex valued function satisfying for sufficiently large
Ro,

(1.5)
sup Irp,x)lK for r =>Ro.
Ilxll---
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We shall subsequently be imposing a further assumption on po(x) of the
following type:

(1.6) r-’-" + 61po >= 62 for ( 1, 62 > 0,
Or

assumed to hold along every ray for r -> Ro (sufficiently large).
From (1.6) it follows that at every point outside a sufficiently large sphere one

can compute a constant K2 such that

(1.7) po(r, ) >= K2,
(we use the symbol po(r, s) to indicate that po may depend on the angle variable).

Before establishing our main theorem, let us investigate the asymptotic
behavior of solutions of (1.3).

LEMMA 1.1. Let u and Po be as in (1.3) and (1.6). Then

(1.8) pt polul2 ds do <<-M, pt Igrad ul 2 as dp <=M2
o

for some positive M1 and M2.
COROLLARY 1.1. Suppose u and Po are as in Lemma 1.1 and

(1.9) p

Then

fl (Sp. PO[U 12 ds do <= M.

(i) lim inf rt+’ s plu 12 ds O,

(1, 6) (ii) lim inf r + s p ]grad u 12 ds O.
r-+00

(iii) lim inf r + s ua ds O.

We do not give the proof of Lemma 1.1 and Corollary 1.1 here. They may be
found in [8] and are obtained in a reasonably standard manner. One introduces a
function 8(p) defined by

(Ro 1 p)2,
1,

(1.11) 6=
(r-p+1)2

O,
notes that

It’Sp fr+l(1.12) p Igrad ul2 ds dp <=
aRo--I

Ro- 1 <p <Ro,
Ro<=p <=r,
r<p<r+l,
otherwise,

P s. 6 (p)[grad u 2 ds dp,

and by appropriate use on the right of integration by parts, the arithmetic-
geometric mean inequality and the differential equation arrives at (1.8). The proof
of Corollary 1.1 is straightforward.
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We are now ready to prove the main theorem of this section.
THEOREM 1.1. Let u C2() be a solution of (1.3) forp(x) satisfying (1.4) and

(1.5). Iffor some constant ,
o polu do <:M

and gor Ro suciently large Po satisfies either
2K

(1.13(i)) r +2( + 1- )po+e, rRo,

when 1 < N 0 (here is an arbitrary positive constant which satisfies 1 < 1)
o

K
(1 13(ii)) rOP+(2-e)po > +e r>Ro,

Or ’
where > O, then u must vanish identically in . (Hereafter, e will stand for an
arbitrary small positive constant.)

The proof of this theorem will utilize three inequalities which follow from
generalized Green’s identities and asymptotic properties just derived. These are
stated as lemmas.

LMMA 1.2. Let u and p be as in eorem 1.1 and let

0 pou ds do M or some > 1;

then or r Ro (suciently large),

I-2s luo;dS+s Igradu]dS-s polula ds

(1.14)

-r-(+1 p’[u dx + [PPoo +(n +fl)Pol]u[2 dx.

To establish this inequality we consider the identity

(R) Re f pxi,i(Au +pu) dx 0 for rl r.
aDr--Dr

We apply the divergence theorem to integrals involving Au and pou and the
arithmetic-geometric mean inequality to the term involving pu. We also make
use of (1.10).

LEMMA 1.3. Let u andp be as in Theorem 1.1. If the condition of Corollary 1.1
is satisfied, then

(1.15) fD o[grad u]2 dx <=

Throughout this paper we have adopted the summation convention over repeated indices and a
comma will denote differentiation.
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]:or any fl, r >= Ro (sufficiently large) and for ei positive and arbitrarily small.
The proof utilizes the following identity, integration by parts and divergence

theorem:

(1.16)2 p lgrad u J2 dx ee p- u,igt ds lo=:
--Dr

-/3 Re[ p-I up,i ,igt dx
aDr--Dr

-Re f,_,x pu,, dx.

Note 1. From (1.16), by taking lim inf as r , making use of arithmetic-
geometric mean inequality and (1.3), the following inequality follows:

(1.17) o,gradu,dxN-r Reds uods+e p,u,dx

+e2 luo & + Opolul dx Vr eRo.

In (1.17) the quantities ea and e2 may be chosen to be proportional toR. Thus
by choosing Ro sufficiently large e and e may be made arbitrarily small. In what
follows we shall in any given equation put different indices on the e’s whenever
they may be chosen independently. However, an e with the same index in two
different equations will not in general denote the same number.

NoW 2. By choosing Ro sufficiently large in (1.17), it follows that

It) Plgradul2dx81ri+l
s lu12ds+82rl+ls lupl2ds

lll’12 dx -1t-E4 fiE) pl3[lol2 dx -it- ID lPllgl2 dx

for arbitrarily small f.i’S.
LEMMA 1.4. Let u andp be as in Theorem 1.1, and satisfy (1.9). Thenfor > 0

it is possible to choose Ro so large that

(1 19) oluol= dx<-
g-el

At- 81 ID O11"1

for s ’s arbitrarily small and positive and or all r >--_ Ro.

O,i
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To establish Lemma 1.4, we let a and a2 be two, as yet arbitrary, positive
numbers, and set

(1.20) J(r)=-(2-a,) f, ptlUo]2 dX + fD plgrad u]2 dx

for any r => ro. Then by differentiating with respect to r and using Lemma 1.2 we
obtain

(1.21) rJ <=0 Jo do <-O:ff J(rl)-J(r) <-O.

Since limrl_Oo J(ra) 0, (1.21) implies J(r) =>0. By Note 1, this leads to the desired
result. (For detailed proof of Lemma 1.4 see Appendix B.)

Proof of Theorem 1.1. Let us assume that u is the solution of (1.3) and does
not vanish identically in D.. We define

(1.22) F(r) ft. [u (r, ,)l d,,

where Z is the solid angle and d: is the element of the surface on the unit sphere.
We will show that F satisfies a second order differential inequality.

By successive differentiation we obtain

(1.23)

and

Fr(r) 2 Re Iz ura d,

(1.24) Frr(r) =2 fz ]ur] 2 ds: +2 Re I uz d:,

where F OF/Or and Fr 02F/Or2.
We introduce the new variable r-(n-z) and compute F,, F, as follows"

(1.25) Ft 2___n_2rn- f. ua ds

and

(1.26) F.

(1.27)

2 r2(n_)[I, igrad u12 dsC_Re Ir. plul2 d,](n -2)2

We now form FF,-(Ft)2, and use Schwarz’s inequality to obtain

FF. -(Ft)2 2 r2("-’) [2dsC[ 12 [u[2 dsc](n-2)2 Ix [u Iz[gradu d-RefP
4

r"-a\Re Ur d
(n -2)2

>
2 ra(n_l)F[Ir ]grad ul2 d:_Re fr.p]ul:Zd_I(n _2)2



1004 G.B. KHOSROVSHAHI

or
(1.28)

FF.-(Ft)2> 2r’-F[
s

[grad u]2ds-Res plulds-2s [Uplds]--(n_2)2
where ds r"-1 d.

Suppose u 0 in DRo. Then it follows from unique continuation theorems for
the solution of (1.3), Hormander [4], that u does not vanish identically in any open
set. This in turn implies that the function F(r) does not vanish in any interval. To
draw a contradiction to this assertion, we proceed as follows:

Let

(1.29)

then by Lemma 1.2 we have

I2 I1-Re s Pl]U]2 ds

[3 ]grad u ]2 dx

(.30) +r-+’ pfppoo +(n +t)po]lUl2dx--r-+’ plul2dx

r--Dr

+ 2Kr-([3+1) o p[3-1xiu,idx].
r--Dr

Using the divergence theorem and the arithmetic-geometric mean inequality on
the last two terms of (1.30), as in Lemma 1.2, gives

(1.31) -2Kr-([3+l)’Re Iop
and

(1.32) 2Kr-([3+1 Re Iop[3--1
xiu ,a dx >- -(r)-[3 + 1, eK__ r| pt [u 12 dx

By substituting (1.31) and (1.32) into (1.30) and noting that

Ks ]u]2 ds Reds pl[U] 2 d$ >=O
r
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we obtain

I2 2(fl
"*L)r

(1.33) /r-t+) I_ Pt[pPo /(n-t-fl)po]lUl2 dx

+e r-(+) p dx.

We are now in a position to apply Lemma 1.3 and 1.4. For convenience we
treat the cases -1 < fl 0 and fl 0 separately.

Case 1.- 1 < fl O. In this case we replace ]uo by ]grad u ]and use Lemma
1.3. Thus

n-fl-2+2y
_ sI> r Re uoa ds

(.4
2+2-2+epo--e u] dx.

We now replace I in (1.27) by (1.34) and write everything in terms of to obtain

FF_() n--2+2

(.35)

Io+et-(--/(- -(-+/(-F() d.
We are prepared to use the main lemma with =(n--2)/(n-2), =
(2n 2 +)/(n 2) and C (n - 2 + 2)/(n 2). Thus from the main lemma,
it follows that F(t) 0 for 0 N N to which in turn implies that u 0 for 0 N TN to
which is contrary to our assumption. Thus u 0 in Do. By the previously
mentioned unique continuation theorem it follows that u 0 in for 1 < N 0.

Case 2. > 0. In this case we first recall Note 1 and write

+r-+’)foP[PPoo+2po 2K2

We now apply Lemma 1.4 and using (1.13(ii)) we obtain

[ 2n-4+e ] fo’ -2-e+/-eF()d"(1.37) I2 (2)(2-e) t-F+et-"--e/n-z n

Again as in Case 1 we have
2n-4+e

(n 2)(2- e)

+ et-(--/(- -(-+/(-aF() d
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and the rest of the proof of Case 2 follows as in Case 1.
This completes the proof of Theorem 1.1. Q.E.D.
The following corollary follows immediately from Theorem 1.1.
COROLLARY 1.2. Let u be a nontrivial C2 solution of (1.3) in . Suppose p(x)

satisfies (1.4) and (1.5) together with (1.13(i)) or (1.13(ii)); then

lim r po]u 2 ds dr .
R

It should be noted that although our results have features in common with
those of Agmon [1] and Kato [6], they nevertheless differ in certain respects. In
the first place we are able to deal with .a wider range of/3’s in Theorem 1.1. The
conditions imposed on P0 and Pa areslightly different from those imposed by
Agmon [ 1]. This allows us to treat some cases which his methods does not handle.
Our method easily generalizes to systems as we shall see in the next section, and it
will be shown in subsequent papers that there is a reasonably straightforward
generalization to more general elliptic operators and nonlinear elliptic ine-
qualities.

2. Applications. In this section we shall first utilize the proof of Theorem 1.1
to generalize the results of 1 to systems of Schr6dinger type equations and then
state a theorem concerning the positive eigenvalue problem for Schr6dinger type
operators.

A. Systems of Schr6dinger type equations. We consider systems of the
following form"

(2.1) Aui+Pijuj=O infl fori=l,...,m,

where 1 is again an open connected region in Rn(n _-> 3) and contains DRo--
{X] Ilxll>=Ro}, u(x)={Ul(X),’’’, u,,(x)} with ui(x) a complex-valued function in
C2(f) and (pq(x)) a complex-valued matrix which will be described later.

We shall study the asymptotic behavior of the solution of (2.1) as
For rn 1 equation (2.1) clearly has the general form of (1.3). Thus the

method of proving nonexistence results for (2.1) is basically the same as (1.3).
By a simple application of the result of (2.1) one can establish nonexistence of

solutions (in an appropriate class) of equations of the form Zi=O ai An-iu --0 in
exterior domain.

2.1. Preliminaries and hypotheses. We shall consider (pi(x)) to have the
following decomposition"

(2.2) Pij(X)--Sq(X)+tq(x), I[xll>_-Ro.

We shall assume that (sq(x)) is a real-valued, strongly positive definite rn x m-
matrix, the matrix (sq(x)) is symmetric and there exists a positive constant Ko such
that for all vectors rt the inequality

(2.3) Siffli-l] >= KoqiCqi

holds at every point in DRo.
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The matrix (tij(x)) is assumed to be complex-valued and for sufficiently large
Ro satisfies the inequality

K
(2.4) sup Itij(x)r/ib]-<-rfi/, r =>R0,

for positive constant K.
Furthermore, the components of the matrix (&(x)) are assumed to possess

continuous radial derivatives and to satisfy for any complex vector r/ the
inequality

where 61 and 62 are two positive numbers given explicitly by

6 2(/3 + 1-3’),
for-1 </3 =<0, 2K2

61=2-e,

=K2(2.5)" for 0 </,
62 q- e 1.

In (2.5), 3’ is an arbitrary positive constant and the e’s are positive arbitrary small
numbers.

Remark. Assumption (2.5) together with (1.7) implies that s, > 0 for x Do.
Thus a sufficient condition for (2.3) would be

(2.6) s,(x) >= ]s(x) Vx DRo.

2.2. The main result. We are now ready to state the main theorem.
THEOREM 2.1. Letui C2() be a solution of (2.1) for (pi(x)) satisfying (2.2),

(2.3), (2.4), and (2.5). Iffor some constant , Io pt s, s,,u, gt ds dp < oo and iffor
Ro sufficiently large, (s,(x)) satisfies either (2.5)’ or (2.5)", then u must vanish
identically.

The proof of this theorem utilizes lemmas similar to Lemmas 1.1 through 1.4.
For instance the equivalent of Lemma 1.1 is the following:

LEMMA 2.1. Let u, and (sj(x)) satisfy (2.1)and (2.3). Then

(2.7) p Siu,g ds dp <-M1 p ]grad/,/I 2 Ms d[J <=M2
o--1 o

for some positive M1 and M2. (Notations: ]grad u 12= Igi,jai,j).
Finally we obtain an inequality similar to (1.38) and use the main lemma to

show that u vanishes identically in
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COROLLARY 2.1. Let u be a nontrivial C2 solution of (2.1) in f for (pij(x)),
(sij(x)) and as in Theorem 2.1. Then, for Ro sufficiently large,

lim p" SijUi ds dp .
R

B. On positive eigenvalues of -A+ V.
THEOREM 2.2. Suppose V(x) is a real valuedfunction, satisfying the following

conditions:
(i) V(x is locally L2(), ( as in Theorem 1.1).
(ii) V(x is locally HOlder continuous in a connected open set 1o where

fo {xl [Ixll_->Ro} and -o is of measure zero.
(iii) V(x) has, ]:or Ilx[l=>Ro, the decomposition

(2.8) V(x Vo(x + v, (x ),

where Vo is a real continuous function, possessing a continuous radial derivative
and Vo(x) o(1),

(2.9) lim supr=Ao and lim sup IrVl(x)l <-K.
r-->cx Or r-->cx3

IfHis the self-adjoint extension of -A + Vin L2(), where V(x satisfies the above
hypothesis, then H has no eigenvalue A which satisfies

K2/T + Ao/2
A> 0<3,<1.

1-y

Choosing the optimal value of y, we find that there are no eigenvalues A in the
interval

Remark 1. Under the conditions (i) and (ii) imposed on V(x), -A + V is lower
semi-bounded and essentially self-adjoint in L2(). Furthermore, if H is the
unique self-adjoint extension of -A + V and Ho the corresponding operator for
the case V(x)=-O, then D(H)=D(Ho). (See Ikebe [5] or Kato [7].)

Remark 2. By self-adjoint extension we mean if u 6D(H), then we have
Au G L2() in the distribution sense, Vu L2() and Hu =-hu + Vu.

Remark 3. If V(x)=O(r--) for e >0, then Theorem 2.2 is exactly
Agmon’s Theorem 411].

Proof of Theorem 2.2. Let po(x) A Vo(x), p (x) V1 (x) and fl 0. Then
po satisfies condition (1.13(i)) and p satisfies (1.5). Thus Theorem 2.2 follows
immediately from Theorem 1.1.

Example. Let

I in rl  sin r
V(r)

r r 7



SCHRDINGER TYPE SYSTEMS 1009

This is similar to the von Neumann-Wigner [9] potential. By Theorem 2.2, if we
let

7sin2r O(1)Vo(r) and Vl(r) Isin 2rl+
r r 5

then A > 14.656, meaning that there exists no eigenvalue for the operator -A + V
larger than 14.656. Kato’s result gives a lower bound of 64.

Appendix.
A. Proof of main Lemma. We first show that if F vanishes at any point in

(0, to], then it vanishes identically in (0, to]. To demonstrate this we suppose that
F(h) 0 for some t (0, to] and F(t)> 0 in the interval It1 + e, t2-e] for some
arbitrarily small e > 0 and some t2 E (t, to]. Then from (1.2) we have

(A. 1) FF" (F’)2 > -Gt- FF’.

Setting 00t-c, denoting/(00(t)) F(t), we find that

d 2

(A.2) do.2 [log ff(00)] > 0,

from which it follows, for 00 e [001, 02] where 001 (tl -k- 8)1-c’ and 002 (t2 e)l-C,
that

(A.3)

or

(A.4)

(00) < [/5(0-,)](’-)/(-")[/5(o-2)](-")/(-")

F(t) < [F(t, + e )]

IF(t2- )]

Letting e - 0 in (A.4) and F being a continuous function of implies that F(t) =- 0
in [tl, t2]. By the same argument we can conclude that F(t)= 0 in (0, to]. Since
F(0) 0, therefore F(t)=-0 in [0, to].

Suppose, now, that F(t) is positive for every point in (0, to] and satisfies (1.1)
and (1.2). We shall establish a contradiction.

We, first, assume F’(t) > 0 V (0, to]. Then from (1.2) we have

(A.5) >- et-:’ rt-:2F(rt) drt.

Multiplying (A.5) by (to/t)-C’F’/F and integrating over the interval It, to], we
obtain

F(t)
>_ 2et2Cl :-(-2G+,) F2(:)

(A.6) (f;n-2F(n)dn) d
f ’F’(’)=> Czd, F( (fo "O-aF(rl dn)
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where

-2C +a => O,
2C2 2et2c,, -2C1 + a < O, -2C+ +,

Integrating the right hand side of (A.6) by parts we obtain

[F’(,o)] -C1 F’(1)
(A.7)

[F(to)] -[() F(t)]
C -or

(A.8)

We note that the left hand side of (A.8) is positive and constant while the right
hand side is nonnegative and a function of t. Clearly the right hand side tends to
+oo as t--> 0 and we are led to a contradiction.

Now, suppose F’(f)=<0 for some f (0, to]. To draw a contradiction in this
case, we consider (A.1) from which, for t 6 (0, to], we have

(A.9) [() -cl F’(t)]
j
> o.

Upon integration over the interval (t, f) we obtain

(A. 10)
F(f) F(t---- > O,

or

(A. 11) (\-i] F(t)-F’(t) >0.

Integrating (A.11) again we have

[F,(i>)(A. 12) { [F(:)exp L F(f)fe (7)-c’ dr]]
from which it follows that

](A.l) F()-exp ,+,. dn F(O < O;

thus

(A.14) V(t) >F(f)exp [F’(f) drt]
which implies that F(t) > F(’), Vt _-< f which in turn is in contradiction to (1.1). This
completes the proof. Q.E.D.
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B. Proof of Lemma 1.4. Let a and O2 be two, as yet arbitrary, positive
numbers, and set

(B.1) J(r) -(2-a) fo p[u.]2 dx + fo o]grad u[2 dx

-(1-)) Io P]u] dx

for any r _-> ro. Then differentiating with respect to r we get

(B.2) Jr(r)=(2-o,)r/3 ]uo, 2 ds-r{ Igrad ul ds +(1-)r{ polul ds.

By Lemma 1.2 we have

rJr=-r+I a ]u0 ds-a2r polu]2

(.

-r+ s polul

Using (1.18) we now find

(B.4)

rJr _-<-(2/3-V) p/31uo] 2 dx +(n +-2) esr/3 lu ds

S ID p/32 ID p/32

S +Is 2

or

(B.5)

rJ -(2 //-/4) ID P

--(1--5)d+l S luol2dS-sp/3 + lie 2P0 --/5]1 u 12 dS,
where g:i (n + 2)el.
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In order to insure that rJr <--O, we impose the conditions

(a) 2/-T-4=>0 or 2/-4T,

(B.6) (b) g 1--" 5, Og2"-- 5/P(I’-- 8-’6,

K2

(c) OPoo +2po-- f3 0.

Condition (c) follows from (1.13(ii)) and (B.6(a)). Now

(B.7)
rJr <--_ J,, da <-O,

J(r,)-J(r)<-O.

Since limrl-,oo J(rl) 0, (B.7) implies J(r) >- 0, i.e.,

(B.8) I) p lup I dx <--__----------
1 Io 0/3 Igrad u 12 dx2--86

1 _s_ fo p/3polu 12 dx,

By (1.17), Note 1, this leads to

(B.9)

or

(B.10)

which may be written as

0/3 Illo 12 dx < r/3 Re 5ou ds
2--e7

p lu 12 dx + 2-7 PlU dx,

where we have set 87 e6q" e4. Letting e8 e3/(2-e7) and e9 5/(2--e7) we
establish (1.19). Q.E.D.
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ON A GENERALIZATION OF THE POISSON KERNEL FOR JACOBI
POLYNOMIALS*

MIZAN RAHMAN?

Abstract. A symmetric, square-integrable, continuous and positive kernel, considered as a
generalization of Bailey’s Poisson kernel, is shown to have the Jacobi polynomials P(,,’’t)(x) as
eigenfunctions with eigenvalues expressed as infinite series with arbitrary sequence-coefficients. The
consequent bilinear formula, via Mercer’s theorem, includes, as special cases, Bailey’s sum, Bateman’s
and Gegenbauer’s degenerate addition formulas for Bessel functions and Feldheim’s projection
formula for Jacobi polynomials. In another special case the formula leads to the integrated version of a
well-known addition theorem for the sum of a product of three Jacobi polynomials.

1. Introduction. In a recent series of papers [17]-[19] we made extensive use
of Mercer’s theorem [23] for square-integrable, continuous, positive symmetric
kernels to derive some bilinear sums for Jacobi, Laguerre, Hahn and Meixner
polynomials. With a given set of complete, orthonormal square-integrable func-
tions {f (x)}_0 over some interval (a, b), finite or infinite, the method essentially
depends on constructing a kernel K(x, y) such that

b

(1.1) J, K(x, Y)fn(Y) dy Anfn(X), n 0, 1,. ,
where the eigenvalues An are positive with n=0 A

2 <
Apart from the fact that equation (1.1) may be read as a transformation of

fn (x) to a multiple of itself and that such transformations belong to a whole class of
what A1-Salam and Verma [1] call "orthogonality preserving transformations"
there seems little hope of setting up a general method for constructing such
kernels. One approach is to exploit the numerous differential and integral
relations of the hypergeometric function since most classical orthogonal systems
are expressible in terms of ordinary or confluent hypergeometric functions. This is
what is essentially involved in the so-called shift-operator or ladder-operator
method [16], [5]. A slightly more general approach is to make use of the known
fractional derivatives of the f, (x) [14]. Both these methods usually lead to fairly
simple expressions for the eigenvalues A,, often a ratio of products of Pochham-
mer functions like (a), a (a + 1) (a + n 1). However, the eigenvalues for
the Jacobi and Hahn polynomials in [ 17]-[19] were found to be balanced 4F3(1)
series (commonly known in the literature as Saalschutzian) which, of course,
reduce to ratios of Pochhammer functions in special limiting cases. Our method
was, in that sense, a generalization of the ladder-operator method for integer-
valued parameters, and that of the fractional-derivatives method for nonintegral
complex-valued parameters.

The positive kernels and the corresponding bilinear sums obtained in [17],
18] might be considered as generalizations of the Bateman sum [3] since the latter
sum could be obtained as a special case of our general result. The presence of five

* Received by the editors October 3, 1975, and in revised form June 29, 1976.
? Department of Mathematics, Carleton University, Ottawa, Canada, K1S 5B6. This work was

supported by The National Research Council of Canada under Grant A6197.
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parameters in our formula enabled us to derive a number of other known results as
special cases. However, in spite of the freedom of five parameters, it was quite
clear that we could not choose them in any way to reduce our result to the
well-known Poisson kernel (see Bailey [4, p. 102]):

2
t"P(’)(x )p(,t)(y

(1.2)
(1- t)F(a +/3 + 2)

2++lF(a + 1)r(5 + 1)(1 + t)++2

(a+/3+2 a+/3+3 a 2 bT)F4 2 2 a+l,/3+l;---,r
where x cos 2q, y cos 24,, a sin # sin q,, b cos q cos q,, r 1/2(t 1/2 -t- -1/2) and

(1.3) F4(al, a2; bl, b2; u, v)= Y y (al),,+,(a2),,+, "v"
:o ,,=og(bz),,m In

u

is an Appell function, P(,,’t)(x) being the standard Jacobi polynomial, with
the normalizing constant for P(2’O)(x). The positivity of the kernel on the right
hand side of (1.2) is obvious for a > 1,/3 > 1 and 0 _<- < 1. It is also known to be
positive in the range -1 < < 0 for certain sets of values of a,/3 (see Askey [2]).

The F4 function does have a double integral representation [4], but not the
type we considered in [17]-[18]. It is obvious that to generalize (1.2) we need a
different approach. An immediate generalization of (1.2) is F4(al,/31; a+ 1,
+ 1; pxy, p (1 x )(1 y )) where ce 1, 1, P are arbitrary. A further generalization,

however, would be to consider the double series [13]

FI_I, ,q;a+ ;+1
’pxy’p(1-x)(1-y)

(1.4)

=0 ,Y0= (7)--+7 (flq)---+-, (a + 1 ),,, (fl + 1 ),,
(xy)" {(1- x)(1-
m! n!

We shall assume that this series converges absolutely and uniformly on the unit
square 0 -< x =< 1, 0 -< y -< 1 and 1Ol < 1. (Note that x, y in (1.4) are not the same as in
(1.2)). This property will be ensured if we require

p<-_q+2,

with Re a >- 1, Re/3 >- 1, and that none of the denominator parameters is a
negative integer. Note that the kernel defined by the double series (1.4) is positive
if ai > O, 1, , p; Sj > O, ] 1, , q and 0 <_- p < 1. Later we shall see that
certain results will also hold for p 1.

An even more general kernel, as pointed out by Ismail [15], can be defined by
the double series

+p (xy {(1 x)(1 y
(1.5) F(x,y)=,,=oy ,=o

y a’+" (a + l), (/3 + l), m’. n.’

where {ak} is an arbitrary sequence of complex numbers. In fact, we shall first
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show that the Jacobi polynomials P(ff’)(1- 2x) are eigenfunctions of the kernel
(1.5) and then specialize to hypergeometric coefficients

(,)... ()(1.6) a ()... ().
The basic purpose of the above generalizations is to identify a family of

Poisson-type kernels as distinct from the Bateman-type kernels considered in
[17], [18] which will, hopefully, bring out the connection between some known
but apparently disconnected results in the literature as well as produce some new
ones. In 3 we will show, for example, that Bailey’s sum (1.2), Feldheim’s
projection formulas [10], Bateman’s addition formula [24] involving Jacobi
polynomials and Bessel functions, and Bateman’s generating function for Jacobi
polynomials [20] are, in fact, special cases of the same general formula. As an
application of our results we will show in 4 how our kernel leads naturally to the
trilinear sum of the Jacobi polynomials obtained previously by Gasper [11], [12]
by an entirely different method.

2. Derivation of the connection relation. The connection relation (1.1)
between the Jacobi polynomials with kernel (1.5)follows in a very straightforward
manner.

Using the integral

(2.1)
dy y"+’(1- y)"+ 2Fl(-k, k +a +/3 + 1; a + 1; y)

=B(m+a+l n++l)3F2[-k’k+a+[3+l’m+a+la+l,m+n+a+[3+2 ;11,
k, m, n 0, 1, 2, Re a > 1, Re/ > 1, and the identity (see, for example,
Slater [21, p. 76, (2.5.11)]),

l-n+a+l ]3F2 1
a+l,l+a+[3+2

(--l)k( -I-l)k
3F2 I-k, k + a +/ + 1,-n. 1 ]

(l + a +/3 + 2)(a + 1) [ -1, ) + 1 J
where is a nonnegative integer such that >= max (k, n), we obtain

Io dyy’(l-y)F(x, y)2Fl(-k,k+a+[3+l;a+l; Y)

(--l)ka (Ox)_B(a+l,8+l)(8+l)k
(a+/3+k+2)/ I’(2.3)

(a - ]7)?o-7- 2)k l=k

(-k),(k+a+/3+l), () (_n), (1-X)",=o (-I).(/3 + 1)dr -=i x

We should point out that in (2.2) actually equals m + n in (2.1) and hence ->_ n,
since m -> 0. Also, since y (1 y)" is a polynomial of degree m + n in y the
integral in (2.1) must vanish if < k, by orthogonality. Noting that the last sum on
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the r.h.s. (right-hand side) of (2.3) is simply a binomial series which sums to
l!x-(x ly/(/-/’)! and that

(2.4)
2Fl(-k, k +a + +1;/3 +1; l-x)

(_1)
(a + 1)
(fl + 1)k

2Fl(-k, k +c +/ + 1; a + 1; x),

we obtain the connection relation

(2.5) Io K(x, y)2Fl(-k, k +cr +/3 + 1; a + 1; y)dy

ak 2Fl(-k, k +a +fl + 1; a + 1; x)

where

(2.6)

and

(2.7)

K(x, y)= y’(1- y)tF(x, y),

ak+lP
k +l, B(a + 1,/3 + 1) ,=oE (a +/3 + 2)2+,I".

In terms of the symmetric kernel

(2.8) G(x, y)= K(x, y){x’y-’(a-x)t(1- y)-t}1/2

and the normalization constant

(2.9) N.t) (2k + a + fl + 1)r(k + a + 1)F(k + a + fi + 1)

equation (2.5) reads

(2.10) f01
where

(2.11)

k !F2(a + 1)r(k +fl + 1)

G(x, y)f(y) dy A,fk(x),

fk(x) {N(")x"(1-x)t}1/2 2Fl(-k, k+a + + 1; a + 1; x),

k 0, 1,..., are the complete system of orthonormal eigenfunctions of the
symmetric kernel G(x, y)over L2(0, 1).

3. The bilinear formulas, Let us assume that the sequence {ak} is such that
Y a 2 < oo, G(x, y) is square-integrable, positive and even continuous, at least in
any interval el -<- x, y -<_ 1 e2, el, e2 > 0. In the case of hypergeometric coeffi-
cients the conditions for Y a , < oo can be easily established. Thea takes the form

(l)k+l""" (Olp)k+l. pk+l
(3.1) A B(a + 1,/3 + 1) I=OS kkT; (q)k+l (Oe + + 2)2k+tl I’.

Obviously A is an entire function of p if p <q + 2. If p =q + 2 the series
on the right of (3.1) converges for ]Pl <1; if, further, ,=
Re (a +/3 +2 +Y7= 1/3i-.=1 a.)> 0 the series converges even when ]pl 1. By
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making an asymptotic analysis of hk for large k it can be shown that [/k[
converges for p_-<q + 2 and Ip[< 1. Further, if y> then Y [Ak[ converges for
p q + 2, [p[ 1, while if , > 1/4 Y ]Ak[ may not converge, but 2 h , does.

Assuming, then, that the conditions for Mercer’s theorem are all satisfied, the
connection relation (2.10) immediately leads to the bilinear formula

2k + a +/3 + 1 (a + 1)k(a +/3 + 2)k ak+lpk+
F(x, y)= E

k=O k+a+B+l (B+l)k(a+fl+2)2kk!l=,(a+B+2+2k)l!
(3.2)

2Fl(-k, k +a +/3 + 1; a + 1; x)2Fl(-k, k +a +fl + 1; a + 1; y).

For the hypergeometric coefficients (1.6) we get the sum for the F-function
defined in (1.4):

1,""", q; a + 1;/3 + 1’
pxy, p(1-x)(1-y

2k + + t + ( +)( +t +2)(3.3) Y
,=o k + a + fl + 1 (fl + 1), (a + fl + 2)2,k

( aa+k,"’,a,+k"vF+ Bl+k,"’,Bq+k,a+fl+2+2k
;p

2Fl(-k, k +a +fl + 1; a + 1; x)2Fl(-k, k +a +fl + 1; a + 1; y).
In terms of the standard Jacobi polynomials

(3.4) P(’’)(x)=(a + l):Fl (-k, k +a+ + l" a + l "l-x)
equation (3.3) reads

[al,’" ",Cep; --; .p(1-x)(1-y)p(l+x)(l+y)]F
fla,...,flq;a+l;fl+l’ 4 4

2k+a+fl+l
kEO k+a+/3+l

(a +/3 + 2),k! (Ol)k’’" (Op)k
( + a)(t + )(- + t + 2): (tl) (t.)

(3.5)

( a+k,...,a,+k )Fq+l
fl + k,...,/3 + k, a +/3 + 2 + 2k; p P"’O(x)P("’O(Y)’

-l<x<l, -l<y<l.

In many cases of interest this formula will be valid even when Ix or lyl equals or
exceeds 1.

Special cases. (i) p 2, q 0. In this case the F-series becomes the Appell
function F4 defined in (1.3) and we get Feldheim’s result [10].

F4(Cl,C2;a+l B+I "p(1-x)(1-y) p(l+x)(l+y))4 4

k !(a +/3 + 2) 2k + a +/3 + 1
(3.6)

=o
2 (a+l),(fl+l),(a++2)2, k+a+fl+l

(a)’(az)’P’

2F1(o:1 +k, a2+k; a+ +2+2k; p)P"’O)(x)P’’)(y).
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This may be considered as an immediate generalization of Bailey’s formula (1.2).
If Re (c +/3 + 2 a O2) > 0 then this is valid also for p 1

F4tCel’a2;a+l’/3+l’(1-x)(1-Y)’4 (l+x)(l+Y))4

(3.7)

2k+a+/3+l
k+a+/3+l

P’’)(x)P")(y).

However, when a (a +/3 + 2)/2, a2 (a +/3 + 3)/2,
-+-/ --al--a2+-2 --1/2 SO that (3.6) will hold only for ]O]< 1.

Using the quadratic transformation ([8, p. 101])

we have

(3.8)
2F1 (a +/3+2+.2k a+/3+3+2k )2 2

a+/3+2+2k;p

)--1 +/3+2k+1)-(1-p /2{1/2+1/2(1

and setting

(3.9) /9-1/2 1/2(/1/2

we obtain, after some simplifications, Bailey’s formula (1.2).
The case a 1, ce2 =/3 + 1 is perhaps the most interesting since it leads to the

integrated version of a well-known addition theorem referred to in the Introduc-
tion. Since this case calls for some detailed investigation of the properties of
F4(1,/3 + 1; ce + 1,/3 + 1; u, v) as well as the Jacobi function of the second kind we
shall treat it separately in the last section.

(ii) p 1, q 0. There are no convergence difficulties in this case and we have
the bilinear formula

k!(eel)k(a+fl+2)k .2k+a+fl+l t,(3.10) --,=o(a+l),(+l)k(a+fl+2)Zk k+a+fl+l
p

1Fl(Ol q- k; o -!-/ -+- 2 + 2k; p)P’’t3)(x)P"t3)(y).
This includes as special cases some well-known results with Bessel functions.

Let al oo, p0+ in such a way that pal t, a finite positive number. Then

lim (al)m+.p "+"

p-O
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and

lim xFl(al+k;a++2+2k;p)=
p->O

F(a +/3 + 2 + 2k)t-(1/2)(s+t+2k+1).

(see, for example, [8, p. 266]), where Iv(z) is the modified Bessel function of order
,. Using the relation

(z/2) ( z__) (z/2) e ( 1 2v+l.2z)(3.11) I,(z)=F(v+ 1-oF1 --; t,+ 1;
F(v+ 1) 1F1 pq-;

([9, p. 5]), and simplifying, we obtain

/)I (/(1-x)(1- y)t)I (4(1 + x)(1 + y)t)

4 4 r(a+l+k)r(fl+l+k)

2k+a+fl+l
+ +a+1(2bP’(x)P’ (y ).

k+a+fl+l
We note that this result could have been obtained directly from (3.2) by

setting a =(ffp). The limiting procedures employed here would then be
unnecessary. For > 0 and.[x[ N 1, ]y[ N 1, the kernel on the left is positive. Writing
x cos 2, y cos 2, 2= z, we get

(3.13)

1
z/ (z sin q sin )I(z cos q cos 4)

sins q sin cos q cos O
k!F(a+fl+2+k)

2=o r( + + k)r( + + k)
2k+a+fl+l
k+a+fl+l

Is+t3+2+l(Z)p(ks’t3)(COS 2q)PS’)(cos 25).

For < 0 the kernel on the left of (3.12) no longer remains positive, but if we
write 2--= z then the modified Bessel functions Iv reduce to ordinary Bessel
functions J, and (3.13) becomes

1- ZJs (z sin o sin O)Jo (z cos 0 cos 4’)
(3.14)

sinS q sin 0 cos q cos ff
k!F(a+3+2+k)

kZO r(a+l+k)r(fl+l+k)
2k+a+fl+l
k+a+fl+l

Js+t3+2k+l(Z)P(kS’)(COS 2)PS’O)(cos 20).

This formula was discovered by Bateman in 1904 (Watson [24, p. 370]).



POISSON KERNEL FOR JACOBI POLYNOMIALS 1021

In the rest of this subsection we shall discuss a few more special cases of
(3.10).

Formula (3.10) fora 1/2(a + [3 + 2). An interesting formula is obtained from
(3.10) if we set

a+fl+2

By virtue of (3.11) we have

{a +/3 + 2 + 2k
1F1 2

a +/3+2+2k; p)

=F(a+/+32 ) ()
-((o++1)/2+k)

+ k e/2 I(a+13+l)/2+k

Hence (3.10) becomes

(3.15)

v ((a +/3 + 2)/2),,+,,e.-Z (z/2)(o,+t+ )/2

m=o
y" n’O= (a + 1)m(fl + l),,mnl.

{z(l-x)(l-y.)}" {z(l +x)(l +2 2

=F(a+fl+l) k,(a+fl+l)k(k+(a+fl+l)/2)
2 ,=o (a + 1), (/3 + 1 ),

I(o,+t+l)/Z+k(z)P’’t)(x)P(k"t)(y).

Setting y 1, multiplying by (1 x )" (1 + x )OP("’O)(x ) and integrating over x
from-1 to 1 we get

[a +/3 + 1 (-1)(a +/3 + 1)k(k +(a +fl + 1)/2)F h (k’t )I(, +t+ )/2+k(Z2 ] (a + 1),

=(z12)(’++’)/2 dxe-Z"(1-x (1 +x)tP(’’O)(x)

2
"a+l;z(x-1)

where

2"++lF(k +a + 1)F(k +/3 + 1)
k !F(k + a + fl + l )(2k + a +fl+l)"
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Simplifying and then changing z to -iz we obtain the expression for an
ordinary Bessel function in terms of an integral over a Jacobi polynomial:

(3.16)

1/2 r(c + 1) r(k +/ + 1)
+ + 2)/2) k

(2/Z)(’+t+l)/2i’J(,+t+l)/2+k(Z)

dO eizcs sin 0(1- cos 0)(1 +cos O)tP(k’)(cos O)

1F1 (ce -/; ).2
a + 1; 2iz sin: 0/

Case of Gegenbauerpolynomials. Equation (3.16) reduces to the well-known
Gegenbauer generalization of Poisson’s integral when a =/3 u-1/2 (see, for
example, [9, p. 57]). In this special case the left-hand side of (3.15) reduces to

1 z 2

)e oF1 --; v +; - (1 x2)(1 y2)

Using the Gegenbauer polynomials C,(x) defined by

(2 v), p(kv_l/2, v_l/2)(X )(3.17) C[,(x
(u + 1/2)

and the relation (3.11), we obtain the bilinear sum

(3.18)
(sin 0 sin q)(1/2)(1-2v)Iu_l/2(z sin 0 sin q)e

Y (k+v)k!
,=o (2v

(z)Cf,(cos 0)c ,(cos

O

where we have written cos 0 and cos q for x and y respectively. This result can be
extended to imaginary z-values to obtain the corresponding sum for the ordinary
Bessel functions:

(3.19)
(sin 0 sin o)(1/2)(1-2v)jv_l/2(z sin 0 sin o)e

(k+u)k!Yo= (2v)
(- 1)k/2J+k (z)C,(cos 0)C,(cos q).

iz O cos

This is, of course, a well-known formula, due to Gegenbauer ([24, p. 370]).
Equation (3.15) for arbitrary a, 3. For arbitrary values of a,/3 with Re a,

/3 >- 1 it seems the best one can do is to express the double series on the left of
(3.15) as an integral over a product of Bessel functions.
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First note that

Then, using Bateman’s generating function ([20, p. 256])

P(.’}(x)t" ((3.20) ,,=oY" (or + 1)n( + 1)n oF1 --; ce + 1; {(x- 1)) oF1 (--;/3 + 1"
2

t(x + 1)’
2

and the integral representation

F(Cel+m)= 2 e --:2 2(o1+m)--I dsC, 1"+" m >0,

we get

2 Io _.2 ae+8+l ( z(1-x)(1- y) :)(3.21)
F((c +t + 2)/2)

e oF --; c+l;
2

oF1 (;/3 + 1;
z(1 + x)(1 + y)2’ d:.2

Incidentally, (3.20) also follows from (3.5) if we set p 0, q 0, p 2t/y and let
y oo. In the process we use the limit limy_ y-kpk"’)(y)
2-k (a + + 1)2k/(a + + 1)kk! [22, p. 63, (4.21.6)].

Assuming that Re z < 0, then replacing z by -z and expressing the oF1
functions in terms of Bessel functions, and simplifying, we finally obtain

(3.22)

2
k!(a+8+l)k(k-{-(a+fl+l)/2)

k =o (a + 1)k (/ + 1)k

(-lj’I(,++l)/2+(z)P(k’’t3)(COS O)P(’’)(cos
r(a + 1)F(/ + 1)

r((a +/3 + 1)/2)r((a +/3 + 2)/2)

eZ(8z)-1/2(2 sin (0/2) sin (g,/2))-"(2 cos (0/2) cos (/2))-Io e-e/(8)JJ’( sin (0/2) sin (qff2))J( cos (0/2) cos (qff2))d.
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(iii) p 3, q 1. Let n be a fixed nonnegative integer. Then set a =-n,
a: n + a + b + 1, a3 a + 1, fla a + 1. Equation (3.5) reduces to

F[-n, n +a +b+ l, a +1;--
l a+l;a+l;fl+l

;., 0(1-x)(1-Y)4 o(l+x)(l+Y)]4
2k+a+fl+l=2

k=O k+a+fl+l
(a +fl +2)kk! (-n)k(n+a+b+l)k k

"(fl + + fl + (a + o"

3F2(-n+k,n+a+b+k+l, a+k+la+k+l,a++2+2k O) P"’t)(x )P"’t)(y ).

The left-hand side can be shown to reduce to

(-n),(n +a +b+ 1), {p(x + Y)}’ p..t)(1,=o (a + 1),l! 2 \ x + y /
Plt’’)(1)"

Thus we obtain the formula

(3.23)

where

(3.24)

g(n,k;p)
(a + 1),(n +a +b+ 1)k(a +/3 + 1)k

(a + 1 )k (a +/3 + 1)2k (n k)!

3F2[-n+k,n+k+a+b+l, a+k+la+k+l,a+B+2+2k

If we set O 1, y =-1 in (3.23)we obtain Feldheim’s projection relation

(3.25) P"’)(x)= 2 g(n, k; 1)P"’t)(x).
k=0

4. An application. Let us set O1 1, O2 fl + 1 and p 2/(1 + z) in (3.6).
Then since

(4.1)
( 2)2Fa n+l,n+fl+l;2n+a+B+2;

l+z

F(2n + a + fl + 1)
r(n + a + 1)r(n +/3 + 1)

(z- 1)’ (z + 1)n+t+lQ(n’’t)(z),

where O(;’t)(z) is the Jacobi function of the second kind (see, for example, Szeg6
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[22]) we get, on simplifying,

F4(1,18+l.o+l 18+l.(1-x)(1-y)(l+x)(l+y))2(1 +z) 2(1+ z)
(4.2)

2(z- 1)(z + 1)t+l E Nk’t)Rk’t)(x)R{k’’t)(Y)O{k’’O)(z)/Pk’’t)(1)
k=0

with

(4.3)

and

(4.4)

R k’)(X) pk’’t)(x)/P{k’’t)(1),

N’)= (1-x (1 + x)t3R )(x)R"’)(x)dx

2-"-O-IF(ce + k + 1)F(ce +/3 + k + 1)
(2k + ce +/3 + 1).F2(o + 1)r(/3 + k + 1)k!

Note the slight difference with N’’ defined in (2.9).
Let us keep x, y in (4.2) fixed with Ixl < 1, lyl < 1 and consider both sides as

functions of z. In the z-plane cut from -oo to I the Jacobi functions of the first and
second kind are connected by the following relation"

(4.5) e"’)(z) =/ lim [e""O("t3)(z+ie)-e-i’’O’’t3)(z-ie)], -l<z<l.
7"g

This property was used by Durand [6], [7] in deriving Nicholson-type
integrals for Gegenbauer and Jacobi functions. Using (4.5) in (4.2) we obtain

K(x, y, z)= Y N"3)R"’3)(x)R"rS)(y)R"’)(z)
k=O

(4.6)
=(1--Z)-(l+z)-t-I ’--/ lim [a(x, y,z+ie)-a(x, y,z-ie)],

2re -,o+

where we are denoting A (x, y, z) for the F4 function on the left of (4.2), for
abbreviation.

The Appell function in (4.2) is absolutely convergent if

(4.7) ](1-x)(1-y) 1/2 (1 +x)(1 +y)]l/22(1+Z)
+

2(1+Z)
<1.

With

x=cos2q, y=cos20, z=cos20, O<g,,4,,O<Tr/2,
(4.8)

a=sinqsin6, b=cosocos6, c=cosO, O<a,b,c<l,

this condition means

(4.9) a+b<c.

But if this inequality is satisfied then A (x, y, z) is single-valued on the real
axis and so the r.h.s, of (4.6) vanishes.
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The inequality (4.9) may be violated in either of the two ways"

(i) 0<c<[b-al,
(4.10)

(ii) la-bl<c<a+b.
Using a well-known transformation of an F4 function into an F1 function (see

Bailey [4, p. 102, exercise 20(ii)]), we get

(4.11)

where

F4(1,/3 + 1; a + 1,/3 + 1; a2/c 2, b2/c 2)
(1--s)(1- t)Fl(1; o-, l-a; a + 1; s, st)

S 2 2 b2/c2(4.12) -(1-s)(1-t) a /c,
(1-t)(1-s)

Solving for s and we find that they can be real or complex but that
sit a2/b 2 must be real and positive. Let us first consider the case when they are
both real. Equations (4.12) then imply

either (I) 0<t<l and s>l,

(4.13) or (II) 0<s<l and t>l,

or (III) s < 0, < 0.

It can be easily shown that s, are real provided

(4.14) A=--(z-a+)(z-a_)>--_O

where a+ cos 2(q + ). In terms of a, b, c this becomes

(4.15) A--4(c + a + b )(c + a b )(c a + b )(c a b ).

Hence is positive if c > a + b or c < Ib a I< a + b. Since the case c > a + b
has already been dealt with before we need only consider the case c < Ib-a[.
Solving (4.12) we get

(4.16) a 2 + b2-c2 +/-x//2 a 2 + b2-c2 +/-x//2
s

2b2 2a 2

As a function of z, x/ has a branch point at a_ and another at a+. In the
z-plane cut along the real axis from min (a+) to max (a+), 4 is single-valued and
so for Re z > a+ we may choose either of the signs in (4.16). As it turns out the
choice of the sign is somewhat more convenient because it produces only one
singularity in the integral representation of FI(1; a-/3, l-a; a + 1; s, st)instead
of two if we had chosen the + sign. So we take

(4.17) a2+b2-c2-,//2 aZ+b2-c2-/2
$--

2b 2 2a 2



POISSON KERNEL FOR JACOBI POLYNOMIALS 1027

If c < Ib a I, it can be easily seen that s > 0, > 0 and

buts<l,t>lifc<b-a ands>l,t<lifc<a-b. Since for s < l, st<lthe
Appell function on the r.h.s, of (4.11) is analytic we get

(4.18) K(x, y,z)=O ifO<c<b-a.

For real x/ we therefore need to consider only the case c < a b. Let us consider
the integral representation of F1 [4]"

)"-a )- (1 stu)-1(4.19) Fa(1;a-,l-a;a+l;s, st)=a du(1-u (1-us

Note that the convergence of this integral requires Re a > 0, but the factor a
in front implies that the r.h.s, of (4.19) exists with the milder requirement
Rea>-l.

We now split up the integral in (4.19) into two parts I1 and 12, say, where
/s

)11 a du(1 u -1(1 us)’-(1 ust)-(4.20)
I2 a du(1 u (1 us)-" (1 ust)-.

/s

Obviously the [1 part is single-valued and hence contributes nothing to
K(x, y, z). For the 12 part we take arg (1 s)= -Tr in the upper half-plane and
in the lower half-plane. Simplifying, we obtain,

lim [A (x, y, z + ie )-A (x, y, z ie )]
tO+

(4.21)
(I-- I)(1 -s)(1 -t)

2ia sin 7r(/- or)

(s 1)+a(1 t)s fl
3o

duut_(1 u),_l 1 _t(s-1) }u1-t

Convergence of the integral on the right requires Re (/3 a + 1) > 0. It is also
obvious that/3-a cannot be zero or an integer for a nonzero contribution to
K(x, y, z). We thus get

K(x y, z) 2-’--1
sin 7r(a -/). r( a + 1)F(a + 1)

+ 1)

(4.22) c-2-2(1-c2)-"(s 1)+1 (lt
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Using the formula for the quadratic tranformation of the 2F function"

(4.23)
2F1(a1, a2; al-a2-+- 1; v)

(1 + V)_,I 2F1 (a_, al+12 al-- 2-[’- 1; 4v(1 -[-- D)-2)
(see, for example, [8, p. 113, (34)]), we obtain

K(x, y,z)=
sin zr(a -/3) F(/3 a + 1)F(a + 1)

2,+t+lzr F(/3 + 1)

(4.24) (1--C2)-’C-21-2(S 1)t+l (1 +v)-t-I

2F1
/ fl-a+2

2 2
,/3 + 1; 4v(1 +/))-2)

where v t(s- 1)/(1-t).
This can be simplified by setting

b2+c2_a 2

(4.25) B <-1 for c < a b.
2bc

Hence
C

s I-- (B +B2-1), b2/a
bc-- (B -[- 4B2- 1),

4V
)2_ 1

1 2

(l/v 1+
B2-1
92

We thus get the integrated addition formula

F(a+ 1)K(x, y, z) -sin zr(,zr /3)
F(B-a + 1). 2++F(B + 1)

(4.26)
(1--C2)

-2a 2 C2 (/3--a+l /3--a+2 )a (a 2-b )-t- 2F1 -, 2
,/3 + 1;B-2

for c <a-b and Re (/3-a +1)>0.
However, this can be analytically continued to the region Re (a -/3)> 0 by

using the relation F(z)F(1-z) zr/sin zrz. Thus

(4.27)
K(x, y,z)=

I"(a + 1)(1-c2)-a-2(a2-b2-c2)-t-I
F(a -/3)I’(/3 + 1)2 ++1

.2Fl(fl-a+l B-a+2 -2)2 ,,fl+l;B
for c <a-b and Re (a -B)>0, (see Gasper [12]).
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Finally we shall consider the case (iii) of (4.10), i.e., la b I< c < a + b. Since
the sum of any two of the numbers a, b, c is greater than the third they may be
interpreted as forming the sides of a triangle. In this case A is negative and
min (a + )< z < max (a +).The function / is double-valued across the cut and
we take the branch i/-A in the upper half-plane and -i/-- in the lower
half-plane. Thus, in the upper half-plane

FI(1; a-fl, l-a; a +1; s, st)=a Io du (1-uF-l(1-us)O-(1-stuF-
where, now

(4.28) a 2 + b2_ c 2 + i//2 a + b 2 c 2 + i-L-S/2
S-- 22b2 2a

Introducing the angle variable X"

(4.29) VC-2A/2 a ix b ix
2, so that s= e t=-etanx a2 + b2_ c - a

we get, for the upper half-plane

A(x, y, z + ie)= (1-s)(1-t)Fl(1; -, l-a; a + 1; s, st)

_c ix ),,_ a ixu (1
ab

a e du (1 u 1- e e

C2IOeix (a)-ab
a dv [(1-eiXv)(1-e-’Xv)]’-1 1--v

The contribution from the lower half-plane is just the complex conjugate of this.
Hence

)- )-/3-1 c20 IeeieK(x, y,z)= ---(1-z (l+z -a -,
dv [(1-e’Xv)

(4.30)

(a)(1-e-’Xv)]’-1 1--v
2

2rrab
a --ix) F(o)F(o + 1)(1-z)-"(l+z)-/3-(2sinx)2- 1-e F(2a)

2ia sin x)2F1 o-/, a; 2a; b_ae_iX

By setting

b2+c2_a 2

(4.31) B =cos 2r, 0< B < 1,
2bc
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so that s 1-(c/b)e -2i’-" (a/b)e ix and using the transformation formulas [8],

2F1@1, c2; 2a2; z)= [1/2+1/2(1 z)1/2] -2’’

(4.32) 2F1 1, 1--2+1/2; 2.+_1/2 11+(1__Z(1Z77j
Zl),

we obtain, after some simplification, the final result

(4.33)
K(x, y,z)=

r(a + 1)a-2 (1 c2) (bc)’--
r(a + 1/2)I’(1/2)2++ (1 -B2)a-’/2

:Fl(a -/3, a +/3; a +1/2; 1/2(1 B)),

[a-bl<c<a+b and Rea>-1/2.
To summarize the results of this section we have

K(x, y, z)= (4.26) or (4.27),

(4.33),

if a <lb-cl, ((4.9) and (4.18))

if c <a-b,

if [a-bl<c <a +b.

These results are, of course, precisely the same as those of Gasper 11], 12].
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COMPARISON THEOREMS FOR SECOND ORDER RICCATI
EQUATIONS WITH APPLICATIONS*

L. ERBE

Abstract. The purpose of this paper is to obtain comparison theorems for the second order Riccati
equation r" + 3rr’ + + p(t) 0, where p is nonnegative and continuous on [a, b), 0 < a < b <- +c. This
yields several new comparison theorems and disconjugacy criteria for the third order linear equation
y’" / p(t)y =0.

1. Introduction. Consider the pair of third order linear equations

(1) y’" + ql(t)y =0,

(2) z’"+q2(t)y =0,

and the associated second order Riccati equations

(3) r" + 3rr’ + r3 + ql(t)= 0, r =--,
Y

(4) w"+ 3ww’+ w 3 + qz(t)= 0, w =--,
z

where ql, q2 are continuous on an interval /. It is known [2], [4] that (1) is
disconjugate on the interval I (i.e., no nontrivial solution of (1) has more than two
zeros on/, counted with multiplicity) iff there exist functions a, C2(I) with
a (t) </3 (t) on I and

a"+ fl(t,a,a’)>=O>="+ f(t, fl, ’) on/,

where fl(t, r, r’)= 3rr’+ r3+ ql(t). This is, in turn, equivalent to the existence of
solutions yl, y2 of (1)with yl >0, Y2 >0 and W(yl, y2) Yly- YY2 # 0onI [2],
[4]. In the case that ql does not change sign on/, then disconjugacy of (1) is
equivalent to disconjugacy of the adjoint equation [3]

(1") y’"- ql(t)y =0.

Moreover, in this case (1) (and (1")) are disconjugate if there exists/3 C2(I),
fl (t) > 0 on I, and

(6) fl"+ fl(t, fl, fl’) =< 0, tel,

since one can choose a 0 in (5).
In [3] it is shown that if (1) is disconjugate on I and if O<=q2(t)<=ql(t) on L

then it follows that (2) is disconjugate on 1. By comparison with the third order

* Received by the editors December 12, 1975, and in revised form June 6, 1976.
? Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.

This research was supported by the National Research Council of Canada, Grant NRC-A-7673.
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Euler equation in which ql(t) kt-3, k > 0, we find that

2
(7) limtsup t3q2(t)>-3(2)isoscillatory
and

(8)
2

limt_,sup t3q2(t) <-(2) is disconjugate

on some interval [to, +).
We prove in 2 comparison theorems which relate the existence of a positive

solution of (3) with the existence of a positive solution of (2). This yields
immediately new comparison theorems for equation (2) by appropriate choices
for ql(t). In particular, we are able to conclude that (2) is disconjugate on [a, +),
a>0 provided q2(t)=k(l+ck(t))t-3 where 0< k <-2/(3,,/-) and b(t) is a con-
tinuous to-periodic function with /a b(t) dt O, ta d(t) dt <- O, > a, and d(t) >=
-1. In 3 below we give additional integral tests for disconjugacy to which no
known tests apply. Similar results were recently obtained by Stafford and Heidel
[6] for the second order linear equation via a first order Riccati equation and their
methods have been extended to certain first order matrix Riccati equations in [5].

2. Comparison theorems.
THEOREM 2.1. Letql, q2EC[a,b) (or [a, b]), 0<a <b_<-+ with ql(t) >= O,

q2(t) >- 0 and 0 on [a, b ). Assume (3) has a positive solution r on [a, b) satisfying

(9)

and

(lO)

Assume also that

1 <= tr(t), >-_ a,

ar(a)< 2 < 3ar(a)-a2( r(a)) 2- a2r’(a).

(11) s3q2(s) ds <= S3ql(S) ds, >-a.

Then (4) has a positive solution w on [a, b) and (2) is disconfugate on [a, b).
Proof. In (3) and (4) we make the substitutions

(12) u(t)= tr(t),

(13) v(t)=tw(t)

to obtain

(14) t2U ’’- 2tu’+ 3tuu’= 3U 2- U3- 2u t3ql(t),
and

(15) t2v ’’- 2v’ + 3tvv’ 3v- v3- 2v t3q2(t),
respectively. Note that u(t)>= 1 on [a, b)by (9) and 1 =< u(a)< 2 by (10). We show
first that 1 -< u (t) < 2 for all -> a. If not, there exists a first point tl > a such that
U(tl) 2 and u’(tl)_>-0. Integrating (14) by parts on [a, tl] yields, after some
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rearranging,

(16)

where

(17)

and

(18)

H(tl) Iatl ’1
(s) + H(a)g( u(s)) s ds

H(t) t2u’(t) + tu (t)(u (t) 4)

g(U)=U2--U3--6U.
Note first that g(u) is strictly increasing in u for 1< u < 2 and hence for

a <=t<tl we have g(u(t))< g(u(tl))= g(2)=-2 so that from (16)we get

(19) tu’(tl)-2h <-2(h- a)- s3ql(S)ds+H(a)

which implies

3(20) O<-txU’(tl)<2a+H(a) s qx(s)ds.

But 2a + H(a a( 2 + a2r (a 3ar(a + a2( r(a ))2) < 0 by (10) which contradicts
(20) since ql ->0. Therefore, we conclude that 1 -< u(t)< 2 on [a, b).

Now let v(t) be the solution to (15) with v(a)- u(a) and v’(a)> u’(a) and
such that

(21) 2 < v (a)(4 v (a)) av’(a).

Since (21) holds (i.e., is equivalent to the right hand part of (10)) with u replacing
v, it is clear that (21) may be satisfied for v’(a) sufficiently close to u’(a).
Therefore, by the first part of the argument above, it follows that v (t)< 2 as long as
v(t) >- 1. We now claim that v(t)> u(t) for > a. It will then follow that v(t) exists
on all of [a, b) and satisfies u (t)< v (t)< 2 on (a, b). (Note that v(t)is extendable as
long as it is bounded; cf. e.g. [1, Cor. 1.4.1]). Suppose then there exists a first point
t2 > a such that v(t2) u(t2) and v’(t2) <- u’(t2). Then integrating (14) and (15) by
parts from a to t2 and subtracting gives

(22)
t22(v’(t2)- u’(t2)) Ia’2 t2

3([g(v(s))-g(u(s))]ds- s q2(s)-ql(s)) ds

+a2(v’(a)-u’(a)).
But the right hand side of (22) is positive by (11) and the fact that v ’(a > u ’(a and
g(v(t))-g(u(t)) >0 on (a,/2). This contradicts v’(t2)-u’(t2)<-O and so we con-
clude u(t)< v(t)<2 on (a, b). Therefore, w(t)= v(t)/t is a positive solution of
equation (4)existing on [a, b)and this implies that equation (2)is disconjugate on
[a, b). This compl6tes the proof of the theorem.

More general changes of variable yield additional comparison results. The
following result includes the previous theorem as a special case. For completeness,
we include a brief proof, noting the differences.
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THEOREM 2.2. Let q l, q2 be as in Theorem 2.1 and let to C2[a, b) with
p(t)>0, 0’(t)>0, and p"(t)<-O on [a,b). Assume (3) has a solution r on [a,b)
satisfying

(23)

(24)

and

’(t)<p =o(t)(t), > a,

p’(a)<= p(a)r(a)< 2o’(a),

(25) O(a)+ 3p(a)(p’(a))2 < q,(s)Ip(s)) 3 ds (p’(s)) 3 ds + M(t), >- a,

where

G(a) (p (a))3(( r(a ))2 + r’ (a)) 3( p (a))p’(a)r(a )

where

(29)

(28) 2
) tp 3 210 2 3

p v 2pp + 3vv --v + 3v 2vp + vpp q2p

respectively. The proof is similar to the proof of Theorem 2.1" Integrating (27) by
parts from a to > a and rearranging gives

G(t)= Ia gl(u(s)) ds 3u(s)p(s)p"(s) ds ql(s)(p(s)) 3 + G(a),

gl(U)=-U2p’--6Up’2-- U,
G(t) ( u (t)) 2p (t)- 4p (t)p’(t)u (t) + p (t)) 2u’ (t).

Note that for each fixed t, gl(U) is strictly increasing in u for O’(t) < u < 2O’(t). We
may show that (23), (24), and (25) imply

(30) p’(t) < u(t)< 2p’(t) on [a, b).

For if not, then (30) holds on a subinterval [a, tl) for some tl>a and

(27)

and

and

M(t) 2p"(tp(t)) 2 + p(t)(p’(t)) 2.
Assume firther that

(26) (p(S))q2(s) ds <- (p(s))ql(s) ds, >= a.

Then (4) has a solution on [a, b) and equation (2) is discon]ugate on [a, b).
Proof. Let u(t)= p(t)r(t) and v(t)= ..o(t)w(t) in (3) and (4) and we get

2 3 2 t2
p u -2pp’u +3uu’p=-u +3u p -2up +upp" qlp,
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u(tl)=2p’(tl), u’(h)>-2p"(t). Then on [a, tl)we have ga(u(t))<ga(2p’(t))=
2(p ](t))3 and

,, ,,
,p,, ’(t,)) z3upp" ds < 6pp ds -3p(t(p + 3 (p’(s)) ds

(31)
+3p(a)(p’(a)) 2.

Since f2 gl(g($)) ds <-2 its, (p,(s))3 ds we conclude from (29) that

(32)
It/,1 Ja/1 (p(S)) 1(S) dsG(t,) < (p’(s)) 3 ds 3q 3p(tl)(p’(h))

+ 3p(a)(p’(a)) 2 + G(a).

But G(tl)2(p(tl))2p"(tl)-2p(tl)(p’(tl))2--M(tl)-3p(tl)(p’(t,)) 2 so that (32)
implies

(33) " |q + G(a)+ 3p(a)(p’(a)) 2M(tl)< (p’(S)) 3 ds ql(S)(p(S)) 3 ds
a

contradicting (25). Therefore, we conclude that (30) holds on [a, b). Thus, if v(t)is
the solution of (28) satisfying v(a)= u(a), v’(a)> u’(a) and such that (25) holds
now with v replacing u, then we conclude that v(t)< 2p’(t) as long as v(t)> p’(t).

In fact, it follows that v(t)> u(t) on [a, b) for if there exists t2>a with
v(t2) u(t2), v’(t2)=< u’(t2), then we get, as in Theorem 2.1,

(34)

(p(t2))2(v’(t2)-u’(t2)) (gl(v(s))-g,(u(s)) as)

3O(s)p"(s v(s)- u(s)) ds

(p(s)) q2(s)-q(s))ds

+(p (a))2( v’(a)- u’(a))

and again the left hand side of (34) is _-< 0 and the right hand side is positive. This
completes the proof.

3. Examples and applications.
Example 3.1. Let qx(t)= (2/(3/))t-3. Then (3) has the solution r(t)= A/t,

where A 1 +,]-/3 <2. Hence, u(t)= tr(t)= A and condition (10) becomes 2 <
4A- 23-A 2 which is clearly satisfied for 1 < A < 2. Hence, if q2(t)=> 0 and

1 1" 2
(35) s3q2(s) ds <= > a,

t- a J 3x/-’
then (4) has a solution w (t) with h < tw(t)< 2 on (a, +oo) and (2)is disconfi_ugate on

q2(t) kt- (1 + $(t)) satisfies (35) if k =< 2/(3V3), $(t) is[a, +oo). As an example 3
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w-periodic, continuous, b(t)=>-l, and ’a $(s) ds <- O, t>a. Thus if $(t)=
-sin (t-a), then (2) is disconjugate if 0< k <- 2/(3",/-).

The above example can be generalized by an application of Theorem 2.2.
Example 3.2. Let p(t)= , 0<8 < 1, and ql(t)= (2/(3x/-))t3 so that r(t)=

A/t, A 1 + 1/2x/, as in Example 3.1. Condition (23) obviously holds and (24) will
hold if 1 + 1/2x/ < 28 < 2. Condition (25) becomes, after some calculation,

(36) h(6)=-863-1562+128-4---f(38-2 <0, 8>
and

1
(37) p(8)--463-682+ 28 +----7=> O.

3/3

It is not difficult to verify that both (36) and (37) hold for 1 + 1/2x/ < 28 < 2, and
hence, for 8 in this range, it follows that (2) will be disconjugate on [a, +o)
provided

<
2 (t3_:z a3_2)"(38) S3*3q2(s ) ds 3/g(36 2)

For 8 1, this is Example 3.1 above.
Remark. We wish to conclude by noting that the above theorems are sharp

since they include, as a special case, the Euler equation. The examples above may
not be handled by any comparison or disconjugacy theorems for third order linear
equations known to the author.
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BOUNDS ON THE NUMBER OF POLES OF THE SOLUTION OF A
GENERAL RICCATI EQUATION*

A. RONVEAUX, M-C. DUMONT-LEPAGE? AND J. HABAY:I:

Abstract. An elementary technique is used to give upper and lower bounds to the number of poles
of the solutions of a general Riccati equation and asymptotic properties are also derived. Different
applications of these bounds in the theory of second order linear differential equations give new results
on the number of zeros or extrema of the solutions, on the characterization of eigenvalues and on the
stability intervals in the periodic cases.

Introduction. The relation between second order linear differential equations
and the Riccati equation has been of course well known since Bernoulli [1].
However, for a Riccati equation with variable coefficients the exact location of the
poles of the solutions is still an unsolved problem. Yet this problem is an important
one because, as we will see in the second part of this work, rather different
applications are shown to be equivalent to the problem of finding the poles of an
appropriate Riccati equation.

This work consists of counting the number of poles, inside a finite interval, of
a general Riccati equation written as a "phase equation" [2], [3] and of applying
these results to 5 different situations.

In part I we give general upper and lower bounds for the number of poles
inside a finite interval. Aside from explicit and various bounds, the most interest-
ing theoretical result of this part states that using relatively weak hypotheses, the
number of poles inside a given interval increases asymptotically as the square root
of a fundamental parameter. In Part II we apply our bounds to the following
situations:

5: Number of extrema of u(x): u"(x)+ O(x)u(x)= O.
6: Number of eigenvalues smaller than a given value.
7: Number of zeros of some special functions.
8: Stability interval for the periodic equation u"(x)+,O(x)u(x)=O.
9: Stability interval for the periodic equation u"(x)+( + O(x))u(x)= O.

The method of majoration is quite elementary and generalizes a technique
used by Calogero [4] in an interesting problem of quantum mechanics: counting
the number of bound states of a given potential for the Schr6dinger equation.

The so-called "Riccati phase equation" [15] used throughout this work is
more appropriate than the usual Riccati equation satisfied by the logarithmic
derivative for the two following reasons.

1. The "phase," which is an appropriate homographical transformation of
the logarithmic derivative, is systematically used to relate the location of
the poles of the solution to the particular quantity of interest (eigenvalue,
limit of the stability zone, etc.)

* Received by the editors May 30, 1975, and in revised form February 26, 1976.
Department de Physique, Facult6s Universitaires Notre-Dame de la Paix, B-5000 Namur,

Belgium.
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2. The Riccati equation obtained is in the "factorized" form of a perfect
square which is essential for the technical developments.

The conditions obtained in the present work for the existence of n poles
generalize in some way conditions given before for the existence of one pole [3],
[6].

We also want to point out that the "phases" used in this work do not have the
same meaning as in the work of Borfivka [7], where the phases are defined by a
Priifer substitution.

PART I. UPPER AND LOWER BOUNDS FOR THE NUMBER OF POLES

1. General content. Let us consider the second order differential equation

(p(x)u’(x))’ + r(x)u(x) V(x)u(x)

with the following assumptions:

p(x) >0 on ]a, b[,
0<=a <b,

V(x) <-_ 0 on ]a, b [,
(2)

V(x), r(x), p(x) and p’(x) are piecewise
continuous in ]a, b[.

Let ui (x), 1, 2, be two linearly independent solutions of (1) when V(x) O,
such that the Wronskian of ul(x) and u2(x) is negative:

K(3) W(x u (x )u’(x u(x)u (x (-< o.

The solution of the second order differential equation (1) can be written as
follows, using the Lagrange method of variation of constants:

(4) u(x) G(x)u,(x) + C(x)u(x).

The so-called "phase" S(x) defined as

() S(x)

satisfies the Riccati equation i-3]

C(x)
G(x)

(6) S,(x) =dS(x_______z g(x)
(Ul(X)_jr._(x)u2(x))2

clx p (x W(x

Let us also assume that the initial or boundary condition on u (x), connected to the
phase by the relation

(7) u(x___) u(x)+ S(x)u(x)
u’(x) u’(x)+S(x)u’(x)’

is such that S(a) 0.
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We may now give upper and lower bounds on the number of poles of the
phase S(x).

2. Upper bounds on the number of poles of the phase.
2.1. First type of upper bounds. Following Calogero 4], let us now introduce

the new function g(x) through

(8) S(x)=p(tang(x)-a)

where p and a are positive parameters which we shall specify later. Because
S(a) O, g(a) equals arctan c, and let us assume

(9) O < g(a) < zr/2

in order to define the function g(x) uniquely. Equations (6) and (8) imply that

(o) g’(x)

with

V(x)u(x)
op (x W(x

If(x) cos g(x)+p sin g(x)-pa cos g(x)],

Ul(X)
() f(x)=-

u(x)

Thus, g(x) is an increasing positive function. Finally, g(x) satisfies the following
inequality:

(12) g,(x) <= V(x)u(x) [(f(x)_pa)Z +p2].
op(x W(x

This new function g(x) allows us to characterize the number of poles of the phase
function S(x). Indeed, by (8), a pole of the phase S(x) is given by any solution of

(13) g(x) r/2 + k’.

Therefore, the first pole of S(x) occurs at the point x defined as follows:

(14) g(xl)= zr/2, xl > a,

and there are at most

(15) [g(b "rr/2]/

poles between X and b. (The number of poles in [xl, b] is exactly equal to the
integral part of the quantity (15)). Thus, it is clear that the total number of poles
belonging to the interval [a, b] satisfies the following inequality:

1 g(b)
(16) n-<+.
With relation (12) we may write:

1 1 1
(17) n <=-+--g(a)+(Iz-2paI1 +p2(1 + a2)Io)
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where

V(x)
(18) Ii p(x)W(x)U(x)fi(x)dx, i=0, 1,2.

(We shall verify the existence of these integrals in every particular case).
At this point the choice of p and a is still arbitrary. The best choice is the one

that minimizes the right-hand side of (17). We shall proceed in two stages. We first
choose the p value which gives a null derivative of the right-hand side of (17).
Then we have the first general upper bound on n:

U: n <+ 1 2
2) ala).(19) arctan +--(X/IoI2(1 + a

z

The most efficient choice for c would be the value which minimizes the right-hand
side of (19). But that would involve solving a fourth degree equation in c, and we
prefer to choose first

(20) a =0.

This gives a particular upper bound Ua on n:

1 2
(21) U n =< +--X/IoI2.z

Another choice of a is the one which minimizes the expression X/IoI2(1 +
(neglecting (1/rr) arctan a), i.e.:

11(22) a (IoI2--I) 1/2

This choice is possible if and only if 11 and Ioi2-I are positive functions.
The condition Ia > 0 is true if

(23) f(x)>=O,

and from the Schwarz inequality, we deduce that Ioi2 is never smaller than I.
Thus from (9), we may write:

2
(24) U2" n --< 1 +--(lo12--121) 1/2 I1

which is a second form of the required upper bounds on n.
The bounds U1 and U2 are easy to compute and in practice the smallest one

should be used.

2.2. Second type of upper bounds [4]. When (1) verifies additional assump-
tions, we may find another upper bound on the number of poles of S(x) which is
usually better than the bound U.

Define

(25) h(x)=-
V(x) u(x)

p(x)W(x)
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and let us introduce the following additional conditions on [a, b]:

(i) f(x) finite;
(ii) f’(x) =-W/u2 bounded;(26) (iii) h(x) piecewise differentiable and h’(x) =<0;
(iv) [h(x)]/2 integrable.

These conditions can easily be transferred to conditions on u (x), Uz(X) and V(x).
Let us suppose now that the phase function S(x) has n poles in [a, b denoted

bypi(i 1,..., n).
We know that S (x) is an increasing function satisfying a Riccati equation and

such that S(a)= 0. Thus, S(x) has at least n zeros in [a, b] at the points,

(27) x =zi, 1,..., n,

with

Zl a, Zi %Pi < Zi+l"

In order to give a limit on the integer n, let us introduce a new function y(x)
defined as follows:

(28) y(x) f(x) + S(x).

By the properties of f(x) and S(x) we see that y(x) verifies a Riccati equation
which has n poles on [a, b] at the points

(29) x p, 1, , n,

and has at least n- 1 zeros and at most n + 1 zeros (because it is an increasing
function).

The exact number of zeros depends on the values y (a) and y (b). Let us call
s, 1,. , n, the zeros of y (x) belonging to [a, p]. Therefore we may write

s <p <s+l ill(a)=<0 (n =n),
(30)

s <P+l<s+l ill(a)>0 (n n- 1).

If we define the following integrals

(31) Y= (h(x))l/2dx

where y if f(a) <= 0 and j + 1 if f(a) > O,

(32) J= (h(x)) 1/2 dx

it is obvious that

(33) J >= Z Ji.
i=1

(34)

Let us again make a change of dependent variable y(x) by:

t(x)=h(x)l/2y(x).
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We immediately find the Riccati equation

t’(x___) h’(x)
t(x) +f’(x) + tZ(x).(35)

/h (x Zh (x)4-h--
But we know that h’(x)/[2h(x)/h(x)] is negative and that y(x) takes on positive
values for any x in [si, pj ] because y (x) increases. This property being true for t(x)
we may write, using conditions (26)(ii),

t’(x)
<-F+ tZ(x) Vx" si <x <p.(36) hx/

where

(37) O<=f’(x)<-F.

Integrating (36) between si and pi, we find

(38) arctan g--j
so that

1 77"
(39) Ji >=x/ 2"

Here we must distinguish two cases.
1. Let us first suppose that f(a)<=O. Then (33) becomes

(40) J =>,,/ 2"

Thus we have the first required upper bound of the second type:

(41) U" n---<%/2,jT Iab ( V(x)u(x)) dx
ul(a)

if
u2(a

2. If f(a)>0, equation (33) becomes

n-lr
(42) J>= 2

which is equivalent to

(43) U’2 n < N/-’2,.I,.1. fab ( V x u " x ) 1/

x W x
ul(a)

dx + 1 if u2.(a >0.

2.3. Conclusion. The bounds U and U; lead us to obtain an important result
on the growth of n. In order to see this, let us give another form to V(x), and letus
write

(44) V(x) uv(x)

where v(x) is a reference negative function giving the shape of V(x), and , is a
positive constant representing the strength of V(x).
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Then the upper bound U, for instance, becomes

" (x)W(x)
dx.

We can interpret this as follows:

For a perturbing function V(x) un (x) whose shape v (x) is
fixed, the number ofpoles of the phase function increases at most(46) as the square root of the strength parameter u.

3. Lower bounds on the number of poles of S(x). In this section we suppose
that there is only one hypothesis in addition to those mentioned above, in (2), (3)
and (7), that is,

(47) f(x) <, a -<x =<b.

Later we shall see that we can dispense with this assumption, but we keep it here
because it simplifies the general discussion. On the other hand, in-order to make
this discussion more general and to infer easily some important conclusions, let us
work with the Riccati equation

(48) s’(x, pc):
V(x) u(x____) (ck(lx)f(x)+s(x, /x))2

p(x)W(x)

deduced from (6) by the change of notations:

(49) s(x, Ix)= S(x)cb(lx

where/x is a positive parameter and b(/x) is finite.
In this section as in the preceding one, we transform s(x, Ix) into a

trigonometric function whose number of poles is easier to compute [4]:

(50) fl tan g(x)=4(l)f(x)+s(x,

where fl is a new positive parameter. The increasing function g(x) is such that g(a)
never equals the values of (r/2 + krr; k Z). Therefore, in order to define g(x)
without ambiguity let us take

(51) -rr/2 < g(a) < rr/2.

Our hypotheses allow us to conclude that the total number of poles n of the phase
function S(x) on the whole interval [a, b] is exactly equal to the total number of
poles of the function tan (g(x)) on the same interval. Thus we may write as before
that

(52) n=
g(b) +

where the symbol {{a}} means the positive integral part of a, i.e., {{a}}= [a] if
a>0, {{a}}=0 if a_-<0. Furthermore we notice that g(x) is solution of the
differential equation

(53) g’(x) =cD(lx)f’(x) cs2 g(x) + V(x)u(x)fl sin2 g(x)
p(x) W(x)4()
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with the boundary condition

(54) g(a) arctan

We may now write the obvious inequality:

(55) g’(x) _->min (...()f’(x),

(tz )f(a

v(x)
p(x)W(x) dp(Iz) }

The relations (52), (54) and (55) finally give the expression of the general lower
bound on n"

L" n _-> +-- arctan
r

(56)

lI rnn((p, V(x) u(x)+--
b )f’(x), )dx"rr \ fl p(x)W(x) (/z)

We see that the lower bound L depends on the values of the parameters/3,/z and
on the form of the function (/z). If for example we put

(57) (tz)-- b[,
1/2 and tz ’

where u is defined as in (44), the relation (56) becomes"

L" n_-> +--arctan
(58)

1 "+-/u I min (f’(x), v_!x)_u.(x)_fl’ dxllp (x) W(x) /

and we obtain the very important conclusion:

The number ofpoles ofthe phasefunction increases at least as the(59) square root of the strength of the perturbation.

4. General conclusion. The main conclusion of this part is contained in (46)
and (59), namely:

For a perturbing function V(x uv (x whose shape v (x is
(60) fixed, the number ofpoles of the phasefunction increases asymp-

totically as the square root of the strength parameter .
Remark. From this conclusion, it is clear that the upper bound of type U

cannot be very good for large u because I and (IoI2)/2 behaves like u and not ,/2
as the bounds of type U’.

PART II. APPLICATIONS

5. Number of extrema of u(x): u"(x)+Q(x)u(x)=0. Let us consider the
second order differential equation

(61) u"(x) + Q(x)u(x) 0
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with

(62) Q(x)=-V(x)>-O, a =0, u(0) 0, u’(0) 0,

and let us try to give bounds on the number of extrema of the solution u(x) by
using the theoretical discussion of Part I [8].

It is easy to see that the assumptions (2) are true in this case. The two linearly
independent solutions ul, u2 of negative Wronskian are:

(63) u x, u2 1.

The Riccati phase equation (6) becomes

(64) S’(x) O(x)(x + S(x)).
Let us set

u(x)
(65t y(X)=u,(x),

then

(66) y(x) x + S(x)

and the poles of S(x) are poles of y(x) so that the number of extrema of the
solution u (x) equals the number of poles of S(x).

The integrals Ii defined in (17) become now:

(67) I O(x)x dx, O, 1, 2.

Thus we first obtain the upper bound

(68) UI: n <=-+-- Q(x) dx Q(x)x 2 dx

The integral I1 being positive, we can apply the second upper bound U2, which
becomes

(69) U2: n-<1+2{Io
b

fo
b

[fo
b

]2}1/2Q(x) dx O(x)x 2 dx Q(x)x dx

It is now obvious that the assumptions (26) hold with f(O)= 0 and F 1. We
therefore obtain the second upper bound (U’) as:

(70) n <_--2 fb x/O(X) dx
ao

or

(71) 2Vv Iobn <= x/q(x) dx.
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Let us at once set Q(x) uq(x), b (/) x/-, and u, so that we may obtain the
lower bound (L)

(72)
1 flobmin(,q(x))dx}},

where/3 is still arbitrary.
From Elbert’s [9] and Makai’s [10] works on the number of zeros of solutions

of (61) and from the obvious relation between the number of zeros (nz) and the
number of extrema (hE) of the oscillatory solution of (61)

(73) n.>-nz-1
it is easy to verify that in some cases (Q(x) small) our upper bounds on nE give
upper bounds on nz better than Elbert’s one.

6. Number of eigenvalues smaller than a fixed number A. Let us try to
characterize the spectrum of the operator

d
(74) L

dx 2 - Q(x).We therefore study the equation

(75) u"(x) + (A -Q(x))u(x)=O

with the boundary conditions

u(0)=0,
(76) u (X) . 0 (where X is an arbitrary positive

given value)

and with the following assumptions on Q(x):

O(x)C[O,],
(77) Q(x) is a steadily increasing function to infinity,

o(0) 0.

Let us compute the number N(A) of eigenvalues (Ai) of the operator L, whose
values are less than a known number A. Let us put

A,, _-<A < A,,+,(78)

and X, and X,, such that

(79)
o(x) A,
u(X) 0 (hypothesis (76)),
O(X,) ,,.

We know from Titchmarsh 11] that Xn is less thanX and that the number of zeros
and of extrema of the eigenfunction , (x) are the same on [0, X] as on [0, X, ].
Because the number of zeros different from x 0 of the eigenfunction , (x) and
its number of extrema differ from one unit, we can say that N(A) equals the
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number of extrema NE of &n (x). We thus can use the results of 5 to compute NE.
We also have:

V(x) O(x)- A (negative on [0, X]),

(80) U (X) X,

u(x)= (w=-).

We obtain therefore

[A- O(x)] dx [A- O(x)]x 2 dx
2 r

foU2" N(A)-< 1 + [A-O(x)]dx [A-O(x)]x2dx
(82)

_ io
Assumptions (26) also hold with f(0)= 0 and F 1 so that we have

(83) U N(A) <
2 x=- A-O(x x .
o

But Titchmarsh gives a lower bound using the same integral as (83), which is

(84) N(A) -- A-O(x) dx 1;

we thus have the important relation

(85) I- 1 NN(A) N 2I.

We also can find another lower bound than Titchmarsh’s one, and it is

( L"

Since [1-q(x)] decreases from 1 to 0 between x =0 and x =X, formula (86)
becomes

(87) L:

with

N(A) _-> +--- (1 -q(x)) dx

(88)
(IIZ ---/bL

1/2 and A,

O(x) Aq(x), 1 1.

Numerical example. Let us set

(89) O(x)=x 2,
which evidently satisfies the conditions (77). We know that in this case the
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spectrum of the operator is defined as follows [11]:

An =2n+l.
Then we have X and thus

A
U" N(A) =<

1

and Titchmarsh’s lower bound gives

N(A) =>A/4- 1.

If we set, for example, A 10, we know that N(A) exactly equals 5 while the best
upper bound (U) gives

N(A)<-A/2=5

and the lower bound and the Titchmarsch’s one give

N(A)->2.

7. Number ot zeros ot some special tunfions. Our purpose in this section is
to give bounds on the number of zeros of some special functions which are
solutions of linear second order differential equations [12].

a) Let us first study the Bessel cylindrical differential equation (p > 0)

1 p2
(90) u"(x)+-u’(x)---Su(x)=-AZu(x), O<-x <-- 1,

x x

whose regular solution is the Bessel function of the first kind Jp (Ax). We know
that"

the point x 1 is a zero of Jp (Ax)(91) iff A is a zero of J (x).

Thus it will be easy to compute the number of zeros of J (x) whose values are less
than A.

Let the two linearly independent solutions of the Euler equation, u and u2
be"

(92) bll(X)--X p, Uz(X)=X-’--X’, W=-2p/x.

It is then easy to see that u(0) finite and u(1)= 0 give

(93) S(0) 0 and S(1) 00.

Thus, the number of zeros less than A of Jo (x) exactly equals the number of poles
of S(x) in [0, 1]. The phase equation (6) is now"

AZx
(94) S’(x) -p [x) + S(x)(x -’ -xO)]2

and we can try to deduce the bounds U, U’ and L.
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Let us remark that the existence of I0 is ensured only if p < 1. Under this
condition we may write

1 1 /2
(95) U ?/-----and since I is positive,

(96)
U2: n-<l+

/2

2rr/1 --O
2"

f(x) and f’(x) do not satisfy the conditions (26) so that we can apply neither (41)
nor (43).

For the computation of a lower bound, the assumption (47) can be relaxed if
we remark that (50) allows us to say that:

(97) 0-<ne -n _-< 1.

where ne is the computed number of poles of tan g(x) and n is the number of poles
of S(x).

Now L becomes

{{1 /I01mxi ( x 2p-1 (1 --x2p)2 ) }}(98) n_-> + n 20 2’ 20-a dx -1
rr (1-x x

if we set

b (/x) =/x with/x A, /3 20,

and there is no restriction on the values of p.
Now we can relax the restriction. 0 < O < 1 by replacing O by -p, and we can

show by the same argument that in that case the upper and lower bounds are still
valid inside the larger interval

(99) 0 < Ipl< 1.

b) Let us now make same study on the regular Coulomb wave function
Fz. (rt, r). For this reason, we study the following Coulomb differential equation
[13]:

(100) Un(r
L(L --1- 1) (2 2Tk)

r2 u(r) k
r /

u(r), 0 <x < 1

with

(101) r>O, -oo</<+eo, L=>O,

whose regular solution is FL (q, kr). As for the Bessel function, we can say that
r 1 is a zero of FL (rt, kr) iff k is a zero of F/ (r/, r).

In order to have V(x)<= 0 on [0, 1], we restrict the analysis to rt < O. The
linearly independent solutions u (r) are"

(102) U rTM - rTMU2 r W=-(2L + 1).
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We have S(0) 0 and on the other hand, the condition that F. (rt, kr) vanishes at
x 1 implies that S(1) oo. Thus the number of zeros less than k of the Coulomb
wave function FL (rl, r) exactly equals the number of poles of S(x) located on
[0, 1]. We can thus give upper and lower bounds on this number n.

The integrals Ii defined in (17) are:

(103)

and

kZ(2L+l) + (L<1/2),Io
kr/(2L + 1)

(1 2L)(2L + 3) L(L + 1)

k 2 kr/ (L => 0),11 --2(2L + 3) L + 1

k 2

I2= (2L + 1)(2L + 3)- (2L + 1)(L + 1)
(L ->0).

We can then give the first upper bound on n"

1 2/o/"(104) U," n-<+
Since 11 is positive we also have

2
(lO5) u).. n _-< 1 +-- (Ioi2 I2)1/2.

The lower bound is

(106)

._-> mjn"rr (r-/ -r+l)

with

/3 2L + 1, 4,() 1.

For r/= 0, the equation (101) reduces to the Riccati spherical Bessel equation [13]
whose solution has the same zeros as the spherical Bessel function, which have
themselves the same zeros as the, cylindrical Bessel function of order p 2L + 1.
So, if we set

(107)

these bounds reduce to the previous one on the zeros of the Bessel function, as we
can check immediately.

8. Characterization of stability intervals tor y"(x)+hQ(x)y(x)=O. This
section is concerned with the stability zones for the linear periodic equation [ 14]

(lO8) y"(x) -AO(x)y (x)
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(109) O(x)=O(x +L), AQ(x)_-> 0.

The characteristic numbers , and A.(1 _-< i; 0_-<]) are defined respectively by the
following boundary value problem [15]:

(110)
y"(x) /A’O(x)y(x) 0

y(O) -y (L), y’(O) -y’(L)

(solutions 2L periodic) or

(111)
y"(x) + AO(x)y(x) 0

y(O)=y(L), y’(O)=y’(L)

(solutions L periodic).
We will characterize the so-called stability intervals ]A’, M-[ or ]M, A’+[

defined by:

y (x, A) is bounded for all x

(112) iff there exists an n such that A belongs to

]A’, A._,[ or ]A., A’.+I[.

Let us choose

(113) y(0) 0, y’(0) 0.

We want to set up a Riccati equation giving bounds on. and ’; so let us define

(114) r(x)=
y(x)
y’(x)

or r(x)=x+S(x).

The boundary conditions of problems (110) and (111), with the condition (113)
impose:

(5) S(O) O, S(L)=-L.

In order to introduce poles at x L, let us make the homographic transformation

S(x)
(116) A(x)=-

S(x)+L

The function A (x) satisfies the Riccati equation 16]

(117) A’(x)=AO(x---) (x +A(x)(L-x))2

L

with now

(118) a(0) 0, A(L) oo.

We know that A belongs to the (n + 1)st stability zone, with n + 1 being even iff A
belongs to ]A’+, A.[ where A’.+ and a. respectively are the (2n)th and (2n + 1)st
values allowing A(x) to satisfy the conditions (118); while if n + 1 is odd the
(n + 1)st stability zone is ]A., A’,,+a[ and the (2n)th and (2n + 1)st values giving
conditions (118) are ,. and ’,,+. So, in order to characterize the (n + 1)th stability
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interval we will compute the number of poles of the solution A (x) in the interval
[0, L].

Consequently (112) can be reduced to:

(119)

A belongs to the (n + 1)st (n 0,...) stability zone

iff A (x, A) has at least 2n poles

and at most 2n + 1 poles.

Relation between n and A can therefore be obtained using Part I in the form:

(120) 2n ->L(A), 2n + 1 _<- U(A).

Let us now give U(A) and L (A) explicitly and let us try to write them in the forms
(21), (24), (41) or (43) and (56). The corresponding equation (6) here is the Riccati
equation (117) and the linearly independent solutions ui are

(121) u(x) x, Uz(X) L -x.

Thus, W(x) -L is negative on [0, L] and the function V(x)/(p(x)) correspond-
ing to -AQ(x) is also negative.

As in the preceding example, we cannot apply the bound U’ because u2(x)
vanishes at x L. Moreover f(x) has a singularity at the point x L and we can
derive the lower bound with the same argument as before.

Consequently, the conditions (119) become (a):

A > A’,+I (if (n + 1)is even) or

A _-> An (if (n + 1) is odd)

implies

(122)
L 1{{+-- !0 min ((L-

if we set

and (b):

implies

(123) (i)

and

A =< An (if (n + 1) is even) or

A < A tn+l (if (n + 1) is odd)

2n+1_<+2 h (io Ioc )1/27r - O(x)(L--X)2 dx q(X)X 2 dx
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or

(ii) 2n + 1 _--< 1 +-- Q(x)(L-x)2 dx Q(x)x 2 dx
7rL

(124)

9. Characterization of stability intervals for y"(x) + (k+ Q(x))y (x) = 0. The
same study as before can be made for the linear periodic equation

(125)
y"(x) +Ay (x) -O(x)y (x)

O(x+L)=Q(x), O(x)>-O.

For a fixed value of A, the solution y (x, A) is bounded iff there exists an integer n
such that A belongs to one of the two intervals:

where the characteristic numbers Aj, A (1 i; 0 <--) are defined as in the preced-
ing application 17]. Let us choose

A =_12, l>0
(126)

y(O)=O; y’(O) O.

Let us again set F(x) y(x)/(y’(x)), so that we have the following conditions on
S(x).

(127) S(0) -1, S(L) -e 2tL.

By introduction of the homographical transformation

(128) A(x)=

we have the Riccati equation

(’129)

O(x)
A’(x)=2l(e2lL._l)

S(x)+
21LS(x)+e

{2 Shlx +A (x e lx (e --21x e 2lL 1)}2,

Equivalently to (119), we have"

(130)
belongs to the nth stability zone

iff A (x) has at least 2n- 1 poles
and at most 2n poles

and, as before, the relations between n and A are"

(131) (2n-1)_->L(A) and 2n_-<U(A).

A(0) 0, A(L) oo.

The corresponding equation (6) now is (129) and the functions ui(x) are

ul(x)=2Shlx, W(ul, uz)=2l(1-eZl)<O,
(132)

Uz(x)=elx(e -21x e 2;- 1).
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Thus we have

’ O(x)
I= 21(e 2tL- 1)

’ O x
(133) 11 l(e 21z’.- 1)

e2"(e 2(z’-x)- 1)2 dx,

Sh (Ix) et"(e 21(L-x)- 1) dx,

L 20(x)
Sh 2 (lx) dx.I2-- l(e 2u’- 1)

Consequently, by the same argument as before, we immediately may write (a)"

A -I2 >A’. (if n is even) or

A > An-1 (if n is odd)

implies

(134)

1+1
/

{{ fo mixn(e2lX 21(e21L7r ---gx 7z! 1)2,

O(X) e2lX(e -2Ix e 21I-"

21(e 2lL 1 --1)2.) dx}} <_.2n

and (b)"

/ </n--1 (if n is even) or

A < a ’. (if n is odd)

implies

1 2
(135) (i) 2n <+--/o/1
or

2
(136) (ii) 2n < 1 +--41o12 I.

(Let us remark that we have choosen/3/(4(t,)) 1.)
It is interesting to note that if we put

(137) a + O(x) Aq(x)

we find the results of the preceding section if we compute the limit as a 0.

10. Conclusions. The domain of applicability of the methods we used is quite
large and of course not limited to the given mathematical examples we work with.
As indicated before these techniques were introduced by Calogero [4] to count
the number of bound states of a central potential.

The generalization we obtain here allows us to extend the Calogero’s work to
more general Schr6dinger equations. We already obtain results for the first bound
state in the spheroidal case [18] and for the first band in the periodic case [19].
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Conditions on the nth bound state in the spheroidal case will be published
elsewhere.

Furthermore, scalar phase equations can be written for a 2 2 first order
linear system of differential equations [5], [8], and matrix phase equations can also
be constructed for linear second order matrix differential systems of arbitrary
dimension [2], [20]. It is probably true that the methods we used in this work are
partly applicable to these more general phase equations.
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LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
WITH SINGULAR COEFFICIENTS*

STEPHEN L. CAMPBELL

Abstract. Differential equations of the form A2 +Bx =f are studied where A, B are m n
matrices. Explicit solutions are derived for several cases of interest. One such case is when there exists

a scalar 3, such that AA +B is of full rank. Another includes the case when A, B are normal matrices

and one is positive semidefinite. The application of these results to linear autonomous control

processes is discussed.

1. Introduction. In [2], closed forms for all solutions of the differential
equation

(1) A2 +Bx =
were given for the case when A, B were n x n matrices and (1) had unique
solutions for consistent initial conditions. The results of [2] were applied to a
variety of optimal control problems in [3]. As observed in [3], a wider class of
control problems could be handled by these methods if (1) could be solved when
A, B were rn x n instead of n x n.

Ways of solving (1) for general A, B exist. See, for example, Gantmacher [4].
However, we seek explicit closed form solutions of (1) and not just a method of
solution as done in [4].

As in [2], [3], we shall make assumptions on A and B in (1). We then seek to
determine: for which f is (1) consistent, for which initial conditions xo is (1)
consistent, and what is the expression for the general solution? As to be expected
the approach of [2] does not seem to extend to cover (1) for all A, B. However, we
have been able to explicitly solve (1) for several major cases of interest.

Section 2 will develop some needed results. Section 3 will discuss the case
when A, B are n x n. In 4, (1) is solved when AA +B is one-to-one. The next
section completely solves (1) when AA +B is onto. Applications of 1-5 to
control theory are discussed in 6.

Our notation and terminology is the same as [2]. In particular, AD denotes
the Drazin inverse of a square matrix A, A* denotes the Moore-Penrose inverse
of a rectangular matrix A, and X is a (2)-inverse of A if XAX- X.

An n x n matrixA is called EP if its range is perpendicular to its null space, or
equivalently, AA A*A 1]. If A is EP and has rank r, it is sometimes called EPr.
Normal, and hence Hermitian, matrices are always EP.

We shall use ( to denote an orthogonal sum. Suppose C" MI()M2 where
M1, M2 are subspaces. Then T T10) T2, T an n x n matrix, means that if U is a
unitary matrix whose first r columns are an orthogonal basis for M1 and whose
next n-r columns are an orthogonal basis for M2, then

U,Tu=[T 0]0 T2"
* Received by the editors December 10, 1975, and in revised form July 26, 1976.
? Department of Mathematics, North Carolina State University at Raleigh, Raleigh, North

Carolina 27607. This research was supported in part by a grant from the North Carolina Engineering
Foundation.
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If f(s) is a vector valued function, thenf-flf2 means that fl(s) M1, f2(s) M2
for all s.

Generalized inverses are also used to study differential equations in [7]. Our
results and approach are substantially different from theirs.

In this paper we have omitted many of the more obvious corollaries to our
results. Their inclusion would have made this paper unreasonably long. For
example, it is a simple matter for the reader to take Theorems 1, 4, 5, 6, 7, 9, 10
and derive the appropriate statements about consistent initial conditions.

2. Reduction to the commuting case. A key step in [2] was to replace A, B, f
in (1) by A, B,/: Thi,,s id not change the solutions, but extensive use was made of
the fact that AB BA. This section will develop the necessary technical lemmas.
Their application to differential equations will begin in 3.

PROPOSITION 1. Suppose that A, B are m n matrices. Let (.) denote a
(2)-inverse. Then the following are equivalent for A O.

(i) (AA +B)A, (AA +B)B, commute.
(ii) (AA +B)(AA +B)A [I (AA +B)(AA +B)] 0.

(iii) (AA +B)(AA +B)B[I-(AA +B)(AA +B)]= 0.
Proof.

A (AA +B)A (AA +B)B A (AA +B)B(AA +B)A

=(AA +B){(AA +B)(AA +B)B-B(AA +B)(AA +B)}

=(AA +B){B-B(AA +B)(AA +B)}

=(AA +B)B{I-(AA +B)(AA +B)}.

Thus (i) and (iii) are equivalent. That (ii) and (iii) are equivalent follows from the
fact that

(AA +B)(AA +B)[I-(AA +B)(AA +B)] 0.

Hence

(AA +B)B[I (AA +B)(AA + b)] 0

if and only if (hA +B)A[I-(AA +B)(AA +B)]=0. [:]
Note that if the Moore-Penrose inverse is used, then (ii) of Proposition 1 says

that

(2) P(A+B)APN(,A +B) 0

where Pt is the orthogonal projection onto the subspace M.
The next two results will be useful in what follows. Note that if X(AA +B)

X(A) f-)X(B) then (ii) holds in Proposition 1.
PROPOSITION 2. Suppose that A, B are Hermitian. Then (AA +B)*A, (AA +

B)*B commute for 0 if and only if there exists a "A such that )/’(AA +B)=
(A) f’) (B). Furthermore, if exists, then (A +B)*A, (A +B)*B commute.
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Proof. Suppose that A, B are Hermitian and A #0. Then (AA +B)*A,
0tA +B)*B commute if and only if

(3) P(,A+B)APc(,A +B) 0, P(,A+B)BPc(,A +B) 0

by Proposition 1. We may assume A is real. Thus (3) is equivalent to

(4) APc(,A +B Pc(,A +B)AP,A+B),

and

BP(A+B) P(A+B)BPc(A +B).

IfA/’(,A +B)=oK(A)f-12((B), then (3) obviously follows. Suppose then that (3)
holds for , 1. If A(A 1A +B) AZ(A) f) AZ(B) we are done. If not, observe that (4),
(5) imply that d’(, 1A +B) is an invariant, and hence reducing, subspace for both
A and B. Then relative to

C" =(A1A +B){A/’(A1A +B f3 [d/’(A ,/C(B )]- } AZ(A fflalZ(B

we have

A A ()A2@0, B BI( -A 1A21)0

where , 1A +B1 and A2 are invertible. Since , 1A +B1 is invertible, it is
invertible for all by a finite number of , ’s. Let , be one of these other , ’s. El

PROPOSITION 3. IrA, B G " are such that one is EP and the other is positive
semidefinite, then there exists such that ,A +B is invertible if and only if

Proof. For convenience assume that A is EP and B is positive semidefinite.
The proof when B is EP and A positive semidefinite will be similar. Let B 1/2

denote the unique positive square root of B. If there exists , such that (,A +B) is
invertible, then clearly(A CI(B) {0}. Suppose then that(A f3 AZ(B) {0}.
IfA 0 or(A) {0} we are done. Suppose not. SinceA is EP we have that there
exists a unitary matrix U such that

Define B1, B2, B3 by

UBU, B1
B*2 B3

[0].WethenWe claim that B3 is invertible. Suppose not. IfB3 0, then let

have 0 4*/4 4*/// a/24] [I/} a/24112. Hence/4 0. But 4 0 which
contradicts 2’(A f-) (B) {0}. Observe that for large I, I, (,A +B1) is invertible
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since A1 is. Now

B -B3BB1] (,AI+B,)
-(AA, +B1)B*2(AAI+B1)-’ (AA1 +B1) J B* B3

[Ba(AA1 +B1)-B3BBIB 0 ]0 -(AA1 +B1)B*(AA1 +B1)-1B2+(AA1 +B1)B3

0 Qa(A)

That h/ +/ (and hence hA +B) is invertible for large h will follow if QI(A),
Qa(h) are invertible for large h. But

QI(A)={B3-B3B2BIB(AA1 A-B1)-I}(AA -f- B1)

andB3B2BIB*2(AA +B1)-10 andA -o0. Since B3 is invertible and (AA
is invertible for large A, we get QI(A) is invertible for large A. Similarly

Qa(A) (AA1 +B1){B3-B(AA1 +B1)-lB2}
is invertible for large A.

PROPOSITION 4. If A, B C"" are such that one is EP and one is positive
semidefinite, then there exists A such that ’(AA +B)=’(A)f3 r(B).

Proof. Since A, B are both EP we have that 2/’(A reduces A,(B) reduces B.
Hence ’(A)CI/’(B) reduces both A and B. Relative to the decomposition

" [/’(A CI /’(B)]+/-@[/’(A CI /’(B)] we get that A, B are unitarily equivalent
to matrices of the form

respectively where A 1, B are such that one is EP and one is positive semidefinite.
Furthermore, V(A1)(B)= {0}. Proposition 4 now follows from Proposition
3.

It is not possible to weaken the assumption that one of A, B is positive
semi-definite in Propositions 3 and 4 even if the other matrix is required to be
Hermitian.

Example 1. Let

A= 0 -1 B= 0 0
0 0 1 1

Then A A *, B B* and (A) f)(B) {0}. But the vector + 1, 1, A ]*
(AA +B) for all A.

Throughout this paper we shall frequently use the following proposition
without referring to it explicitly.

PROPOSITION 5. Suppose that A, B are m n matrices. Then one of the
following must hold:

(i) A(A)f3A(B)=A(hA +B) for all but a finite number of A,
(ii) AZ(A (3 J(B) (hA +B) for all .
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Proof. Note that (A)fq(B)_(AA +B) for all A. If (ii) holds, we are
done. Suppose then that there exists a ho such that (A)f3(B)=V(hoA /B).
Let r dim d’(A) f3 d’(B). Since Rank (hoA /B) n r, there exists a
(n-r) (n-r) submatrix with nonzero determinant. Thus the corresponding
(n -r) (n -r) submatrix of hA +/3 has nonzero determinant for all but a finite
number of h. Thus Rank (hA +B) _-> n r, or dim(AA +B) -< r, for all but a finite
number of A. Thus (i) follows. I-1

3. The n x n case.
THEOREM 1. Suppose that A,B C"x" are such that dC’(A)fqAC(B) reduces

both A and B. Suppose also that there exists a A such that ./V’(AA +B)=
(A fq(B). ThenA +Bx f, fn -times continuously differentiable, is consistent
if and only if f(t) Y (AA +B) for all t, that is, (AA +B)(AA +B)*f f. If it is
consistent, then all solutions are of the form

x A e-’ e’S(s) ds

k--1

+[(aa
-----0

+e-a’q +[I- (AA +B)(AA +B)]g

where (AA +B)A, (AA +B)B, (AA +B)f q is an arbitrary vector,
g an arbitrary vector valued function, and k Index(A).

Pro@ Since N(A) flN(B) reduces both A and B, we have A A@0,
B =B(0 relative to e =[(A)I(B)]-@[N(A)ffl2(B)]. But (IA +B)=
(AA +B)@0, so that if N(AA +B)=N(A)flN(B), we must have that AA+B
is invertible on [N(A N(B)]-. Formula (6) now follows from [2, Thin. 7] and [2]
guarantees a solution if (IA +B)(AA +B)f =f. On the other hand, iff A2 +Bx
for some x, then for all t, f(t)e(A)+(B)c_(N(A)N(B))+/-=

((AA +B)(AA +B )*). Hence (AA +B)(AA +B)
Note that the first two terms of (6) are a particular solution of (1), and the last

two are the general solution of the associated homogeneous equation. Theorem 1
is a generalization of [2, Thm. 7] since it includes it as a special case.

Since AA +B in Theorem 1 turns out to be EP, one has (IA +B)=
(IA +B)#= (IA +B) where # denotes the group inverse.

From Theorem 1 and Proposition 4 we have the following result.
TEOREM 2. IrA, B are EP and one is positive semidefinite, then there exists a

such thatN(AA +B) N(A N(B). Thus all solutions of (1) are in theorm o
(6).

Theorem 2 is proved in [9] for the special case when A, B are both
semidefinite. The expression in [9] for the solutions of (1) is less specific than (6).

Since the Drazin inverse is well-behaved with respect to similarity, and
matrices of index 1 are similar to EP matrices, one might hypothesize that the
assumptions of Theorem 2 can be weakened to assuming that A, B have index
one. The next example shows that this is not the case. The difficulty is caused by
the fact that multiplying (1) by a singular matrix will often produce a system not
equivalent to the original one.
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Example 2. Let

1 1
B= f=O.

Then A, B have index one, and og(A f)(B) ag’(hA +B) for all h. Note that (1)

with this A B is just x + x2 O" We may take h O" NwBD B, B 1/2[ 1 ]l
Multiplication of (1) by BD gives 2B +Bx 0 or 2a + 22 +xa +x2 0 which is
not equivalent to the original system. Multiplication of (1) by B* gives 1/2A +
1/2Ax 0 or 21 + )2 + X -[- x2 0 which also is not equivalent to the original system.

In looking at systems with nonsquare coefficients, we shall be especially
interested in two cases: when (hA +B) is one-to-one for some , and when
(,A +B) is onto for some h. The first says that solutions of (1) are unique when
they exist; the second says that solutions always exist for at least one initial
condition.

4. The case when (hA +B) is one-to-one. In this section we shall consider
A, +Bx =f for the case when (hA +B) is one-to-one. This is equivalent to
assuming that solutions, when they exist, are uniquely determined by f and the
initial conditions.

THEOREM 3. Suppose (hA +B) is one-to-one. Then all solutions of A2 +
Bx 0 are of the form

x e where q (o)
and

(7) [I-(hA +B)(hA +B)*]A{m’}q=O form =0, 1,...,n.

Here fi (hA +B)*A, / (hA +B)*B.
Pof. If^ x^ is a solution of A2 +Bx 0, then x is a solution of/i2 +/x 0.

But AB BA and Aft. +/ L Hence x e -AatAoa [2]. Substituting
back in gives [-AA]o/Ao +BA] e-A’q 0 for all t. Thus
[-AD/ +Bfio] e-aOtq 0 for all t, or equivalently, [Bfi,
A]A[]’q 0 for m 0, 1, 2,.... But

A =A(hA +B)*B =A(AA +B)*(AA +B)-A(AA
A -hA (hA +B)*A

=A-(hA +B)(AA +B)*A + B(AA +B)*A
[I (hA +B)(hA +B)*]A +BA. [3

COROLLARY 1. If hA +B is one-to-one, and (A.*.+B*)=
V(A *) f’l (B*), then all solutions ofA +Bx 0 are of theform x e-Ant
where q is an arbitrary vector.

Proof. (AA +B)+/-=(XA*+B*)=Jf(A*)f’qJf(B*). But (A) +/- (A*)
so (A)

_
(hA +B)-. Thus (7) holds for all q (AA o). 1-1

3. Let A=[I_[, B=[0|. Then (hA+B)isExample one-to-one and
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(AA+B)=(A)f’q(B)={0} for all A. However, W(AA*+B*)
W(A *) (3 (B*) for all A. A +Bx 0 has only x 0 as a solution. Multiplying by
(hA +B)* (IA 2 + 1)-I[A, 1] we get

"A (IA 2 + 1)-12 + (IZ 2 + 1)-lm 0

which has the nonzero solutions x e -*-ltq.
THEOREM 4. Suppose (hA +B) is one-to-one and A +Bx [ is consistent.

Then all solutions ofA +Bx [ are of the form
-"tfi, e e m(s dsx e Oq +

(8) -n-----0
where fi =(hA +B)*A, =(hA +B)*B, k Index (fi), andp (,a

Proof. If x solves A +Bx f, then x solves A +Bx f and hA +B L
Thus (8) follows from [2, Thm. 7].

Theorem 4 is not as completely satisfying as our other results since we have
not stated precisely for which f is A +Bx f consistent when hA +B is one-to-
one. While the general problem appears difficult, we do have the following.

THEOREM 5. Suppose hA +B is one-to-one and (hA*+B*)
a’(A *) oV(B*). Then A2 +Bx f is consistent if and only if
(I (hA +B)(hA +B)*)f 0.

Proof. Suppose hA +B is one-to-one and A/’(AA* +B*) =(A*) (3AZ(B*).
Now (AA+B)(hA+B)* is the identity on Yt(hA+B)=(A-A*+B*)+/-=

[(A*)(B*)]+/-_Yt(A)U(B). Thus (hA +B)(AA +B)*A =A and
(AA+B)(AA+B)*B=B Hence for any x, if we set [=A+Bx, we get
(hA +B)(AA +B)*f=f. On the other hand, if (h^A +B)(AA +B)*f=f, then
A +Bx f is equivalent to/1 +/x . Since A2 +Bx f is consistent from [2],
so is A +Bx f.

The special cases when A or B are one-to-one are of some interest. As shall
be pointed out in 6, B being one-to-one is the case of most interest for the
applications we have in mind.

THEOREM 6. Suppose A is one-to-one. Then A2 +Bx f is consistent if and
only iff is of the form
(9) f AA *h (I-AA *)Bg

where h is an arbitrary function and

I(1 O) g e-’q + e- e- A h (s ds,

q an arbitrary constant. Conversely, iff has the form (9), then g given in (1 O) is the
general solution.

Proof. Suppose A is one-to-one. ThenA +Bx f is equivalent to the pair of
equations:

(11) 2+A*Bx=A*f,
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and

(12) (I-AA *)Bx (I-AA *)f.
Now AA *f can be chosen arbitrarily, say AA *h. Then (1) uniquely determines x
giving (10). Substituting x into (12) gives (I-AA*)f.

A similar result is possible if B is one-to-one.
TI-IF.OnEM 7. Suppose B is one-to-one. Then A2 +Bx f is consistent if and

only iff is of the form
(13) f= BB*h +(I-BB*)A,
where h is arbitrary and

(14)
g e-(B,A)Ot(B*A)B*Aq + e --(BtA )D, (B*A )D e (BtAo,B h (s ds

k-1

+[I-(B*A)D(B*A)] E (- 1)n[B*A]"B*hn),
n=O

k Index B’A, q arbitrary. Conversely, iff has the form (13), then g in (14) is the
general solution.

Proof. Suppose B is one-to-one Then A2 +Bx f is equivalent to

B’A2 +x =B’f,(15)

and

(16) (I-BB*)A2 =(I-BB*)f.
Again BB*f is arbitrary. From (15), x is determined uniquely in terms of B*f.
Then (I BB*)f must follow from (l 6).

5. The ease when (,A +B) is onto. To assume that ,tA +B is onto is the
same as assuming that (1) is consistent for all sufficiently smooth f. Solutions will
not, in general, be uniquely determined by initial conditions. We shall first solve
(1) and then summarize our results.

Let A, B be m x n matrices. Let A be such that AA +B is onto. Define
P (AA +B)*(AA +B). Then (1) becomes

AP +BPx f-A (I-P) -B(I-P)x.

Or, equivalently,

(17)
A(AA +B)*[(hA +B)x]+B(ha +B)*[(,A +B)x]=f-A(I-P)i-B(I-P)x.

But h [A (,A +B)*] + [B (,tA + B*)] L Thus (17) is, in terms of (,A +B)x, a
differential equation of the type solved in [2] and hence has a solution for any
choice of (I-P)x. Note that [h [A (hA +B)*]+[B(,tA +B)*]]-1 L Thus [2, Thm.
7] gives us

THEOIEM 8. Suppose that hA +B is onto and f is n-times differentiable. Let
f =A(hA +B), (hA +B). Let g=f-A[I-(hA +B)(hA +B)]-B[I-
(hA +B)*(AA +B)]h where h is an arbitrary (n + 1)-times differentiable vector
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valued function. Then all solutions of AA +Bx f are of the form

x (,A +B)* - q + ’ e- e ag(s) ds
k-1

)n Dg( }n=O

+ [I (ha +B)*(AA +B)]h,

q an arbigary constant vector, k Index .
The formulas in Theorem 8 simplify considerably if A or B are onto. For the

applications we shall discuss in the last section, the case when B is onto is the more
important.

THEOREM 9. Suppose thatB is onto. en allsoluons ofAA +Bx fare ofthe
form

x =B* e-dq+de- e (s) ds +(I-dd) (- 1) cg
+[I-B*B]h,

h an arbiary [unction, q an arbiary vector, g =-A[I-B*B], =AB*,
k Index (C).

Theorem 9 comes immediately from Theorem 8 by setting I 0 and noting
that I.
ToM 10. Suppose thatA is onto. en all soluons o[A2 +Bx are o

the orm
(la A*[e-A* +e-A*t BAtse g(s) ds +[I-A*A]hx

where h is an arbia function and g f-B[I A]h.
Proof. This one is easier to prove directly. Suppose A is onto and rewrite

A2 +Bx f as

(19) (A2)+BA *(Ax)=f-B[I-A *A]x.

Taking [I-A*A ]x arbitrarily we can solve (19) uniquely for Ax, A*Ax x, to get
(8).

In Theorems 8, 9 and 10 we have used without stating the basic fact that
[I-C’C] is the orthogonal projection onto (C).. Applications. In [3], the results of [2] were used to solve a linear
autonomous control process with quadratic cost funtional. The key step in [3] was
solving explicitly a differential equation of the form

(20) A2 +Bz 0

where

A=[0/ ] and B =[31 BB]"
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In [3], the matrices A, B turned out to always be n n. The results of 3 can be
sometimes used to solve (20).

A different problem that leads to the same type of differential equation is:

(21) =Cx +Du, g =Ex +Fu.

Here g is a given output and the problem is to determine x and/or u. Rewrite (21)
as

(22)

where

0
N- z= f= g.

One frequently does not want to assume in (22) that s, N are square. However, it
may not be difficult to argue from physical grounds that As +N is one-to-one or
As +’N is onto. That is, one may know either that (22) is always consistent, or
solutions are always unique. In this case we may use 4 or 5 and the approach of
[3] to solve (22) explicitly. As in [3] this will lead to feedback, controls.

Note that the process in (21) can be made affine., 2 Cx +Du + b (t), without
significantly altering (22).

The control problem (21) has been analyzed using generalized inverses in [5]
and in more generality in [6]. However, in [5], [6] conditions are placed on, to
assure that (21) is consistent for all g. While this simplifies the mathematics, it may
or may not be a reasonable assumption to make as regards a particular problem.
That a given plant is incapable of producing an arbitrary output is not unrealistic.

Our approach is able to handle some cases that [5], [6] cannot. However, the
problem in [6] is such that while the differential system is in the form of (22) and
approachable by the methods of this paper and [2], the matrixs is not of the form

[AA1 ]. Hence the results of [8] cannot always be used and the results of [8] were
2

instrumental in simplifying the computations in [3].
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ON THE VALIDITY OF THE TWO-TIMING METHOD
FOR LARGE TIMES*

JAMES P. KEENERt

Abstract. In this paper we investigate the validity of the two-timing method when used to
approximate the solution of an initial value problem tending to a limit cycle. It is shown that the
two-timing method leads to an orbitally valid asymptotic approximation of the stable limit cycles, but
that in certain situations, the two-timing method predicts an incorrect domain of attraction. As such,
for certain initial values, two-timing predicts entirely incorrect long time behavior.

1. Introduction. The attempt to find asymptotic solutions of initial value
problems which are valid for "long times" has a long history, beginning with the
work of Poincar6, Linstedt and Van der Pol [9]. Currently, there are two methods
of finding approximate solutions which are in wide use: The method of averaging,
developed by Kryloff and Bogoliubov [1], and the method of ultiple scales (also
called two-timing), developed by Kevorkian and Cole [4]. Despite the fact that
solutions generated by these methods appear to satisfy the equations uniformly
for all time, in general it is known that the approximate solution is a valid
approximation only for times of order O(1/e) as e, the expansion parameter,
approaches zero [8]. Recently, Greenlee and Snow [10] have taken advantage of
special properties of damped, second order ordinary differential equations to show
that the approximate solutions found by two-timing are pointwise valid on the
entire half line (0, ).

When the two-timing method is applied to problems with limit cycles, such as
the Van der Pol oscillator, one finds that the approximate solution approaches a
limit cycle as approaches infinity [4]. However, there is no guarantee that this is
indeed the correct long time behavior of the solution since the approximate
solution is pointwise valid only for times of order O(1/e).

In this paper we investigate the validity of two-timing in the calculation of
limit cycles. In particular, we will show that, even though the approximate solution
is not pointwise valid for all times, it is orbitally valid for large times, in that the
approximate solution approaches a valid approximation of a stable limit cycle of
the differential equation. Two-timing, then, provides an indirect existen.ce proof
of stable limit cycles. However, we will also show that, for given initial data, the
method of two-timing may pick the wrong limit cycle as its asymptotic limit.

We consider the system of equations

(1 1)
dY
d--t- PY+ eF(Y, e

where Y is a k-vector, k _-> 2, P is a k x k constant real matrix, and F(Y, e) a
nonlinear vector function. The equation (1.1) is motivated by problems of
oscillators in chemical systems [2], [3] in which the parameter e is some physical
parameter which can be externally adjusted. The matrix P is assumed to have a
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t Department of Mathematics, University of Arizona, Tucson, Arizona 85721. This research was
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pair of imaginary eigenvalues and k- 2 distinct eigenvalues with negative real
parts. Then, by means of a standard change of variables, we can assume that

0 1 0)P= -1 0
0 -A

where the matrix A is a diagonal matrix whose entries have positive real parts. The
nonlinear function F(Y, e ((Y, e)) is assumed to be a polynomial function in
Y and e satisfying

(1.3a) /(0, e)= O, i= 1, 2,..., k,

(1.3b) (Y, e) =pi(yl, y2, e)+qi(Y, e), i= 1, 2,

where pi(yl, y2, e) are polynomials in y and Y2 with at least one of pl or P2
containing terms of the form yy with r + s positive and odd, and where

(1.3c) qi(Yl, Y2, O, O; e)= O, 1, 2.

The remainder of this paper is organized as follows" 2 is devoted to an
examination of the existence of periodic solutions of (1.1) and in 3, the linearized
stability of these periodic solutions is calculated using Floquet exponents. In 4
we discuss the two-timing method and its validity in describing limit cycle
behavior for initial value problems. Finally in 5, we show a situation in which the
two-timing method predicts an entirely incorrect asymptotic limit cycle behavior.

In the development that follows, it is convenient to refer to iteration schemes
rather than perturbation series. This should cause no problem for the practitioner
who prefers to think of perturbation series since, in fact, there is no difference in
the validity of the two approaches, as will be shown in Lemma 1.4.

DEFINITION 1.1. Suppose the operators K: B1 --> B2 and N(u, e): B1 /--> B2
are linear invertible and nonlinear, continuous in e, respectively, on the Banach
spaces B1, B2. Then

(1.4a)
UoB1,

KU,,+I eN(U,, e ), n=0, 1,2,...,

defines an iterative scheme for the sequence {Un} of approximate solutions of

(1.4b) Ku eN(u e ).

DEFINITION 1.2. With K and N as in Definition 1.1, suppose that for any
sequence {un} there are operators No, Nl(ul),NE(Ul, u2), ", Nk(Ul, u2,’" ", Uk)
such that

N([k e )= No + eNl(Ul)+ eZNz(u l, uz)+

u )+O(e
k

/’=1



TWO-TIMING METHOD 1069

then

Ku/.+l Ni(Ul, u2, u/.), f O, 1, 2,...
(1,6) k

/’=1

is said to define a perturbation series solution for the equation

(1.4b) Ku eN(u e ).

The convergence of the iteration procedure of Definition 1.1 is easily proven
using the contraction mapping principle, and the convergence of the perturbation
series is found indirectly by comparison with the iteration scheme.

LEMMA 1.3. Suppose the operator K and NofDefinition 1.1 also satisfy

(1.7i)

(1.7ii)
[IN(Ul;

][N(u e )-N(u2; e )1[ M2IIUl
whenever [[u[[_-< m, [e[_-< 1.

Then for each e satisfying

Im 1
0-< lel-< eo, eo min

koM’ koM’
1

the sequence {U} generated by the iteration scheme (1.4) converges to the unique
solution u (e ) 4gu eN(u e ) with Ilu <- m. Furthermore, i Uo O, then

IIg.-u()[l<-o("+).
LEMMA 1.4. If the iteration scheme (1.4) has Uo O, then the perturbation

series {,} of (1.6)satisfies

If, in addition, Lemma 1.3 holds, then by the triangle inequality

The proof of this lemma follows by induction from (1.5), (1.7ii) and the fact
that

K(/-)k+l-- Uk+l) e(No + 8Nl(U,)+""" + 8kNk(Ul, u2,’’’, uk)-N(Uk; ))

e (N(0k e )-- N(Uk e )+ o(Ek+l)).
Actually, the validity of an approximate solution can be determined with no
knowledge of how the solution was generated, provided we know that a solution
does exist.

LEMMA 1.5. Suppose the problem

(1.4b) Ku eN(u e)

has a solution u (e ) for all e satisfying 0 <-le <= e o, and thatfor el--< e o, v () satisfies
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Then

so that .for

Kv eN(v, e )= r(e ).

koIlu (e )- v (e )1[ <=
1 -]e Ikom2

IIr()ll

lel-<min eO,
2kom2

ko(1.9) Ilu v ( )11 =<T IIr
The proof of this lemma follows from the fact that

u -v =K-Xr(e)+eK-a(N(u, e)-N(v, e)).

Using (1.7)we find that

Ilu v <= kollr(e )ll + [e Ikom 2[[u v

from which (1.8)follows immediately.
Practically speaking, then, a function which satisfies equation (1.4b) to a

certain order in e also approximates the actual solution to the same order.
In the proofs that follow, it is sufficient to rewrite the problem (1.1) in terms of

operators K and N. The properties (1.5) and (1.7ii) of the nonlinear map N will
often follow directly from the assumption that F( Y, e ) in (1.1) is a polynomial in Y
and e. Thus, most of what follows is the attempt to find the appropriate linear,
invertible operator K, followed by a reference to one of preceding lemmas.

2. Periodic solutions. We begin by studying the periodic solutions, if any, of
(1.1). Because of the assumed structure of P, periodic solutions of period 27r exist
for e 0 and have arbitrary amplitude. We expect a slightly different period for
e s 0, and introduce the change of independent variable t* wt, w w (e), so that
(1.1) becomes

LY= d____Y_py= eF(Y, e )+ (1 w) d__Y
(2.1) dt* dt*

Y(0)= Y(ZTr), w(0)= 1.

The operator L defined in (2.1) with periodic boundary conditions has a two
dimensional null space spanned by the linearly independent vectors

t* cos t*
t -sin t*

(2.2) Ca(t*) 2(t*) 0

0
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The vectors bl(t*), b2(t*) also span the null space of the adjoint of L. Because of
the structure of the null space, we can find solutions of (2.1) by applying the results
of bifurcation theory at multiple eigenvalues [6]. Specifically, we expect solutions
of (2.1) to be of the form

Y(I*, e )= a(e )bl(t*) + b(e )b2(t*) q- eU(t*, e
(2.3)

(6, U}=0, i= 1,2,

where the inner product in (2.3) is defined by

1 fO
2r

(2.4) (U, V)= U(r)" V(r) d’.

Furthermore, solutions of (2.1) exist if and only if

( (l-w) d_)(2.5) bi, F(Y, e + 0, 1, 2.

One immediate consequence of (2.5) is
LEMMA 2.1. A necessary condition ]:or the existence of periodic solutions of

(2.1) is that there exist numbers ao, o, W1 satisfying the nonlinear eigenvalue
problem

(61, F(Yo, 0))+ Wlo-- 0,

(2.6) (b2, F(Yo, 0)>- WlOfO 0,

Yo aOl(t*) +/o2(t*).
The proof of this lemma follows by letting e approach zero in (2.5) and

defining W lim_,o (w(e)-1)/e. If (2.6) has a nontrivial solution, ao,/3o, W1,
then these provide a first approximation to the quantities a (e), b(e), w(e). It is
then possible to rewrite (2.5)as an equation for perturbation quantities a 1,/31, W2
of the form

--0 R1)O1 )+(R2oo
where a(e)=ao+eal, b(e)=8o+el, w(e)= 1 nt- eWl nt-E2W2 and

a ((ql, Fy(Yo, 0)b) (bl, Fy(Yo, 0)D2) q- W1)(D2, Fy (Yo, 0)}1)-- W1 (}2, Fy(Yo, 0)b2)(2.7b)
Y0 CeObl(t*) + ob2(t*),

and R1, R2 represent nonlinear remainder terms.
The matrix A is always a singular matrix. Since the system (2.1) is an

autonomous system, the shift t* t* + applied to any known solution yields a
new solution. Written in the form (2.3) this variable shift gives new values for a (e)
and b(e) with a2(e)+b2(e) unchanged. By allowing 6 to change freely we
generate a family of solutions of (2.1) and therefore of (2.6) also. Thus, finding the
solutions of (2.6) is always equivalent to finding the roots of an equation of the

form G(p, W)=Owherep=ce+.Itfollowsthatanyvectoru satisfy-
ing Uao+ u2/3o 0 belongs to the null space of A. uz
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LEMMA 2.2. Suppose that the matrices A and A 7- have one dimensional null
spaces spanned by

(2.8) F=
-a0 3’2

respectively, and that a0, /30, W1, satisfy (2.6). A sufficient condition ]’or the
existence of periodic solutions of (2.1) is that

(2.9) 03’1 Ce03’2 FTF* 0.

To solve (2.7a) with known R1, R2, one must be able to choose W2 so that
the right hand side of (2.7a) is orthogonal to F*, that is

(2.10) W2(/o3’1 ao3’2) R 13’1 "k- R23’2.

Clearly this can be accomplished if (2.9) holds. There is a certain arbitrariness in
a

arbitrary amounts of
-0

the solution of (2.7) since one can add to

solution can be made unique by requiring, for example, ao-aoB O. Such a
normalization is clearly necessary since the system (2.1) is autonomous, and the
general solution of (2.1) is a two parameter surface of solutions generated by a
phase shift 8 and parameter e.

Since L(t*) 0, the equation (2.1) can now be viewed as an equation for the
unknown function e U(t*, e). In fact, with the above details in mind, we see that
equations (2.1), (2.3), (2.7) along with the orthogonality condition (2.10) and the
normalization o-Bao=O define an equation of the form (1.4b) for the
unknowns e U(t*, e ), ea (e), eB l(e ), e W2(e ), provided U(t*, e ) is in the Banach
space of periodic C1[0, 27r] functions. The observation that (1.7) also holds
concludes the proof of Lemma 2.2.

When the nonlinear vector function F(Y, e) is a polynomial satisfying (1.3),
the inner products in (2.6), (2.7) can be simplified in the following manner.
According to (2.3), Yo abl + bq2 when e 0, so that

(2.11a)

y a sin t* + b cos t*,

Y2 a cos t*-b sin t*

yi--0, 3, 4, ,k.

Then a polynomial term yy, p -> 0, q -> 0 becomes

even harmonics

oz 2+ "2"p+q-1
Y py

.qta o )----

(2.1 lb) apq(a2+b2)p+q2- 1

higher harmonics

Y2+higher harmonics

if p + q even

if p + q odd, p even

if p + q odd, p even
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where

(2 llc) apq

j=0
22j+p-1" j 2] +p- 1

2

p2 (--1)J (p/2) 2j+q )j=o
22j+q-l" j 2j +q- 1

2

0,

p +q odd, q even,

p + q odd, p even,

p + q even.

(For a tabulation of Olpq see Appendix C.)
Suppose that the polynomials pi(y 1, y2, e) satisfy

(2.12a) Pi(Yl Y2, 0) rzti "’P"q
lapqy ly2.

p,q

Then one can easily see that

(2.12b) f (Y0, 0)= &lYl +&2Y2 +higher harmonics,

where

i=1,2

gil Z 2) 1)/2,[3pqpq(a 2 + b (P+q-

p +q odd
q

(2.12c)
gi2

,, 2)(p+q-1)/2]pqOgpq (a 2 + b
p+q odd
p

Finally we can calculate

(61, F(Yo, 0))= 1/2(gll + g22)a +1/2(g21-g12)b,
(2.13a)

(4’2, F(Yo, 0))= 1/2(g12-gz1)a +1/2(gl1 + gz2)b

and the system (2.6) reduces to

(.2.13b)
1/2(gl, + g22)a + [1/2(g21-g12) + W1]b O,

2 g2,)-- W1]a +1/2(gll +g22)b 0

where the functions gq are polynomial functions of p a 2 + b 2. The determinant
of the system (2.13) is

(2.13c) a(gl + g22)2 + ((g21- g12) + Wl)2 0.

Clearly Lemma 2.1 is satisfied whenever a0, fl0, W are chosen so that a+ p
is a root of the polynomial equation

(2.14)
f(t gll (t "}" g22(P) 0,

W1 1/2g(P) =--(g12(P)- g21(P)).

To examine more closely the condition (2.9) when F(Y, e) is a polynomial
vector function, notice that we can reduce the matrix A in (2.7), using (2.13) and
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(2.14), to

+ +
(2.15) A

aoflof (#o)-agg’(Oo) flgf (Oo)-aoflog (Oo)/"
For Po # 0 and f’a(Po) + g’:(Po) # 0, the null space of A is spanned by

(2.16a) F
-o

and the null space of A r is spanned by

Then the sucient condition (2.9) reduces to

(2. 7) #of’(#o) # 0.

This leads to the following application of Lemma 1.3.
THEOREM 2.3. Suppose that the polynomial function F(Y, e) satisfies (1.3)

and that the polynomialsf(p 0, g(p are defined by (2.11), (2.12) and (2.14). For
each nontriial root po # 0 off 0 satisfying f’o) # 0, there are positive con-
stants mo, m,eo such &at for each s in 0[e]<eo, the problem (1.1) has
nonivial periodic solutions of the form

Y(t*, e) a(s)&(t*) + b(e)&a(t*) + eU(t*, e),

where a2(O) + b=(O) po and W(O)
For future reference, we state the following application of Lemma 1.5.
COROLLARY 2.4. Suppose the hypotheses ofeorem 2.3 hold and suppose the

funcaons z(t*, e), e(s) are bounaea ana conanuous in for Io ana satisfy

dz
Lz-eF(z, e) +(e- l)= r(t*, e),

fo I1 o, ** [0, 23, hee ()= o(). e ,nee ae posgte os,,s,
K2, e and a periodic solution u(t*, e), w(e) of (1.1) satisfying

(2.20) IIz(t*, )-(t*, )11K(),

fo aZZ I1,o.
This simply states that functions z(t*, e), (e)which approximately satisfy

the equation (1. l) approximate a solution of (1.1) to the same order of approxima-
tion. At first glance it may appear that this corollary follows from Lemma 1.5 with
no further comment. Such is not the case. In fact, since (l. 1) may have more than
one solution, and since the representation of each solution is not unique, we must
first determine the function u (t*, e with which we wish to compare z (t*, e ). In
particular, there is a certain amount of freedom in the choice of ao, flo and in the
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normalization of a lflo-fllao, and these must be chosen correctly so that the
hypotheses (1.8) applies.

For z(t*, e) given, define

a(e)-(cl(t*),z), b(e)=(c2(t*),z).

Then, define u (t*, e) to be that periodic solution of (1.1) for which

Co a(0), /3o b(0)

and for which the normalization

c 1/3o -/3 lCeo (1/e)(a (e)b (0) b (e)a (0))

holds. Then, for the mapping defined by (2.1), (2.3), (2.7), (2.10) and the above
normalization, the hypotheses of Lemma 1.5 hold, implying the stated result.

3. Stability and Floquet exponents. An investigation of the linearized stabil-
ity of periodic solutions of (1.1) reduces to the determination of the Floquet
exponents [5]. In the present situation, the Floquet exponents are defined to be
those numbers , 1, 2,. , k, for which the linear problem

(3.1) dU/dt=(P-II)U+eF(Y,e)U

has periodic solutions, where Y Y(t, e) is a known periodic solution of (1.1).
Applying the transformationt* wt, where w w(e) is the known function for
which Y(t*, e) has period 2zr, the equation (3.1) becomes

Lu=dU dU

(3.2) --PU= -IU+ eF(Y(t*, e ), e )U + (1- W) dt--,
U(O)= U(2-).

The solution Y(t, e) is said to be (linearly) stable if the numbers /i =/(e),
2, 3,..., k have negative real part. Notice that since the system (1.1) is

autonomous, the function U= dy/dt satisfies (3.1) for p. -0. Thus, one of the
Floquet exponents,/x, is zero. The remaining Floquet exponents are given in

THEOREM 3.1. Let Y(t*, e), w(e) be a periodic solution of (2.1)found in
Theorem 2.3. There exists a positive constant e <= e o such that for all e satisfying
]el -< e 1, the Floquet exponents txi(e are given by

/x =0,

(3.3) /x2 ePof’(Po)+ O(e 2),
/.Lj --/j-2 + O(/), 2 < j _-< k,

where A is the i-th diagonal element of A.
COROLLARY 3.2. A periodic solution Y(t*, e), w(e) given by Theorem 2.3 is

(linearly) stable if and only iff’(po)< O.
The proof of (3.3) for/" > 2 uses Lemma 1.3 and follows arguments commonly

found in branching theory for simple eigenvalues. For j > 2, define b. by b. (&i).
Then the first approximation to the jth solution U, j > 2 is the constant

(3.4)
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which, since/j-2 is a simple eigenvalue of P, spans the one dimensional null space
of the linear operator Lj d/dt*-(P-lxI). Expressing U/(t*)and . as

(3.5a)
u,. (t*)= +

/-j --/j-2 + er/i(e

we can rewrite (3.2) in the form

(3.5b) Li(e V.)= ert.U + eFyUi + (1-w)

where erh. is determined by the orthogonality condition

(3.5c) /xi-/x= e(b., Fy(y, e)g)+(1-w) q5i,-
Notice that for any vector function u (u.), the inner product with bi, j > 2
reduces to

1 I0
2r

(3.5d) (bi, u)= ui(t*)dt*.

The equations (3.5) are now seen to be in the form of (1.4b) for the unknowns
e V.(t*, e ), eni(e where V. (t*, e is required to be periodic in C[0, 2rr]. Further-
more, the hypotheses of Lemma 1.3 are satisfied so that the theorem is proven for
/>2.

To find the one remaining Floquet exponent/Xz(e), we notice that for/x 0
the operator L d/dt*-(P-tzI) is exactly the operator encountered in 2. As
such, the process of finding periodic solutions must involve the two linearly
independent vectors bl(t*) and qz(t*) of (2.2) which span the two dimensional
null space of L. We write the solution U(t*, e) as

(3.6)
U(t*, e )= c(e )b (t*) + d(e )b2(t*) + V(t*, e ),

(bi, V)=0, i= 1,2.

Recalling the orthogonality condition necessary to guarantee the invertibility of
L, we note that the pair U,/z must satisfy

(3.7a) -/x(bi, U)+e(c,Fr(Y,e)U)+(1-w)(,dU/dt*)=O, i= 1,2.

With the assumed form of the solution U(t*, e) in (3.6), the orthogonality
condition (3.7) reduces to the set of linear equations

(e(l, Fy(Y, e)bl)-/x e(4)l, Fy(Y, e )2)-(l w))( c)e(&2, Fy(Y, e)ba)+(1-w) e(&2, Fy(Y, e)&2)-I d
(3.7b)

2((ba, Fy (V, e)V))=-e
(q2, Fy(Y, e)V)

To lowest order in e, the equation (3.7b) becomes

(3.8) (cA-/x/)() 0
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so that, to lowest order in e,/x (e) is an eigenvalue of cA, where the matrix A is
given by (2.7b). From (2.15) we know that det A 0 and trace (A)= Oof’(po), so
that the two eigenvalues of eA are

0.__o,  oof’ o).
For the eigenvalue , the null space of eA and its transpose are spanned by

kf’o)o-g’o)#’ o
we set T()=F+FI(e), 2=+e22(e), whererespectively. Thus,

(F*, F)= 0, and rewrite (3.7b) as

(3.10a) (cA I)(er) e2n2(F+eF1)-e2R.
Since (F*, F)= pof’o) O, the orthogonality condition implied by (3.8), (3.9) is
satisfied by choosing

(3.10b) 2(F*, F)= (F*, R).
With these details accounted for, equations (3.2), (3.6), (3.10) can be viewed in the
framework of Lemma 1.3 as equations for V(t*, e), eFa(e), ea2(e) with V(t*, s)
periodic and in C[0, 2]. Again the estimates (1.7) hold and the proof of the
theorem is complete.

4. Two-timing and the initial vale problem. In this section we consider the
problem (1.1) as an initial value problem subject to the arbitrary, but fixed, initial
data

(4.1) Y(0, G.

One method of finding approximate solutions for s 0 is the two-timing method
which assumes, for purposes of computation, that there are two independent time
scales

(4.2) t* w(e)t, st

the fast and slow times, respectively, which are present in the problem. Using
these as independent variables, the differential equation (1.1) is converted into the
partial differential equation

OY OY OY
(4.3) LY-PY=sF(Y, e)+ (1- w)-e Or"

One then proceeds to find a power series solution of (4.3) which remains bounded
for all positive values of t* and r.

We want to show that approximate solutions of (1.1), (4.1) generated by the
two-timing hypothesis (via iterations or perturbations) have a certain validity for
large times in that they are "orbitally valid". In other words, we want to show that
after a long time (i.e., r ) the approximate solution of (4.3) approaches a limit
cycle which is indeed a stable periodic solution of equation (1.1). To do so we must
demonstrate that approximate solutions of (4.3) approach approximate solutions
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of (2.1) in the sense of (2.19). Thus, we need to show that for approximate
solutions of (4.3), derivatives with respect to - become unimportant as - .

As in 2, we note that the operator L has a periodic null space spanned by
functions whose t* dependence is ba(t*) and b2(t*). The operator L also has null
vectors in t* which are comprised of e -At*. Thus, we expect to find solutions of
(4.3) of the form

(4.4a)

where

Y(t*, r, e)=P(t*, ’, e)+E(t*, r, e)

P(t* + 27r, ’, e )= P(t*, ’, e

and E(t*, ’, e) is exponentially decaying in t*. Furthermore, the periodic part of
the solution can be written as

P(t*, ’, e)=a(r, e)l(t*)+B(r, e)qb2(t*)+eU(t*, r, e)(4.4b)

where

(bi, U)= lim
1 rio

r

7--o - b,(t*) U(t*, ’, e dt* O.

When the function U is periodic, the above inner product is equivalent to the
inner product (2.4). With the inner product of (4.4b), a necessary condition for the
existence of bounded solutions of (4.3) is that

(4.5) &i, sF(Y,s)+(1-w)--e-r =0, i= 1,2.

The equation (4.5) gives two ordinary differential equations in r which must be
satisfied by the solution of (4.3).

The first step of any approximating procedure is to write the solution of
LY=O, Y(0, e)= Yo as

Yo(t*, )= ao(,)a(t*)+Bo(,)(*)+ CEo(t*)(4.6a)

where

(4.6b) Eo(t*) C (cj)= (sci6ii).
--At*

The initial data are satisfied by requiring

(4.6c) Ao(0)-- Y01, Bo(0)-- Y02, 1 2- 0, i Yoi > 2.

Notice that one can allow the diagonal matrix C to depend on -, but - dependenceis not necessary to guarantee the existence of bounded approximations. On the
other hand, the functions Ao(’) and Bo(’) are specifically used to eliminate secular
terms and hence maintain bounded solutions, and their - dependence is at the
heart of the two-timing method.

The problem of secularity for periodic functions as opposed to exponentially
decaying functions is exemplified by comparing the typical secular terms et sin
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and et e -t. Both functions can be considered "secular" because of the presence of
the term et, but e.te -t is nonetheless bounded for all times, and causes no
particular difficulty as one term in some expansion. For example, the regular
perturbation expansion of the solution of y’ + (1 + e)y 0, which contains powers
of et, is uniformly bounded for all time, whereas the regular perturbation
expansion of y" + (1 + e )y 0 is unbounded. The reason, then, that C is allowed to
be independent of - is

LEMMA 4.1. Suppose f(t) Rk-2 satisfies

(4.7) IIf(t)ll <= Ko e -t, > O, 3’0 > O.

Then there exist nonnegative constants K1, 3"1 such that the solution y(t) of

dyCy-- +ay y(0)= y0

satisfies
(4.8) ]]y(t)]] =<gx e -’lit Vt_>0

where 3" > 0 if 3"0 > 0, and 3" 0 if 3"0 O.
Using (4.6) as a first approximation to the solution of (4.3), we must choose

Ao(r), BOO’) to satisfy (4.5). With the use of (4.4c), equation (4.5) can be rewritten
in the form

(4.9)

dA
dr

dB
dr

(ok1, F( Yo + s U))

(62, F( Yo + e U))+

1-w(e)B,

1-w(e)A,

where we have made use of
LEMMA 4.2. Supposef(t) Rk satisfies (4.7) with 3’0>0. Then (bi, f) 0.
LEMMA 4.3. Suppose F: --> is continuously differentiable andf(t) satisfies

(4.7) with 3"0 > O. Then

(ci, F(u +f)) (4, F(u )), i=1,2.

Since Yo is composed of oscillatory and exponentially decaying terms, Lemma 4.3
applies, and for e 0, equation (4.9) reduces to

(4.10)

dA
(ok1, F(Uo, 0)) + WIB,

dB
_= (4,2, F(Uo, 0))- WIA

where

Uo Ack(t*)+ Bck2(t*).
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The right hand side of (4.10) is exactly the expression found in (2.6), so that (4.10)
can be simplified to

dA1 ( 1 )dr -f(p )A + Wl g(p B

(4.11)
dB (1 )1d-- -g(p ) Wl A + -f(p )B, p =A2+B2.

It follows from (4.11) that

dp=pf(p), O =AZ+B2(4.12)
dr

where f(p)is the polynomial defined in (2.14). Furthermore, using the initial data
p(O)=Az(O)+Bz(o)=y2o +y2o2, solutions of (4.11)are given by

(4.13)

where

Ao(T) .(T)(yozI(G(T))_ ’0 2(G(T)))Bo()] v o(o)

G(r)= (Wl g(p )) d"

and where p p(r) satisfies (4.12) and g(p) is defined in (2.14). Notice that the
solution Uo is now given by

(4.14) Uo(t* ’)= ,ip(-)(Yo2cl(t,_G(7.))+YOlC2(t,_G(7.)))l
’ p(0)

so that the function p(z) gives the slowly changing amplitude of the oscillations
and G(r) gives the slowly changing phase shift.

It is easy to see that p(r) will approach a stable root of f(p) 0. If we linearize
(4.12) about the stable root po, it is also clear that p(et) approaches po exponen-
tially with rate of decay ix2, the Floquet exponent of (3.3). If G(T) approaches a
constant phase shift and WI =1/2g(po) as in (2.14), then the first approximation
(4.6a) does indeed approach a valid first approximation of the limit cycle (2.18).
However, according to (4.13), requiring G(r) to approach a constant phase shift is
equivalent to requiring Wa 1/2g(po), since the polynomial g(p) decays exponen-
tially to g(Po).

A first approximation of U is provided by

OYo OYo(4.15) LU1 F(Yo, 0)- W (i, Ul)= 0Ot* Or

where Yo is given by (4.6), (4.13). Since Yo(t*, z) was shown to satisfy (4.4) the
function Ua(t*, ’) is clearly the sum of functions which are exponentially decaying
or periodic in t*. Furthermore, the function p(z) decays exponentially to po with
decay rate ho -pof’(po), so that [e" OU1/OT] is bounded for all t* and z, for any
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The behavior of higher order approximations is found by induction, using an
iteration process. First of all, one must be able to solve (4.9) using higher order
approximations of U and F(Yo + e U). When U is nonzero, its effect on the
coefficients A andB will be of order e. Thus, we seek solutions of (4.9) of the form

A 0"; e )= Ao0") + eA 10"; e ),

(4.16) B0"; e)=Bo(’r)+eB(’r; e),

w(e)= l +eWx +e2W2(e)

where Ao(r) and Bo(r) are given by (4.13) and W 1/2g(Po) as in (2.14). Using
(4.16) in (4.9)we find that

(4.17a)
d nl A1 Bo +" W2 -Ao h2dr B1
al(0, e) -u2(0, 0; e), BI(0, E)----Ul(0, 0; E)

where

(4.17b)

(1/2f(P)+f’(P)ao-g’(P)aoBo= \g(p)- W1 + g’(p )A 2o +f’(p )AoBo 1/2f(p)+ (p)B+g’(p)AoBo

The functions h and h2 are remainder terms depending on U, z, and e, and on
eA 1, eB1 as well. Notice that the steady state version of (4.17) is exactly of the
form (2.7), and, if it is meaningful to talk of the limit as z c of h and h2, then the
steady state limit of (4.9), and hence (4.17), gives solutions of (2.5) and (2.7)
respectively. Thus, if the solutions of (4.17) have a steady state limit, the limit will
automatically correspond to a known periodic solution of (1.1).

A necessary induction assumption is that for Un, the nth approximation of U,
le ’" OU./Oz[ be bounded for all h with 0<h <ho. Then the functions hi and h2
have a steady state limit as r --> oe. Equation (4.17) can be rewritten as an integral
equation as follows" Define the matrices

(4.18)

Ko(z) (sin G(’r)
,,cos G(’r)

2

2 2
/3 =Ao(0);

\ -G’(z)
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Then

n 1(,) / (-/’) _)g3(,)()

(4.19)
/P (,)

W2(-,8 1

where y, 3 are determined directly from the initial data on A 1, Bx. Since h and h2
depend on eA and eB1, equation (4.19) defines a nonlinear mapping for A and
B 1. We can study the properties of the solution of (4.19) by introducing the norm

(4.20) I]u II, -Ilu Iloo / lie *" du/d,ll, A > 0

where I1" I[oo is the usual vector maximum norm for, e (0, oo). In this norm we have
the following fact"

LEMMA 4.4. Suppose Ilull < ooo Then uoo lim,_,oo u(r) exists and is unique.
Proof. By definition

Thus, for an arbitrary increasing sequence {,i}, the sequence {u (,i)} is a Cauchy
sequence as ,i - ee.

In order to make the mapping (4.19) well defined, we must decide how W2 is
to be chosen. The choice which is consistent with our goal is to require that the
integral (4.19) be convergent as, - oo. Then the limit, oe of A 1(,), BI(,) will
exist and will satisfy the steady state version of (4.17). Accordingly, we require

oe -,-,oo K2(r)Ko(r(4.21a) W2 -fl lim
h2(r

At first glance the condition (4.21a) appears to contain two requirements with
only one unknown W2. However, (4.2 l a) is equivalent to requiring

1 [2G’(r) ](4.21b) W2 Ji+rn x/p(O)p(r)lf(p(r))(aH1 + flH2)+(18Hx-aH2)

where G’(r)= W-1/2g(p(r)),

(4.21c)

Notice that

Hi(,)))H2(" hE(,)/"

2G’(,)
!im f(p (,))

g’(0o)
f’(Po)

where f(po) 0
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and by assumption (inductive hypothesis)the limit of/-/ (r)exists. Hence the value
for W2 is uniquely defined by (4.21b). It is of interest to our later discussion to
notice that by taking the limit as r - in (4.17) one finds the same result. That is,
in the limit as rm of (4.17), the null space of 5(r) and .T(7") are spanned by

(4.22a) Foo lim Ko(r) (g’,(P(r))F* !irn \ f (p )

respectively, so that in the limit as r one should find that

(4.22b) ,im(F*’ { Bo(r)] (hl(r)])"2,-Ao(,)} + h2(,)]
O.

It is not surprising to find that (4.22a) applied to (4.22b) reduces to the require-
ment (4.2 lb).

Using (4.21), the mapping (4.19)can be rewritten as

K
()] p(o)

(4.23)

The two integrals of (4.23) suggest that we consider two mappings described
in the following lemmas.

LEMMA 4.5. Suppose that the function F(t, u) satisfies

(4.24a) IIF(t, u)ll C, [o, each fixed u, lul Co

(4.24b)

lzO___ exists and is uniformly Lipschitz continuous in u for [ul <-_ Co,
Ou

Ifthe function O(t) satisfies IIG(t)ll < oo, then the mapping u -. Tu definedfor each
u (t) satisfying Ilu I1, < Co by

(4.25) Tu G(r) IF(o-, u(r))-F(oo, u (oo))] do"

is bounded and continuous in the norm I1" II o (4.20).
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LEMMA 4.6. Suppose that the function F(t, u) satisfies
(4.26a) IlF(t, u)llx < Ca for each fixed u, lu[<= Co

OF
exists, is Lipschitz continuous in u, and

Ou
(4.26b)

ff the unctions G(t) and H(t) are dierentiable and satisfy

(4.26c)
[Iallo C3, G(t)l C3 e -xt

C4 e-o [n(t)l C5 e-o, o> O,

[]Io G(t) d] <,(4.26d)
H() Xo

then the mapping u

(4.27) Su rt, u())d

is a bounded continuous mapping in the norm (4.20)or any I < o.
The proofs of the preceding lemmas can be found in the Appendix B.
The mapping (4.23) consists of mappings of eA , eB of the form (4.25) and

(4.27). Thus, to show that eA and eB1 exist and are bounded in the norm (4.20),
we need to verify that the hypotheses (4.24) and (4.26) hold. In particular we must.
verify that (r)) and K() satisfy the hypothesis of Lemma 4.6, and that the
functions h, h satisfy the hypothesis (4.24), (4.26)whenever eA and eB are
bounded in the norm (4.20).

Notice that when the root 0o
(4.12) decay to 00 with linear decay rate Io -Off’o). Furthermore, the polyno-
mial character of F(;
follows inductively from the fact that when LU= g, {, g}=0, 1, 2, and
e"" Og/O, is uniformly bounded for all t* and ,, then le"" oU/O.I is also uniformly
bounded for all t* and r. It follows from using Lemma 1.3 that the nth order
approximate solution of (4.3) exists, is uniformly bounded in t* and exponentially
decaying in
Toa4.7. Suppose Oo e 0 is a rooto[o) 0 and[’o)< O. Suppose that

Y (t*, ; e ), w (e) is an iwrative approximaw solution 4 (4.3) satis[ying

oYn oY
(4.28)

g(0, 0, e)= go

uni[ormly [or all positive t*, r and [or e suciently small. Then there exists a

[unction U, (t*, e ), periodic in t*, independent o[ r, satis[ying

dU,
(4.29) LU, -eF(U., G)-(1 w.)= O(e")
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for which

(4.30) Ilu.(t*; e)-- Yn(t*, 7-; e)ll-<_g e-’1 +g2 e -t*.
Since Y, (t*, z; e)=P,(t*, z; e)+E,(t*, z; e)(see (4.4a)), define U, (t*, e)=

lim,_.oo P, (t*, z; e). Then the exponential decay in z and the decay of E, (t*, z; e)
guarantee that (4.29) holds. Furthermore

liU,(t*, e)- Y,(t*, z; e)ll<-_[IP,(t*, ; e)-P,(t*, z; e)ll+llE,(t*, z;

from which (4.30)follows.
THEOREM 4.8. Suppose Po # 0 is a root f(p)= 0 with f’(po)< 0. Suppose that

Yn (t*, ’, e satisfies (4.28). Then for each fixed T> O, 6 > O, there exists a stable
periodic solution U(t, e) of (1.1) and a phase shift c (e) for which

(4.31) max [[U(t-6(e),e)-Y,(w,(e)t, et;e)[l<=O(e")+Kle-’lt+K2e -v2T.
(T,T+)

Let U(t; e) be the periodic solution of (1.1) found using the u,(t*; e) of
Theorem 4.7 and Corollary 2.4. Then by a standard change of variables, define
U(t; ) V(w(e)t; e)where V is 27r periodic in its first argument. Then we have

IIU(t qb e )- Y, (w,t, et e )ll V(w (t c/, ), )- Y, (w,t, et

-< V(w (t ); )- u. (w (t ,);

/llU.(w(t-6); e)- U.(w.(t-e);

/[[U.(w.t; )- Y.(w.t, et; )ll

where we require that &(e)= 2zrk/(w,(e)) for some integer k. It follows from
(4.29), (2.20) and (4.30) that

[[u (t- 0; e)- Y, (w,t, et et)[[-< e (K3 + K4It O I) + K1 e -evlt q- K2 e -2w"’.

The estimate (4.31) now follows when It-,/,] is restricted in size. Thus, for an
estimate where T is "large", the integer k is chosen to keep IT-4,1 "small".

5. Two-timing and domains of attraction. In this section we discuss briefly
the question of finding the domain of attraction for a given stable periodic solution
of (1.1). In fact, in certain situations, the two-timing solution predicts incorrect
limiting behavior, even though we know that the limiting limit cycle is always a
stable periodic solution of the original problem.

THEOREM 5.1. Let k 2 and suppose the polynomial f(p ) has at least two
stable positive roots pl < p3 (i.e. f’(pg) < 0) separated by one unstable root p:. Then
there exists a region @(e) in 2 such that the solun’on of (1.1) with initial data
Yo.@(e) approaches the limit cycle associated with the root pl(p3), while the
two-timing method predicts that the solution of the same initial value problem
approaches the limit cycle associated with P3(Pl).

Proof. Let Y (t, e ), 1, 2, 3, be the periodic solution of (1.1) associated with
the root p. In E2 define I(C) and E(C) to be the interior and exterior, respectively,
of any closed curve C. From phase plane considerations, the domain of attraction
of Y1 (t, e ) lies entirely inside I( Y2(t, e )), while the two-timing method (see (4.12),
(4.13)) predicts that the domain of attraction of Y3(t, e lies in E(Yz(t, 0)). At least
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one of

@a(e)= I(Y2(t, e))()g(Y2(t, 0)),

2(e )= I(Y2(t, O))(3E(Y2(t, e ))

is nonempty, so that two-timing predicts a completely incorrect asymptotic limit
cycle for initial data Yo E @l(e U @2(e @ (e).

It would be illustrative to give an example of a system to which Theorem 5.1
applies and to show what goes wrong in the expansion procedure. However, for
such a system f(p) is at least a cubic polynomial and the actual calculations are far
too cumbersome to present here. Instead we consider a less complicated example
not satisfying the hypotheses of Theorem 5.1 but which nonetheless has the same
failings mentioned there.

Consider the nonlinear system

dyl/dt Y2 + eyl(y + y- 1 + e),

dy2/dt -Yl + ey2(y + y 1 + e).

Obviously, this example has been rigged to have an easily found exact solution. In
fact, multiplying the two equations by yl and Ye respectively and adding gives

(5.2a) dr/dt 2er(r- 1 + e ), r y + Y

and setting 0 tan-1 (yl/y2) gives

(5.2b) dO/dt 1.

Thus, the explicit solution of (5.1) can be written as

yl(t, e )= rl/Z(t, e sin (t +

ye(t, e )= rl/2(t, e cos (l + q0),
(5.3) ro(1-e)

r(t,e)=
ro-(ro- 1 + e) exp (2et/(1 +e))’

ro y 1(0)+ y22(0).
Notice that the solution (5.3) blows up in a finite amount of time if ro > 1- e, and
the solution decays to zero otherwise. There are no stable periodic orbits for this
problem, although the orbit with y 2 + Y 1 e is unstable.

The computation of the two-timing expansion for this problem is straightfor-
ward. Using (2.11), (2.12) and Appendix C, we find the first order amplitude
equation

(5.4) dp/dz= 2p(p-1)

for which
oo o(o)=oo.

po-COo- 1) e

The second order equations for eA 1, eB, reduce to

dr/= 2(2p(r)- 1)r/+ 2p (r),(5.5) az+B=o(r)+en(r)’ dr
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whose solution we find to be

Thus, we can write the approximate solution of (5.1) as

yl(t;e)=AX/2(t;e)sin(t+&o), y2(t;e)=AX/2(t;e)cos(t+o)

(5.6) Lpo-1

p(z)=
po

=,,.po-(Po- 1) e

For po< 1, O(r) decays exponentially to zero, and therefore A(t, e) also
decays exponentially to zero, regardless of how close po is to 1. Thus, we see that,
for e fixed, the two timing approximation fails to predict the correct limiting
behavior for all initial data with 1-e < y(0)+y(0)< 1. It is interesting to note
that this failure is in some sense predicted by the expansion itself. Notice that the
correction term r/(z) contains the factor p0/(p0-1) which for l>po> 1-e
satisfies Ipo/(po-1)[> 1/e. It could therefore be argued that the correction term
r/(z) is not uniformly small in po for fixed e, suggesting that the expansion has
failed. Of course, for fixed poone can always find an e sufficiently small so that the
expansion is again correct, but the expansion itself does not tell us how small this e
must be.

Notice that this result does not contradict the pointwise validity of the
two-timing method for times of order O(1/e), but it does indicate how drastically
incorrect the long time behavior can be. As seen in 4, higher order corrections
are uniformly bounded and therefore cannot overcome the initial defects of p (r).

The region @(e) in Theorem 5.1 has an area whose size is order O(e). In
effect, the above theorem suggests that the two-timing method can predict the
boundary of a given domain of attraction only to within regions of order O(e). It
seems reasonable, however, that exclusive of some boundary region of order
O(e), the two-timing method predicts the correct asymptotic limit cycle, but this
conjecture remains to be proven in general. Unfortunately, the correct domain of
attraction can be ascertained only from some a priori information which is
independent of the two-timing approximation itself, as for example, with the Van
der Pol oscillator, for which there is a unique stable periodic solution.

Appendix A. In this Appendix we give a derivation of equations (4.18),
(4.19) from (4.17). First, we want to find the fundamental solution matrix Yo(z)
for the homogeneous equation

(A.1)
dr v

where is given by (4.17b). Since (A. 1) is a linearization of (4.11), one solution of

(A’l)isgivenby(Ui)=(Ai)whereA(r)’B(’)’theslutinsf(4"ll)aregivenvl B
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by

(Ao(’r)
\Bo(’r)} v

(A.2)
() W g (

Thus, one solution of (A. 1) is given by

(sin G(r)O(r)
\cos 6(r) -sin G(z) ]

a+/ o(0).

To find a second linearly independent solution, notice that W= det Yo(r)
must satisfy

(A.4) dW/d (trace &(r))W (f(p)+of(p))W.

Now,

d(lndO)d-" -r f(p (r)) + p[’@ (7"))

so that

(A.5) W= WopO’)f(p(cr)).

Furthermore,

ldp 1
2 d’c 2’’’’’=AA’+BB= AoUl +BoVl.

Thus, a second linearly independent solution of A.1 is

=( Ao)=(A.6) Vpwt"
so that

(A.7a)
Yo(r)=, V p---wt-)( -a)(-G’(r) 1)

and
2

(2G’0")
1 /7-

(A.7b) YI(T) ’P (O)P (T)

Finally, we note that the solution of (4.17) is given by

(A.8) (;;): Yo(r)ltB,(0)) + Yo0")-[o Y \h do’,
(r)l
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and we easily calculate that

(A.9a)

and that

(A.9b) e(o.)Yo(z)Y (o.)
-Ao(o.)} a

from which (4.19) naturally follows.

Appendix B.
Proof of Lemma 4.6. To show that the mapping Tu, defined by (4.25), is

bounded in the norm I1" IIv, we must show that ITul and le dTu/dz] are bounded
for some A. We make frequent use of the inequality

(B.1)
lu (o.)- u (o0)[ = do" -< e

To show that Tu is bounded, note by the triangle inequality and (4.24a,b) that

[F(r, u(o"))-F(oo, uo)[ _<-IF(r, u(o"))-F(o", uoo)l+lF(o", uoo)-F(oo, uoo)l

(B.2) <= C2lu uool +IIF( , u)ll e A-

Thus, from (4.25),

5 1
ITul<-[G(’r)l (C211ull+Cl)(l/e-’)<=-llGIl(f211ull+C1)’

From (4.25), it is obvious that

dTu
dr

G’(z) (F(o", u(o"))-F(oo, uoo)) do" + G(z)(F(z, u(r))-F(oo, uoo))

so that, from the boundedness of G0") and (B.2)

(B.3) dTu[ u C1)(1-" -[[d ,<llll(c=ll I1/ )e-’,

from which it follows that [ex dTu/d’r[ is bounded.
To show the continuity of Tu we must show that [Tu-Tv[ and

le’(dTu/dz-dTv/d-)l are bounded for positive z. To do so requires that we
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make use of the following identity"

(f(u)-f(uoo))- (f(v

((u u)- (v vo))
(B.4)

+ (v -v) |
o

f’(su + 1 s )u) ds

[f’(su +(1-s)u)o-f’(sv + (1-s)v)l ds.

If df/du is assumed to be uniformly Lipschitz continuous, then

(g.5) I((u )-f(uoo))- (f(v )- f(voo))l <-_ (gl + g2lv l)l(u u)-

Furthermore, from (B.1)we have that

1
(B.6) I(u-u)-(v-v)l<--11u-vll e -’.

Thus, with the use of (B.5) and (B.6),

I(F(o’, u)- F(oe, u))- (F(o’, v)- F(oe, v))l
<-I(F(cr, u(o’))-F(o’, uoo))-(F(o’, v(cr))-F(o’,

(B.7)
+ I(F(o, uoo)-F(o’, v))-(F(o, uoo)-F(oe,

_<Ke_

The continuity of Tu follows directly from (B.7).
Proof of Lemma 4.7. To show that the mapping Su, defined by (4.27), is

bounded and continuous in I1" I1 or & <o we define two new mappings Sau and
S2u by

(B.8)

O (7")
[F(o’, u (o’)) F(oe u (co))] do’,Sau H(o’)

G(’r)
do’.SzU F(oe, u)

H(o’)

Clearly the mapping Su is the sum of Sau and S2u, and the boundedness and
continuity of S2u follow directly from the assumption (4.26d).

For Sau, notice that from (4.26c) and (B.2),

(B.9) ISaul <C3 e-" c4 eXo, 1
2(C21IUIIA "1" el) e do’,

which approaches zero for all positive values of & and &o. Furthermore,

Io" G0)dSau G’(r)
F(o’, u(cr))-F(o, u)

do" + (F(r, u(r))-F(oe uoo))d---- H(o’) I--I(;)
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so that

Thus [e dSu/dz] is bounded for all h <Ao.
The continuity of SlU follows in the same way with the single change that the

inequality (B.7) replaces the inequality (B.2).

Appendix C.

TABLE
Tabulation ofa.q (see (2.11)) where a.q a..

p/q 0 4

0 0
0

2 0 0

3
3 3 o o

3
4 0 0

8 64
5 5

5 0
64

0

5 3
6 0 0

64 128
35 7

7 6- 0
128

0

7 7
8 0 0

128 512
63 21

9 0 0
128 512

0

3

128

0

7

512

0

9

0

5

512

0 0
1024

5 35
0 0

1024 16384
45 35

0 0
1024 16384 32768
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